Fall 2020

IE 461-101: Product Quality Assurance

George Abdou

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation
https://digitalcommons.njit.edu/mie-syllabi/174

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
NEW JERSEY INSTITUTE OF TECHNOLOGY
Department of Mechanical & Industrial Engineering
IE 461
Product Quality Assurance
Fall 2020

INSTRUCTOR: George Abdou, Associate Professor, Room ME306
Tel. (973) 596-3651 Fax. (973) 642-4282 e-mail: abdou@njit.edu

OFFICE HOURS:
Tuesday: 3:00 - 5:00 p.m. and by appointment or good fortune
Wednesday: 6:00 - 9:05 p.m.
Synchronous ONLINE

This course is Synchronous online by log in to Webex:
njit.webex.com/meet/abdou

Course Lectures and Requirements:
available at
http://canvas.njit.edu/

TEXT:
“Quality Improvement”

Course Description
Prerequisite: IE 331. Methods used to achieve higher product quality, to prevent defects, to locate chronic sources of trouble, to measure process capability, and to use inspection data to regulate manufacturing processes are emphasized. Preparation of statistical control charts and selection of suitable sampling plans

Course Objectives
- **Probability and Basic Statistics.** Understand how to apply basic statistical methods to interpret data, and to combine these methods with visual data displays to understand the effect of variability in controlling and improving quality and reliability.
- **Data Analysis.** Investigate Random and Non-Random patterns in process performance.
- **Software Use.** Learn how to use MS Excel to analyze various Control Charts and Sampling Plan problems.
- **Problem Solving.** Learn different techniques and Standards to problem solving, and the most effective approach for optimum quality improvement.

GRADING:
Final Exam … 30%
Mid-term …30%
Homework...20%
Quizzes…20%

Course Outline:

<table>
<thead>
<tr>
<th>Week</th>
<th>TOPICS</th>
<th>Chapter</th>
<th>ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2</td>
<td>Introduction</td>
<td>1</td>
<td>Handout</td>
</tr>
<tr>
<td>9/9</td>
<td>Lean Mfg. & Six Sigma</td>
<td>2, 3</td>
<td>3. 1, 2(MIE dept.)</td>
</tr>
<tr>
<td>9/16</td>
<td>Statistical Process Control</td>
<td>4</td>
<td>4. 13 (Ex. 1, 3, 6,7,8)</td>
</tr>
<tr>
<td>9/23</td>
<td>Fundamentals of Statistics</td>
<td>5</td>
<td>5. 36,38,[41,56 (Ex. 9, 20, 32)]</td>
</tr>
<tr>
<td>9/30</td>
<td>Control Charts for Variables</td>
<td>6</td>
<td>6. 3, 5, 7, 19, 32(Ex. 25, 27)</td>
</tr>
<tr>
<td>10/7</td>
<td>Continuous/Batch/Short Runs SPC</td>
<td>7</td>
<td>7. 5, 9, 12, 17, 19 (Ex.9)</td>
</tr>
<tr>
<td>10/14</td>
<td>Fundamentals of Probability</td>
<td>8</td>
<td>8. 9, 10, 24,38,39,45</td>
</tr>
<tr>
<td>10/21</td>
<td>***** Mid Term *****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28</td>
<td>Control Charts for Attributes</td>
<td>9</td>
<td>9. 6, 24, 27(Ex.13,17,21)</td>
</tr>
<tr>
<td>11/4</td>
<td>Acceptance Sampling Plan</td>
<td>10</td>
<td>10. 4, 7, 9, 16, 27, 30</td>
</tr>
<tr>
<td>11/11</td>
<td>Quality in Service Sector</td>
<td>Handout</td>
<td>Handout</td>
</tr>
<tr>
<td>11/18</td>
<td>Reliability</td>
<td>11</td>
<td>11. 6, 7, 10, 11, 13, 23, 24, 28, 29</td>
</tr>
<tr>
<td>(11/26-29)</td>
<td>Thanksgiving Recess - No Classes Scheduled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/2</td>
<td>Experimental Design</td>
<td>13</td>
<td>13. 4, 6, 11, 12, 15</td>
</tr>
<tr>
<td>12/9</td>
<td>Taguchi Method</td>
<td>14</td>
<td>14. 2, 13, 17, 19, 23</td>
</tr>
<tr>
<td>12/16</td>
<td>***** Final Exam *****</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Important Notes
1. The use of any electronic devices during classes; including but not limited to: laptops, cell phones, tablets, social media, etc..., is prohibited for non-class related functions.
2. Homework is due the week following the date they are assigned. It is expected that class participants will observe specified deadlines. There will be no deviations from scheduled due dates and test dates. The assignments will not be accepted after the noted deadline. However, because you know all deadlines and assignments by no later the second week of classes, deadlines should present no problems to class participants.
3. Exams will consider all materials covered in the lectures, which may not be in the book. Therefore, attendance of lectures is very important.

4. HONOR & ETHICS
The code of unspoken ethics in a professional work environment in the US will apply in the classroom. That is, honesty and ethical conduct will not only be expected, but demanded. Please see me if you have any confusion on what I mean. Clearly, cheating on an exam is not permitted. Students caught in violation of this policy will earn a failing grades on their exam. Cooperation in responding to homework questions is not only permitted, but encouraged, as part of the cooperative learning framework of the course. You may discuss homework problems but not copy someone else’s work. Any persons caught copying as well as the person providing the homework will be penalized.

Software Applications
To help reinforce the use of computer software to solve assignments, there are two packages: Excel and Minitab. You will be required to submit your assignments in either format of the abovementioned software, and a printout of worksheet with explanation. In some cases, the computations that you perform must be visualized by a graph.

BSIE Program Educational Objectives
1. Program graduates use the fundamental principles and major areas of Industrial Engineering in their professional practice.
2. Program graduates are life-long learners, pursuing graduate education, and professional growth in Industrial Engineering and related fields.
3. Program graduates pursue diverse career paths and advance in a variety of industries.

BSIE Student Outcomes
(1) An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
(2) An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social and economic factors
(3) An ability to communicate effectively with a range of audiences
(4) An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and social contexts
(5) An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
(6) An ability to conduct appropriate experimentation, analyze and interpret data, and use engineering judgement to draw conclusions
(7) An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

IE 461 Outcomes of Instruction:
1. Understand how to apply Statistical Methods (1).
2. Able to apply Excel and Minitab functions to Quality Control (1).
3. Understand the concepts of Process Capability and DOE (1).
4. Develop more proficient problem solving skills (4).