
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1-31-2015

Local selection of features and its applications to image search Local selection of features and its applications to image search

and annotation and annotation

Jichao Sun
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sun, Jichao, "Local selection of features and its applications to image search and annotation" (2015).
Dissertations. 109.
https://digitalcommons.njit.edu/dissertations/109

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/109?utm_source=digitalcommons.njit.edu%2Fdissertations%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

LOCAL SELECTION OF FEATURES AND ITS APPLICATIONS TO IMAGE
SEARCH AND ANNOTATION

by
Jichao Sun

In multimedia applications, direct representations of data objects typically involve hundreds

or thousands of features. Given a query object, the similarity between the query object

and a database object can be computed as the distance between their feature vectors. The

neighborhood of the query object consists of those database objects that are close to the

query object. The semantic quality of the neighborhood, which can be measured as the

proportion of neighboring objects that share the same class label as the query object, is

crucial for many applications, such as content-based image retrieval and automated image

annotation. However, due to the existence of noisy or irrelevant features, errors introduced

into similarity measurements are detrimental to the neighborhood quality of data objects.

One way to alleviate the negative impact of noisy features is to use feature selection

techniques in data preprocessing. From the original vector space, feature selection

techniques select a subset of features, which can be used subsequently in supervised or

unsupervised learning algorithms for better performance. However, their performance

on improving the quality of data neighborhoods is rarely evaluated in the literature. In

addition, most traditional feature selection techniques are global, in the sense that they

compute a single set of features across the entire database. As a consequence, the

possibility that the feature importance may vary across different data objects or classes

of objects is neglected.

To compute a better neighborhood structure for objects in high-dimensional feature

spaces, this dissertation proposes several techniques for selecting features that are important

to the local neighborhood of individual objects. These techniques are then applied to image

applications such as content-based image retrieval and image label propagation. Firstly,

an iterative K-NN graph construction method for image databases is proposed. A local

variant of the Laplacian Score is designed for the selection of features for individual images.

Noisy features are detected and sparsified iteratively from the original standardized feature

vectors. This technique is incorporated into an approximate K-NN graph construction

method so as to improve the semantic quality of the graph. Secondly, in a content-based

image retrieval system, a generalized version of the Laplacian Score is used to compute

different feature subspaces for images in the database. For online search, a query image

is ranked in the feature spaces of database images. Those database images for which the

query image is ranked highly are selected as the query results. Finally, a supervised method

for the local selection of image features is proposed, for refining the similarity graph used

in an image label propagation framework. By using only the selected features to compute

the edges leading from labeled image nodes to unlabeled image nodes, better annotation

accuracy can be achieved.

Experimental results on several datasets are provided in this dissertation, to demon-

strate the effectiveness of the proposed techniques for the local selection of features, and

for the image applications under consideration.

LOCAL SELECTION OF FEATURES AND ITS APPLICATIONS TO IMAGE
SEARCH AND ANNOTATION

by
Jichao Sun

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

January 2015

Copyright c© 2015 by Jichao Sun

ALL RIGHTS RESERVED

APPROVAL PAGE

LOCAL SELECTION OF FEATURES AND ITS APPLICATIONS TO IMAGE
SEARCH AND ANNOTATION

Jichao Sun

Dr. Vincent Oria, Dissertation Co-advisor Date
Associate Professor of Computer Science, NJIT

Dr. Michael E. Houle, Dissertation Co-advisor Date
Visiting Professor, National Institute of Informatics, Japan

Dr. K. Selçuk Candan, Committee Member Date
Professor of Computer Science and Engineering, Arizona State University

Dr. Usman W. Roshan, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Frank Y. Shih, Committee Member Date
Professor of Computer Science, NJIT

Dr. Dimitrios Theodoratos, Committee Member Date
Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Jichao Sun

Degree:	 Doctor of Philosophy

Date:	 January 2015

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2015

• Bachelor of Engineering in Software Engineering,
Beihang University, Beijing, China, 2007

Major:	 Computer Science

Presentations and Publications:

Sun, J. (2014). Local selection of features for image search and annotation. In Proceedings
of the ACM International Conference on Multimedia , pages 655-658.

Houle, M. E., Ma, X., Oria, V., and Sun, J. (2014). Improving the quality of K-NN graphs
through vector sparsification: application to image databases. International Journal
on Multimedia Information Retrieval , 3(4):259-274.

Houle, M. E., Ma, X., Oria, V., and Sun, J. (2014). Improving the quality of K-NN
graphs for image databases through vector sparsification. In Proceedings of the
International Conference on Multimedia Retrieval , pages 89-96.

Houle, M. E., Ma, X., Oria, V., and Sun, J. (2014). Efficient algorithm for similarity
search in axis-aligned subspaces. In Proceedings of the International Conference
on Similarity Search and Applications , pages 1-12.

Houle, M. E., Oria, V., Satoh, S., and Sun, J. (2013). Annotation propagation in image
databases using similarity graphs. ACM Transactions on Multimedia Computing,
Communications and Applications , 10(1):7.

Houle, M. E., Oria, V., Satoh, S., and Sun, J. (2011). Knowledge propagation in large
image databases using neighborhood information. In Proceedings of the ACM
International Conference on Multimedia , pages 1033-1036.

iv

Fesnin, A., Gouet-Brunet, V., Kominen, S., Oria, V., and Sun, J. (2011). Towards a privacy
preserving personal photo album manager with semantic classification, indexing
and querying capabilities. In Proceedings of the ACM International Conference on
Multimedia, pages 835-836.

v

To My Beloved Parents.

vi

ACKNOWLEDGMENT

I would like to express my sincere gratitude and appreciation to my co-advisors Dr. Vincent

Oria and Dr. Michael E. Houle for their continuous support of my Ph.D. study and research,

for their patience, encouragement, and optimism. Their guidance helped me develop ideas,

solve tough problems and write this dissertation.

I would like to thank the rest of my dissertation committee Dr. K. Selçuk Candan, Dr.

Usman W. Roshan, Dr. Frank Y. Shih and Dr. Dimitrios Theodoratos, for their insightful

comments.

My thanks also goes to the Department of Computer Science at NJIT for providing

me with continuous assistantship, and to National Institute of Informatics in Japan for

offering me the research internship opportunities.

I thank my lab colleagues Xiangqian Yu, Cem Aksoy, Sheetal Rajgure, Ananya Dass

for the discussions and collaborations. I also thank my friends Xiguo Ma, Bing Li, Shuo

Chen and Wei Wang for the fun we have had. In particular, I am grateful to my girlfriend

Shuangyi Zhang, for her patience, enthusiasm and love, in the past four years.

Most importantly, I would like to thank my family, my grandmother Meilan Han,

my mother Cuixiang Ji, and my father Jinge Sun, for their spiritual support. They have

always been confident in me throughout my life. I could not have finished this long journey

without their endless love.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 RELATED WORK . 8

2.1 Content-based Similarity Search and Image Retrieval 8

2.1.1 Content-based Similarity Search in Multimedia Applications 8

2.1.2 Content-based Image Retrieval 10

2.2 Image Annotation and Label Propagation 15

2.2.1 Image Annotation . 15

2.2.2 Label Propagation for Image Annotation 19

2.3 Feature Learning and Metric Learning 24

2.3.1 Feature Learning . 24

2.3.2 Metric Learning . 27

2.4 Feature Selection . 31

2.4.1 Feature Selection for Generic Data 31

2.4.2 Local Selection of Features . 38

2.4.3 Feature Selection for Image Retrieval and Annotation 44

3 IMPROVING THE QUALITY OF K-NN GRAPHS FOR IMAGE DATABASES
THROUGH VECTOR SPARSIFICATION 47

3.1 Introduction . 47

3.2 Locally Noisy Feature Detection and Sparsification 51

3.2.1 Local Laplacian Score . 51

3.2.2 Locally Noisy Features and LLS 53

3.2.3 Feature Sparsification . 55

3.3 K-NN Graph Construction with Feature Sparsification 59

3.3.1 NN-Descent . 59

3.3.2 NN-Descent with Sparsification 60

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.3.3 Variants of NNF-Descent . 64

3.4 Experiments . 65

3.4.1 Datasets . 65

3.4.2 Number of Features Sparsified per Iteration 67

3.4.3 Replacing Noisy Feature Values by the Local Mean 69

3.4.4 Effectiveness of Iterative Feature Ranking 70

3.4.5 Comparison Against Co-clustering and Subspace Clustering-based
Methods . 71

3.4.6 Comparison Against Global Feature Selection Methods with Respect
to Graph Correctness . 74

3.4.7 Comparison Against Global Feature Selection Methods in Data
Labeling . 77

3.5 Conclusion . 79

4 IMAGE SEARCH BASED ON LOCAL SELECTION OF FEATURES AND
QUERY EXPANSION . 81

4.1 Introduction . 81

4.2 Generalized Laplacian Score and Subjective Feature Spaces 83

4.2.1 Generalized Laplacian Score . 83

4.2.2 Ranking in Subjective Feature Spaces 85

4.3 Query Expansion and Flexible Aggregation 88

4.3.1 Automated Query Expansion and Flexible Aggregation 89

4.3.2 Practical Implementation . 90

4.4 Experiments . 92

4.4.1 Datasets . 93

4.4.2 The Weighting Factor of the Generalized Laplacian Score 94

4.4.3 Comparison Against Traditional Unsupervised Feature Selection
Methods . 96

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

4.4.4 The Size of the Query Expansion Set and the Aggregation Factor . 98

4.4.5 Performance of the Efficient Retrieval System 100

4.5 Conclusion and Discussion . 104

5 IMAGE LABEL PROPAGATION VIA REFINED SIMILARITY GRAPHS . . . 105

5.1 Introduction . 105

5.2 The Influence Propagation Model . 108

5.2.1 The SW-KProp Algorithm . 109

5.2.2 The Influence Graph . 111

5.2.3 Label Propagation . 113

5.2.4 The SW-KProp+ Variant . 117

5.3 Experimental Framework . 119

5.3.1 Datasets . 119

5.3.2 Evaluation Criteria . 120

5.3.3 Influence of SW-KProp and SW-KProp+ Parameters 121

5.3.4 Methods Evaluated . 126

5.4 Experimental Results and Discussion . 128

5.4.1 Comparing SW-KProp+ against SW-KProp with Other Supervised
Feature Selection Methods . 129

5.4.2 Comparing SW-KProp+ with Other Image Annotation Methods . . 131

5.5 Conclusion . 139

6 CONCLUSION . 141

BIBLIOGRAPHY . 145

x

LIST OF TABLES

Table Page

2.1 Motivations of Image Annotation . 16

3.1 Datasets Used in the Experiments . 65

3.2 Graph Correctness (%) on the Four Image Sets (K = 10) 73

3.3 Running Time of Competing Methods on ALOI-100 (K = 10) 78

3.4 Relative Running Time of Competing Methods on ALOI-100 (K = 10) 78

4.1 Datasets Used in the Experiments . 93

4.2 Average Response Time (in seconds) Per Query 103

5.1 Labeling Accuracy and the Number of Iterations Required for Convergence
with Respect to β Values for the Google-23 Set (One Prelabeled Face Per
Individual) . 123

5.2 Average Labeling Accuracy (%) with Respect to rd and tc on the Three Image
Datasets . 125

5.3 Precision (%) of Edges Leading from Labeled Nodes to Unlabeled Nodes in
the Influence Graphs of the Three Datasets (Five Images Prelabeled Per
Category) . 130

5.4 Average Accuracy (%) for MNIST . 134

5.5 Average Accuracy (%) for Google-23 . 135

5.6 Average Accuracy (%) for NUS-WIDE-OBJECT 136

5.7 Running Time of the Feature Selection and Graph Refinement Process of SW-
KProp+ on NUS-WIDE-OBJECT . 138

xi

LIST OF FIGURES

Figure Page

2.1 A simplified framework of CBIR systems. 10

3.1 Frequencies of features identified as noisy features in three image classes of
MNIST. 55

3.2 Distribution of 3-D data points in a dataset of three classes. 57

3.3 The principle of NN-Descent. 60

3.4 Performances of NNF-Descent for different numbers of features sparsified per
iteration. 69

3.5 Comparing NNF-Descent with Var1. 71

3.6 Comparing NNF-Descent with Var2 and Var3. 72

3.7 Comparing the graph correctness of NNF-Descent with that of global feature
selection methods. 76

3.8 Comparing NNF-Descent with global feature selection methods on a labeling
task. 79

4.1 Distance values and ranking scores of q in subjective feature spaces Fi and F j
for xi and x j, respectively. 87

4.2 Framework of Fast GLS+QE+RS. 91

4.3 Influence of β on GLS. 95

4.4 Comparison against methods using traditional unsupervised feature selection
techniques. 97

4.5 The size k of the query expansion set. 98

4.6 The flexible aggregation factor k′. 99

4.7 Retrieval precision when K = 50. 101

4.8 Retrieval precision when K = 100. 102

5.1 Applying SW-KProp for the classification of a face image set. 107

5.2 Labeling accuracy with respect to K. 121

5.3 Proportion of nodes unreachable from source nodes with respect to K. 122

5.4 The labeling accuracy with respect to α on the three datasets. 124

xii

LIST OF FIGURES
(Continued)

Figure Page

5.5 Labeling accuracy of SW-KProp+ and SW-KProp with different feature
selection methods on the three datasets. 130

5.6 Labeling accuracy of SW-KProp+ and competing methods on the three image
datasets. 132

5.7 Distance distributions for the three datasets. 133

5.8 The running time of all competing methods relative to that of the similarity
graph construction. 139

xiii

CHAPTER 1

INTRODUCTION

The volume of digitalized data has been increasing at a phenomenal rate during the past

two decades. Raw sensory data could be huge in size. For example, cameras on modern

portable devices can easily produce large photos each with millions of pixels. To enable

effective and efficient data processing in multimedia applications, it is a common practice

to extract interesting features from raw data and represent data objects as high-dimensional

feature vectors, such as color and texture histograms for images [Liu et al. 2007].

Computing pairwise similarities between data objects using the extracted features is a

fundamental operation, in applications such as content-based similarity search (CBSS) [Qin

et al. 2011; Pope et al. 2004; Casey et al. 2008; Logan and Salomon 2001; Patel and

Meshram 2012] and machine learning [Brito et al. 1997; Belkin and Niyogi 2003; Roweis

and Saul 2000; Zhu et al. 2003]. It is expected that the similarity between the semantics

of two data objects can be approximated using the distance between their corresponding

feature vectors, for example, the Euclidean distance. Here, the semantics associated with

a data object refer to human observation and perception of that object, which can be

represented by descriptive or categorical labels.

By ranking the data objects in a database with respect to their distances to a target

object, the neighborhood of the target object can be defined as the set of objects in the

database with distance values no greater than a positive threshold ε , or those having ranks

no larger than K. The semantic quality of the neighborhood information (or simply, the

neighborhood quality) of the target object can then be measured as the proportion of

neighbors sharing the same class label with the target object; the neighborhood quality

of a database measures the average neighborhood quality of its data objects.

Many multimedia applications rely heavily on the quality of data neighborhoods.

Given a query object, typical content-based similarity search (CBSS) engines retrieve

1

2

the close neighbors of the query object from a database. The proportion of neighboring

objects that are semantically related to the query object greatly influences the retrieval

performance. In content-based image retrieval (CBIR), which is one of the most active

research topics of CBSS, the database images having similar feature values to those of

a query image are returned to the user. In some CBIR systems [Pentland et al. 1996],

similar images of each query image are returned as the initial results. The user can pick

another set of queries from the displayed images to re-iterate the search process. There,

the neighborhood quality of both the query image and the image database is crucial for the

success of such retrieval mechanism.

Automated image annotation (AIA) has also been studied intensively in recent years,

which aims at annotating unlabeled images with keywords by learning from a small set

of prelabeled images. An important AIA approach, namely image label propagation, first

computes a similarity graph whose nodes represent individual images, and whose edges

connect neighboring image nodes. Annotation information is then ‘propagated’ along the

graph edges. In such a method, the similarity graph plays an important role in the label

propagation process: an edge connecting two irrelevant image nodes erroneously suggests

that they should share a common label, despite their belonging to different classes.

It is often difficult to construct a feasible neighborhood structure for databases with

imperfect features and distance measures. One barrier could be that the optimal choice

for the value of ε or K is usually hard to obtain. In practice, rank thresholds K have

an important advantage over distance thresholds ε in that they do not require an explicit

interpretation of distance values, and are less affected by the variation in data density.

A relatively small K is often used for applications that are sensitive to the neighborhood

quality [Hassanat et al. 2014; Jirina and Jr. 2010]. A weighting scheme can also be

adopted such that the close neighbors are given higher weightings [Hechenbichler and

Schliep 2004].

3

The gap between human perception of the semantics associated with data and the

low-level features describing the data (the semantic gap [Smeulders et al. 2000]) also

hinders the construction of good data neighborhoods. For example, images of the sun and

an orange could be neighbors of each other, when both are described as color histograms

and shape features. One way to address this issue is to redesign the feature extraction

method [Lowe 1999; Baya et al. 2008; Lv et al. 2006] or the distance function [Chen

and Cham 2004]. An alternative approach is to learn features [Bengio et al. 2013] or

metrics [Xing et al. 2002; Bellet et al. 2013] automatically. Both approaches, however,

discard the original feature representations and metric functions. The designing or learning

process is expensive, which often requires specific domain knowledge and intensive

experimental evaluation.

Even if the distance measure and features were carefully designed, representing data

in high-dimensional feature spaces raises another challenge, that is the distance measure

loses its discriminative ability on large feature vectors (the curse of dimensionality [Beyer

et al. 1999]): pairwise distances between data objects tend to concentrate around their

mean value, so that data of different classes are difficult to separate. One important reason

for this phenomenon could be the existence of noisy (or irrelevant) features, which are

either feature dimensions over the entire database, or feature values of a particular data

point. Noisy features provide little discrimination, which typically have a large variance on

data of the same class, or a small variance across different classes, or both. It is claimed

that the minimum number of latent variables (features) needed to represent a dataset, also

known as the intrinsic dimension, is in practice much smaller than the representational

dimension [Karger and Ruhl 2002]. This motivates the work in this dissertation to focus on

reducing the negative impact of noisy features, so as to improve the neighborhood quality

of data objects represented in high-dimensional feature spaces.

There are several reasons for the prevalence of noisy features. Some of them are

due to the deficiencies in the devices capturing the data, for example, the noise pixels

4

produced by digital cameras or scanners. Others could be attributed to the essential noisy

property of data sources, such as text documents on the Web and user ratings for a product.

It is worth noting that due to the semantic gap, noisy features can be also produced in the

feature extraction process. To support a broader range of queries in content-based similarity

search, it is a common practice to represent data objects using a large number of features,

or to add new features to their original representations. However, it is not necessary that all

features are relevant to all data objects. For example, in classification of fruit images which

are described as color and shape features, the shape features are discriminative for images

of oranges and bananas, but might be noisy for images of oranges and apples.

A natural idea for reducing the negative impact of noisy features on the neighborhood

quality is to perform feature selection on the given feature vectors as a preprocessing step.

Most traditional feature selection methods, either supervised or unsupervised, are global

in the sense that they select a single subset of relevant features for the entire database.

A feature deemed to be noisy is removed from all data objects. Most global feature

selection techniques aim at reducing the dimensionality of feature vectors, and at the same

time, improving their discriminative ability for data of different classes. Supervised or

unsupervised learning algorithms could have better performance by using the selected

features. Many feature selection methods have been proposed, and their effectiveness in

classification and clustering has been demonstrated [Duda et al. 2012; Peng et al. 2005;

He et al. 2006; Zhao and Liu 2007]. However, their performance on improving the

neighborhood quality is rarely evaluated in the literature, especially when comparing the

reduced feature set with the full feature set.

Global feature selection techniques ignore the possibility that the feature importance

may vary across different data objects. Here, the importance of a feature refers to its

influence on building good data neighborhoods. Local selection of features — that is,

selecting different feature subsets for individual data objects — could be more beneficial to

the neighborhood quality. For example, let fi and f j denote the values of a feature f taken

5

from object i and j, respectively, and let I and J be the class labels of i and j, respectively. If

the values of f for objects with label I are similar to fi, while those for objects without I are

different from fi, fi can be treated as a good feature for i; on the contrary, if f has random

values for objects with label J, f j is then a locally noisy feature for j. It it straightforward

that rather than keeping or discarding f for both i and j, a better neighborhood quality could

be achieved if fi is used for i, but f j is not used for f j, in the computation of their nearest

neighbors.

Compared to global approaches, there is much less work on local selection of

features. For unsupervised learning, the process of selecting features locally is usually

combined with clustering. There are two major categories of this type of work, namely

co-clustering (or bi-clustering) [Hartigan 1972; Dhillon 2001] and subspace clustering

[Agrawal et al. 2005; Cheng et al. 1999]. Co-clustering is the simultaneous partitioning of

the rows and columns of a matrix representing data instances and features (respectively),

such that the blocks induced by the partitions are good clusters. Subspace clustering

searches for possible feature subspaces in which clusters exist. For supervised learning,

the feature selection for individual data objects is performed together with the construction

of classifiers [Domingos 1997; Puuronen and Tsymbal 2001]. Although the work above

shows improved performance on clustering or classification, the selected features are

mostly used to support the learning algorithm, for example to describe the feature space

where a cluster resides, or to compute a classifier.

This dissertation studies techniques for improving the neighborhood quality of a

database by reducing the negative impact of locally noisy features. It is assumed that

the objects in the database are represented by high-dimensional feature vectors, and that

the given distance measure is applicable to feature vectors of arbitrary length. Several

methods are proposed for the detection of locally noisy features and for the computation

of data similarities using the feature subsets produced. These methods are then applied to

the problems of K-NN graph construction for images, content-based image retrieval and

6

image label propagation, to demonstrate their effectiveness on boosting the neighborhood

quality of image databases. The work in this dissertation is related to the topic of subspace

clustering, in that both compute different subsets of feature dimensions locally, in an effort

to identify subspaces within which clusters of data objects reside. The major difference

between the two approaches lies in that the methods proposed in this dissertation select

one subset of features for each data point, while subspace clustering searches for relevant

features such that clusters are detected in multiple, possibly overlapping subspaces. In

subspace clustering, one data point can be assigned to multiple clusters, which correspond

to different subsets of features.

The remainder of this dissertation is organized as follows. Chapter 2 reviews research

literature that is related to this work, including work on content-based similarity search

and image retrieval, image annotation and label propagation, feature learning and metric

learning, and feature selection methods.

Chapter 3 proposes a variant of the Laplacian Score (LS) [He et al. 2006], the Local

Laplacian Score (LLS), for the detection of locally noisy features for images represented

in high-dimensional feature spaces. By checking the local neighborhood of each image

computed using the original features, LLS favors those features that have a small variance

in the neighborhood but a large variance over the database. Features are ranked for

individual images according to their LLS scores. Those having low ranks are marked

as locally noisy features. It can be shown that images of the same class tend to have

common noisy features, while the noisy features for images from different classes are

more uniformly distributed. Instead of discarding the noisy features for the computation

of image distances, a feature sparsification process is utilized which requires the original

feature vectors to be standardized beforehand. The LLS feature selection and sparsification

procedure is embedded in an approximate K-NN graph construction method, in which

the sparsification and K-NN updating are performed iteratively. Experimental results on

7

several datasets show that the proposed method is able to increase the proportion of related

images over unrelated images within the neighbor sets.

Chapter 4 proposes Generalized Laplacian Score (GLS) which combines LS and LLS

for the local selection of features in a content-based image retrieval framework. A GLS

parameter is used to control the degree of divergence in the feature subsets selected for

different objects. The selected feature subsets define different feature spaces for individual

images. A query image is ranked in the feature spaces of database images. Those having

the feature spaces wherein the query image is ranked highly are returned as query results.

An automated query expansion scheme based on flexible rank aggregation is adopted to

improve the effectiveness of the proposed retrieval method. Filter and refine techniques

are used in the computation of both the expanded queries and the final results, so that the

proposed method is practical in large scale.

Chapter 5 proposes a supervised method for the local selection of image features

in an image label propagation problem. There, each feature of a labeled image is used

in isolation to rank other labeled images; the features that assign high ranks to related

neighboring images are treated as more important. By deleting the least important features,

a different feature set is computed for each labeled image, for subsequent use in the ranking

of unlabeled images. The similarity graph for the label propagation can be refined by

recomputing the links from labeled images to unlabeled images. This procedure is adopted

as a preprocessing step for the proposed image label propagation method SW-KProp+. As

can be seen, higher labeling accuracy can be achieved when the neighborhood quality of

the labeled images increases.

This dissertation concludes in Chapter 6, with a summary of the proposed methods

and a discussion of future research directions.

CHAPTER 2

RELATED WORK

Research literature related to the work in this dissertation is reviewed in this chapter.

Section 2.1 presents some background on content-based similarity search, and existing

approaches for content-based image retrieval. Automated image annotation and the appli-

cation of label propagation techniques to image annotation are discussed in Section 2.2.

Section 2.3 reviews two techniques that can potentially reduce the semantic gap, namely

feature learning and metric learning. Section 2.4 reviews existing feature selection

methods, including those for supervised and unsupervised learning on generic data and

those for image applications.

2.1 Content-based Similarity Search and Image Retrieval

2.1.1 Content-based Similarity Search in Multimedia Applications

With the development of portable devices and social networks, the data volume of

digitalized photos, audios and videos has been increasing at a phenomenal rate. Most search

engines including online-based services, and those provided by local operating systems are

still based on keyword matching. Therefore, they are limited when text descriptions for

data to be searched are not available. Effective and efficient methods for content-based

similarity search in multimedia databases are highly desired.

Data objects in multimedia applications are often represented by high-dimensional

feature vectors. Given a specific distance measure, content-based similarity search (CBSS)

is performed based on computing the vector similarities between the query object and

database objects. Those database objects that are close to the query object in the feature

space are retrieved.

In content-based image retrieval (CBIR), low-level features such as those describing

color, texture and shapes can be extracted from entire images, segmented image regions, or

8

9

detected objects of interest. Lp or weighted Lp distance functions are commonly used in the

computation of similarities between two feature vectors. When images are represented by

a set of feature vectors, each associated with a region, the overall similarity of two images

can be measured using either one-to-one or many-to-many matching [Liu et al. 2007].

In music information retrieval, one piece of music is first segmented into small

short-time intervals, based on periodic sampling or beat alignment. Audio features can

be extracted through windowed signal analysis in several domains [Pope et al. 2004; Casey

et al. 2008]. One possible method would be the root-mean squared envelope extraction and

fast Fourier transform-based spectral analysis in time and frequency domains, respectively.

The search for similar music can be performed by computing the distances between the

aggregated features. For example, the earth mover’s distance (EMD) was adopted to

compare song signatures produced by K-means clustering of spectral features extracted

from music frames in [Logan and Salomon 2001].

A typical video clip consists of a sequence of still images and a synchronized

sound track. As a consequence, in content-based video retrieval systems, the features

for images and audios can be used to describe videos. To reduce the number of image

features produced, a video clip is often segmented into shots, from which key frames are

extracted. Image features are then computed from the key frames. Additional features may

be extracted from object motion trajectory and text of subtitles. Frequently used features

and similarity measurements for content-based video retrieval can be found in [Patel and

Meshram 2012].

There are also applications of content-based similarity search in content-based

recommender systems, where an item (a product for example) is represented by a feature

vector according to the text description of its characteristics [Lops et al. 2011]. A common

practice in this field is to use the keywords in the description to compute a weighted

feature vector for the item, in a similar way as that a text document is represented by a

bag-of-words. A ‘profile’ is then built for each user as a weighted feature vector based on

10

Figure 2.1 A simplified framework of CBIR systems.

the items rated (or bought) by the user. The recommendation process can be viewed as

matching the user profile against the features of candidate items.

2.1.2 Content-based Image Retrieval

Content-based image retrieval (CBIR) is one of the most active research topics of content-

based similarity search. A typical CBIR system consists of two major components: feature

extraction and similarity matching. In the preprocessing step, low-level features such as

those describing color, texture, shape and edge information are computed from database

images. An image is represented by one feature vector or a set of feature vectors. These

features are then indexed to allow fast similarity search in the feature space.

During the online process, the same type of features are extracted from the query

image, which is then used to query against the index structure. Candidate query results are

ranked according to their similarities with respect to the query image, and are returned to

the user. A simplified framework for typical CBIR systems can be found in Figure 2.1.

In CBIR, color histogram, color moment, edge direction histogram and wavelet

texture features are widely used as low-level image features. Among the common distance

measures considered in the literature are the Euclidean distance, histogram intersection and

the Mahalanobis distance [Mahalanobis 1936], to name a few. A recent survey on various

approaches for extracting low-level feature and computing image similarities can be found

in [Rajam and Valli 2013].

11

Image features can be either extracted globally from an entire image, or locally

from segmented regions or detected visual objects within the image [Raoui et al. 2011].

Global feature matching has been applied to many CBIR systems. IBM QBIC [Niblack

et al. 1993] is the first commercial CBIR system which integrates several types of features

including average color vector, RGB color histogram, texture features and shape features.

A histogram quadratic distance is used for the color histograms, while a weighted Euclidean

distance is used for the other types of features. In QBIC, the user is allowed to query the

database using an example image, a rough sketch image, or by selecting color and texture

patterns provided by the system.

Photobook [Pentland et al. 1996] is another tool for image browsing and searching

based on global features. Three different approaches were proposed for constructing

eigenimage representations based on faces, shapes and texture, with each representation

tailored to a specific type of image content. To perform a query, the user selects some

images from an image corpus displayed by the system and enters text annotations for

filtering. The user can also re-iterate the search by selecting another set of queries from

returned images.

Many approaches have been proposed to improve the retrieval performance of global

feature-based CBIR systems. For example, in PicToSeek [Gevers and Smeulders 2000],

color and shape invariants are defined and used as features for image retrieval, which are

independent of camera viewpoint, object geometry and illumination. In VisualSEEk [Smith

and Chang 1996], salient color regions are automatically extracted from database images,

and for each region, image features and spatial properties are retained for the subsequent

queries. Given a query image, the system finds the images that contain the most similar

arrangements of similar regions. Virage [Bach et al. 1996] introduces a basic concept

‘primitive’, which denotes a feature type as well as the corresponding distance computation

and matching schemes. Several general primitives are provided by the system, such as

12

global histograms. Developers can also create domain-specific primitives and fine-tune the

implemented features.

Ljubovic and Supic performed a comparative study of the use of color histograms

as global features for CBIR recently [Ljubovic and Supic 2013]. The authors evaluated

various types of histograms and distance measures used in the literature, using contem-

porary datasets on their retrieval performance and resource usage. They claimed that the

best overall retrieval performance is achieved by using a combined histograms in HSV

color spaces with 256 bins and the Matsushita distance.

Despite the simplicity of computing global image features, human perception of

visual contents could be more associated with interesting objects from images, rather than

with global color and texture information of entire images. This motivates the use of image

features extracted from local regions or around salient points in CBIR applications in recent

years.

In region-based retrieval systems, an image is segmented into regions. The retrieval

is conducted based on the similarity between region features. Examples of well-known

region-based CBIR systems include Blobworld [Carson et al. 2002] and SIMPLIcity [Wang

et al. 2001].

Chen and Wang proposed a region-based fuzzy feature matching approach to

CBIR [Chen and Wang 2002]. There, an image is represented by a set of segmented

regions, each of which is described by a fuzzy feature based on color, texture and shape.

An image is therefore associated with a family of fuzzy features corresponding to regions.

A new technique called unified feature matching (UFM) is used to compute the similarity

between two images. This technique has been integrated into the SIMPLicity system.

In [Jing et al. 2004], a set of methods were combined in a region-based image

retrieval framework, including techniques for region-based image representation and

comparison, indexing using a variant of inverted files, relevance feedback, and region

weight learning.

13

The principal regions image retrieval (PRIR) technique was proposed in [Helala

et al. 2012]. Image regions are obtained by applying morphological operations and

HSV quantization to the original image. Principal regions are computed by sorting and

combining the segmented regions according to their sizes, and are described using fuzzy

color and texture histograms. An image is then represented by a nearest neighbor graph

whose nodes represent the principal regions, and whose edges connect the principal regions

to their spatially nearby regions. A greedy nearest neighbor graph matching algorithm is

used to measure the local similarity between two images. This is combined with the global

similarity between the fuzzy color and texture histograms of the two images, in the final

retrieval system.

Most region-based approaches rely heavily on image segmentation techniques. An

imperfect segmentation often leads to poor retrieval performance. One way to alleviate this

negative impact is to extract features only from salient points or regions. Many salient point

or region detectors, such as the Harris corner detector [Harris and Stephens 1988] and the

maximally stable extremal region detector (MSER) [Matas et al. 2004], and local feature

descriptors, such as scale-invariant feature transform (SIFT) [Lowe 1999] and speeded up

robust features (SURF) [Baya et al. 2008], have been developed and successfully applied

to image matching.

However, the number of detected points or regions of interest from a typical image

is usually large. This motivates the application of the bag-of-visual-words (BOVW)

representation to CBIR [Liu 2013; Bouachir et al. 2009; Shen et al. 2012; Kogler and

Lux 2010; Chatzichristofis et al. 2011]. In a typical BOVW-based image retrieval system,

salient points or regions are first detected, and are described by local descriptors invariant

to image transformations such as rotation, illumination, scale and viewpoint. To construct

a visual dictionary, a clustering algorithm such as approximate K-means or hierarchical

K-means is applied to a large number of local descriptors (represented by feature vectors)

collected from a set of training images. Each cluster centroid corresponds to a ‘visual

14

word’ in the dictionary. An image is then represented by a histogram of the visual

words, which can be weighted by term frequency-inverse document frequency (TF-IDF).

Database images can be indexed in inverted files for fast retrieval in a similar manner

as that for text documents. Surveys on the indexing techniques and weighting schemes

for BOVW-based image retrieval can be found in [Mukherjee et al. 2014] and [Tirilly

et al. 2009], respectively.

Besides fundamental techniques of feature extraction and similarity measurement,

many other approaches have been integrated into recent CBIR approaches. Supervised

learning was used in [Gondra and Heisterkamp 2004], where the user can iteratively mark

retrieved images as relevant or irrelevant. Classifiers are then trained by a generalized

support vector machine (SVM) [Cortes and Vapnik 1995] on the marked images. The

database images are classified, and those having the highest relevance scores are returned.

Shen et al. proposed a new spatially constrained similarity measure to incorporate spatial

information in the BOVW representation [Shen et al. 2012]. A K-NN re-ranking scheme

was also proposed in their work to automatically refine the initial query results. Li et al.

proposed to use graphs to support visual dictionaries [Li et al. 2011a]. The graph edges

represent pairwise co-occurrences of visual words from database images. During the online

process, the visual words associated with a query image are augmented with additional

co-occurring visual words discovered by means of the graph. An example of image

retrieval based on query expansion can be found in [Rahman et al. 2011]. There, images

are represented by vectors of weighted concepts, which comprise of color and texture

patches from local image regions. Analysis of correlations and similarities among the

visual concepts are performed locally within the initial result set, and globally across the

entire database. A new query vector containing a mixture of similar and correlated visual

concepts is then used to modify the original query vector.

Liu et al. provided a more comprehensive survey on high-level semantic-based image

retrieval techniques [Liu et al. 2007]. The authors summarized five major categories of

15

techniques for bridging the gap between low-level image features and high-level image

semantics. These techniques utilize object ontology, machine learning methods, relevance

feedback, semantic templates or HTML text surrounding web images.

2.2 Image Annotation and Label Propagation

Due to the gap between low-level image features and high-level semantics, there is

no single widely accepted approach to different CBIR applications. Text information

associated with images still plays an important role in practical image searching and

indexing methods. However, manual labeling of images is tedious and labor intensive. This

motivates the research on automated image annotation (AIA) techniques. An overview

of image annotation and automated image annotation methods is given in Section 2.2.1.

Section 2.2.2 focuses on a specific technique, namely label propagation, and discusses its

applications to automated image annotation.

2.2.1 Image Annotation

The major benefits gained from effective annotation of images (also called image labeling

or tagging) include easy organization and communication for both personal and social

purposes (Table 2.1). Semantic labels, such as the names of people or the descriptions

of events, not only help the owners of images recall the situations depicted therein, but

also provide a basis for image organization and retrieval. In social networks or other image

hosting services, labels are added to images in order to allow better understanding of the

image context, and better communication between participants who share images. Labels

also play a key role in commercial search engines for fast image indexing and querying.

For more on the history and benefits of image annotation, the reader is referred to [Ames

and Naaman 2007] and [Nov and Ye 2010].

Several methods have been proposed for assisting users in the annotation of images.

Users can annotate images verbally as they are created, such as by means of a microphone

built into a camera device [Desai et al. 2009]. Verbal annotations are transcribed into text

16

Table 2.1 Motivations of Image Annotation

Examples Communication Organization

Personal To recall where & when Searching,

Social (friends & family) To describe to friends & family Retrieval,

Social (public) To provide details to others Grouping, etc

by a speech recognizer incorporating external semantic knowledge sources. A web-based

labeling tool has been developed with a drawing interface for object boundaries [Russell

et al. 2008]. Users can identify new objects in images, or edit existing object labels. An

interactive game system was developed in which a pair of players are encouraged to propose

labels for each displayed image [von Ahn and Dabbish 2004]. If the two players happen to

agree on a common label for the image, the label is added to the annotation information for

that image. However, despite the assistance that these methods provide, the semi-automated

association of images with semantic information is still too expensive to be applied on a

large scale.

In recent years, the topic of automated image annotation (AIA) has generated great

interest within the multimedia research community. In typical query-based annotation

methods, the image to be annotated is submitted as a query to a CBIR system. Filtering

schemes are then used to select labels from result images, and apply them as annotations

to the query image. One such approach employs a simple greedy strategy for label

selection [Makadia et al. 2008]. In their paper, the authors also made the claim that

simple query-based baseline techniques often outperform more complex state-of-the-art

annotation methods, according to a family of baseline measures. A more sophisticated

approach was proposed in [Li et al. 2006a], in which annotation keywords are mined from

the query results. The keywords found in titles and other text associated with result images

are clustered, from which representative keywords are selected as labels for the query

image.

17

Another popular solution involves the study of the correlation between visual features

and semantic labels. A correlation method was proposed for mapping image descriptors to

keywords, by which a query image can be annotated directly without retrieving matching

images [Hardoon et al. 2006]. In [Duygulu et al. 2002], the process of image annotation was

viewed as analogous to machine translation, wherein a visual representation is transformed

into a textual representation. Here, the mapping between blobs (clustered image features)

and keywords is learned using the Expectation-Maximization (EM) algorithm [Dempster

et al. 1977]. Image regions can then be labeled with the most likely keywords as determined

by EM. The performance of the translation method was improved using a cross-media

relevance model (CMRM) introduced in [Jeon et al. 2003]. Instead of assuming the

existence of a one-to-one correspondence between the keywords and blobs in an image,

their approach assumes only that a set of keywords is related to the blob set that represent

the image. The probability of observing a keyword given an image is estimated by the joint

probability of observing the keyword and the blob set. Correlation-based methods usually

assume that there exists a strong ‘one-to-one’ or ‘many-to-many’ relationship between

visual features and keywords, which is often not the case (for example, when the images

are represented by global features). The high computational cost of the statistical learning

process is another drawback of such methods, especially when the number of keywords is

very large.

Classification methods are extensively used in image annotation, where the annotation

process is simply viewed as the assignment of images (or regions thereof) to predefined

classes. One example is [Cusano et al. 2003], in which salient regions of training images

are extracted and manually labeled with one of several predefined classes for the image set

under consideration. Regions of test images are then classified by support vector machines

(SVMs). Another example uses Bayes point machines (BPMs) [Herbrich et al. 2001]

to train classifiers on a small set of labeled images [Chang et al. 2003]. Test images

are classified by means of ensembles of multi-class classifiers, and assigned multiple

18

soft labels with association scores. When the classifiers are trained, the decision phase

(the classification of a test sample) is very efficient. However, the training process is

usually slow when the number of image labels (or concept classes) is large. Furthermore,

classification-based annotation methods often require a large number of labeled samples,

which are not always available.

Some learning-based methods have also taken into account ontological information

associated with textual labels. Text ontologies were used in [Srikanth et al. 2005] to

generate a visual vocabulary for the representation of images. The same paper proposed

a hierarchical classification approach for automated image annotation. Concept ontologies

were used in [Shi et al. 2007] to provide additional annotations for training images, so as

to expand the training sets available for each concept class.

Label propagation methods have also attracted much attention in recent years and

have been successfully applied to image annotation [Hu and Qian 2009; Liu et al. 2006;

Liu et al. 2012; Tang et al. 2011]. The motivation for label propagation is that there

exist large amounts of unlabeled data while labeled data are very expensive to obtain.

Typically, label propagation methods assume that nearby data points should share the

same label. They treat both labeled and unlabeled data as nodes in an undirected

graph, and weight edges depending on the similarities between the two incident nodes.

Labels are then predicted according to a graph-based semi-supervised learning (GSSL)

framework, by minimizing a cost function defined over the graph, such as Gaussian

fields and harmonic functions (GFHF) [Zhu et al. 2003], or by the local and global

consistency technique (LGC) [Zhou et al. 2003]. In this way, the annotation information

is ‘propagated’ from the labeled nodes to the unlabeled nodes. These label propagation

methods for generic data, and their applications to image annotation will be discussed in

more detail in Section 2.2.2. A broader overview of semi-supervised learning techniques

can be found in [Chapelle et al. 2006]. Those techniques include (but are not limited to)

19

semi-supervised text classification, probabilistic semi-supervised clustering, transductive

SVMs and graph-based methods.

2.2.2 Label Propagation for Image Annotation

Three popular label propagation techniques for generic data are discussed first. The

literature on image label annotation is then reviewed.

Label Propagation for Generic Data The problem of label propagation can be described

as follows. Given a dataset X = {x1, . . . ,xl,xl+1, . . . ,xn} and a label set L = {λ1, . . . ,λc},

where xi (1 ≤ i ≤ l) are labeled as yi ∈ L, and the remaining points xu (l + 1 ≤ u ≤ n) are

unlabeled. The goal is to compute a n× c score matrix F whose rows correspond to the

data items, and whose columns correspond to the labels.

One major framework for label propagation was proposed by Zhou et al., based

on local and global consistency (LGC) [Zhou et al. 2003]. The principle is that the

classification function should be sufficiently smooth with respect to the intrinsic structure

collectively revealed by known labeled and unlabeled data.

The score matrix F is computed iteratively in LGC. First, the elements in the initial

score matrix F0 is defined as fi j = 1 if xi is labeled as yi = λ j, and fi j = 0 otherwise. An

affinity matrix W is computed as wi j = exp(−||xi−x j||2/2σ2) if i 6= j, and wii = 0, where σ

is a bandwidth parameter. By symmetrically normalizing W as S = D−1/2WD−1/2, with D

being a diagonal matrix whose elements dii =∑ j wi j, the iterative process can be performed

by computing:

F t+1 = αSF t +(1−α)F0 (2.1)

until convergence, where α is a parameter in (0,1). LGC can be naturally viewed as

distributing annotation information from initially labeled nodes to unlabeled nodes in a

similarity graph G(V,E), whose vertices represent the data objects in X and whose edges

are weighted by W . Let q be the iteration at which convergence is achieved. The stabilized

20

status of F can be proved to have the form Fq = (I −αS)−1F0, where I is an identity

matrix. Each unlabeled data point xu can then be labeled as yu = argmaxλ j,1≤ j≤c fu j.

In the iterative process, each data point receives the information from its neighbors,

and also retains its initial information. The relative amount of the information from the two

parties is controlled by parameter α . Note that

• Self-reinforcement is avoided in LGC for labeled points. As a result, labeling scores
for labeled points can change during the iterative process.

• In practice, the affinity matrix W can be derived from a K-NN graph, such that wi j = 0
if xi and x j are not connected.

Zhu et al. proposed another method for learning from labeled and unlabeled data

using Gaussian Fields and Harmonic Functions (GFHF) [Zhu et al. 2003]. For simplicity,

GFHF assumes that the initial labels are binary, that is, y ∈ {0,1}. The strategy is to

compute a real-valued function f which maps a data point to a real number in [0,1], and to

assign labels based on f . Intuitively, unlabeled points that are close to each other should

have similar labels. Another constraint of f is that it should yield constant labeling for

labeled data items, that is, different from the strategy of LGC, in GFHF, f (i) = fl(i) ≡ yi

for 1≤ i≤ l. The following energy function is given in their work:

E(f) =
1
2 ∑

i, j
wi j(f (i)− f (j))2. (2.2)

As observed in [Zhu et al. 2003], the minimum energy function is harmonic; that is, it

satisfies (D−W) f = 0 on the unlabeled data, and is equal to fl on the labeled data. The

harmonic property means that the value of f at each unlabeled data is the average value of

f at neighboring points:

f (u) = D−1W f (u), (2.3)

where l +1≤ u≤ n. Splitting W and D into sub-matrices after the l-th row and column:

W =

Wll Wlu

Wul Wuu

 and D =

Dll Dlu

Dul Duu

 , (2.4)

21

and letting

f =

 fl

fu

 , (2.5)

where fu denotes the values on the unlabeled data points, a closed form for fu can be

derived as:

fu = (Duu−Wuu)
−1Wul fl. (2.6)

Similarly as with LGC, GFHF can be computed in an iterative way instead of explicit

matrix inversion.

Linear neighborhood propagation (LNP) [Wang et al. 2009] is another approach for

semi-supervised learning, which assumes that each data point can be linearly reconstructed

from its neighborhood. A similarity graph is first constructed on the whole dataset. Instead

of considering pairwise relationships, the neighborhood information of each point is used

for weighting edges. Assuming that each data point can be optimally reconstructed using a

linear combination of its neighbors, the weights wi j can be computed by minimizing:

∑
i
||xi− ∑

x j∈Q(xi)

wi jx j||2, (2.7)

where, Q(xi) represents the neighborhood of xi, under the constraint that ∑x j∈Q(xi)wi j = 1

and wi j ≥ 0. After the weights are computed, the label propagation is performed similarly

as in LGC:

F t+1 = αWF t +(1−α)F0. (2.8)

Image Label Propagation Label propagation techniques have wide applications in

automated image annotation. Liu et al. proposed nearest spanning chain (NSC) [Liu

et al. 2006] to generate an adaptive similarity graph. Several nearest spanning chains

(NSCs) are built for an image set, each of which sequentially connects an image node

with its nearest neighbor from the remaining nodes. The weight between two nodes is

22

computed based on their similarity value, and on the frequency of the edges connecting

them in the computed NSCs. In addition, the semantic similarities between pairs of labels

are obtained using WordNet [Fellbaum 1998] and statistical co-occurrence information. In

this way, the label set of a prelabeled image can be expanded by related terms. Once the

weighted similarity matrix and the initial score matrix are built, the annotation process is

performed using the LGC label propagation technique.

Hu and Qian proposed an image label propagation approach based on multi-instance

learning and semi-supervised learning [Hu and Qian 2009]. Global and local represen-

tations are used for a database image. For the local representation, each image in the

database is first segmented into 1 to 10 regions; that image is then represented by a

bag of its regions, with each region being described as a feature vector. For the global

representation, an image is represented by a bag of its neighboring images; each neighbor

from the global bag is described as a 4-D vector, consisting of the normalized degrees of

the image node and the neighbor node, and propagation coefficients between the image

and the neighbor. Average Hausdorff distance is proposed to compute the distances for

the two-level representations. In their approach, LGC is also used in the label propagation

process. The edges in the similarity graph are weighted according to the similarity values

computed using the Gaussian kernel on the two-level distances.

In [Tang et al. 2011], the authors proposed a sparse graph reconstruction method

to reduce semantically-unrelated links in traditional graphs. Let x be the feature vector

of the image to be reconstructed, and let Q be a matrix formed by the feature vectors of

other images in the dataset. The key idea is to compute the reconstruction coefficients

w in x = Qw. To reduce semantically-unrelated links in traditional graph reconstruction

methods, only the K-NN set of x is considered in Q. Similarly as with LNP, this approach

assumes that the label of each sample can be reconstructed from those of other samples,

while the reconstruction coefficients are the same as those for the reconstruction of the

23

feature vector. The label inference step is formulated by minimizing a function of the label

reconstruction error.

In [Marukatat 2008], a label propagation algorithm is applied to assign the label

posterior probability to an image. Images are first segmented into regular cells. Image

features are computed from each cell and clustered to build the visual vocabulary. Each

image is then represented by a histogram of visual words. The similarity between two

images are computed by histogram intersection. For each label L, two histograms are

computed, one from the set of labeled images with L, denoted by Lyes, and the other

from the set of labeled images without L, denoted by Lno. Given an image xi, the label

posterior probability can be estimated by p(L|xi) = (Lyes∩ xi)/(Lyes∩ xi +Lno∩ xi), where

xi, Lyes and Lno represent the histograms of the corresponding image (or image sets). In the

label propagation step that follows, the label posterior probability for an unlabeled image

is computed iteratively as the weighted average of those for all the other images in the

database.

Pham et al. proposed a semi-supervised learning technique for image annotation in

their recent work, based on bi-relational graphs [Pham et al. 2014]. A bi-relational graph

consists of two subgraphs: one captures the pairwise similarities between images, and the

other captures the correlation between labels. The similarities between pairs of images

are computed using the cosine similarity, while the similarities between pairs of labels are

computed based on the number of their co-occurrences in the labeled images. A bipartitie

graph is constructed between the two subgraphs, representing the label assignments over

the labeled images. The weight of an edge leading from a label to a labeled image is

determined based on the intuition that the label should be strongly associated with the

image if many of its neighboring images share that label. A similar rule is applied to the

case for weighting the edges leading from images to labels. Once the bi-relational graph is

constructed, an extended version of LGC is used for the label propagation.

24

The reader is referred to [Liu et al. 2012] for a review of several label propagation

methods and their applications to web-scale image annotation. In one such method,

anchor graphs have been deployed to tackle the problem of large graph construction [Liu

et al. 2010]. The key idea of this approach is to reduce the cost of computing similarities

among data items via estimation from a small set of anchor points.

2.3 Feature Learning and Metric Learning

Techniques for content-based image retrieval and image label propagation rely heavily

on the neighborhood quality of images. The quality of feature extraction methods and

distance measures are crucial in the construction of image neighborhood. Usually, they

are provided by domain experts to maximize their effectiveness for specific applications.

However, instead of assuming that they are given in advance, learning features and metric

functions could also potentially improve the semantic quality of data neighborhoods.

Techniques for feature learning and metric learning are briefly discussed in this

section. The former extracts useful features from raw data input, and the latter learns a

suitable metric based on training data.

2.3.1 Feature Learning

The success of machine learning algorithms depend heavily on data representation. Specific

domain knowledge can be used in designing data representations. This procedure is

important but labor intensive. Learning generic feature properties that are independent

of specific tasks, from raw data input such as image pixel intensities and sound signals, can

be helpful. This motivates the design of powerful feature learning algorithms with the aim

of discovering the underlying explanatory factors hidden in the observed low-level sensory

data [Bengio et al. 2013].

Clustering algorithms (such as K-means) can be used as feature learning methods.

For example, by clustering a dataset into K clusters, the centroids can be used to produce

K additional features for each data sample (by appending the original feature vector with

25

a K-dimensional cluster membership vector). The computed centroids can also naturally

define a codebook which is used for the bag-of-words representation of data instances.

Coates et al. [Coates et al. 2011] pointed that by careful tuning of the parameters such

as the number of features and the step-size between extracted features, simple K-means

clustering can learn features that yield state-of-the-art image classification performance.

More work on feature learning has been focused on deep learning techniques,

which have emerged rapidly since 2006 [Hinton et al. 2006]. Deep learning refers to

a class of machine learning techniques, where many layers of information processing

stages in hierarchical architecture are exploited for pattern classification and feature (or

representation) learning [Deng 2014].

A great deal of research has been devoted to algorithms for learning features in an

unsupervised manner, where data representations (features) are learned from unlabeled data

points, in order to reveal useful information for potential applications such as classification.

This step is often called pre-training in the literature.

In general, deep learning techniques are composed of multiple non-linear transfor-

mations to produce more abstract and useful representations. A breakthrough in feature

learning and deep learning, the deep autoencoder, was proposed in [Hinton et al. 2006]. The

key idea, namely greedy layer-by-layer training, is to learn a hierarchy of features one level

at a time, with each level learned from the previous learned level. The unsupervised feature

learning essentially adds one layer of weightings to a deep neural network iteratively.

After the so-called greedy layerwise unsupervised pre-training, the deep features

produced can initialize a supervised predictor such as a supervised neural network, or can

be used directly as input in supervised machine learning classifiers such as SVM.

An unsupervised feature learning framework is illustrated in [Coates et al. 2011]

using image data as an example. A sketch of this framework is given below:

1. Random patches are extracted and preprocessed from a set of unlabeled images.

26

2. A feature mapping f :RN→RK is learned using an unsupervised learning algorithm,
such that the original representation xi ∈ RN of each patch can be transformed into
x′i ∈ RK .

3. Transformed features are extracted from patches of each input image, and are pooled
together over regions of that image, so as to reduce the total number of features.

4. A classifier is built to predict the labels given the computed features of input images.

In the above framework, step 1 acquires raw data input, and step 2 represents the

unsupervised learning process. The transform function f is usually nonlinear, and often

has the form f (x) = g(Wx+ b), where W ∈ RK×N is a weight matrix, b ∈ RK is the bias

vector and g(z) = 1/(1+ exp(−z)) is the logistic sigmoid function. A set of transform

functions can be trained iteratively; that is, in each iteration, a feature mapping function is

learned according to the output feature space produced in the previous iteration.

Steps 3 and 4 describe one of many ways to use the transformation function(s), by

computing feature vectors of input data and feeding a supervised learning machine (for

example, an SVM) with the computed features.

Many new schemes for stacking layers of features have been proposed, most of which

focus on designing new training algorithms to build single-layer models that will be used

to build the deep structures (step 2 of the above framework). Representative algorithms

include (but are not limited to) sparse autoencoder [Goodfellow et al. 2009; Ranzato

et al. 2006], restricted Bolzman machine (RBM) [Hinton et al. 2006], sparse RBMs [Lee

et al. 2007], sparse coding [Lee et al. 2006], and mean-covariance RBM [Ranzato and

Hinton 2010]. The reader is referred to [Deng 2014] and [Bengio et al. 2013], for a

comprehensive overview of deep learning and more specifically, feature learning,

The layer stacking of feature extraction often yields better representations for image

retrieval. In [Vanegas et al. 2014], for a biomedical image retrieval task, the authors

combined unsupervised feature learning with the BOVW representation. Instead of using

standard local descriptors for images, patch representation is computed using sparse

autoencoders, which automatically learn visual invariant properties of color, scale and

27

rotation from a collection of training images. The features learned are then used as input

for a multimodal latent semantic indexing system, which combines semantics from image

annotations with the visual representation. The authors claimed that the unsupervised

feature learning can improve the performance of their retrieval task.

Krizhevsky and Hinton applied deep autoencoders to achieve compact binary

codes for representations of small images [Krizhevsky and Hinton 2011]. Using 1.6

million normalized 32 × 32 color images as a training set, a deep belief network

(DBN) [Hinton 2009] is created by learning a stack of restricted Boltzmann machines

(RBMs), each being trained based on the hidden activities of the RBM of the previous

layer. The authors showed that a linear search of 1.6 million images using 256-bit binary

codes achieved similar retrieval performance as using the Euclidean distance but 1000 times

faster, and that using semantic hashing, 28-bit binary codes can achieve a retrieval speed

independent of the size of the database without losing too much effectiveness.

Feature learning via deep learning has been successfully applied to other disci-

plines, such as object recognition [Hinton et al. 2006; Krizhevsky et al. 2012], music

annotation [Hamel et al. 2011], and natural language processing [Bengio 2008; Mikolov

et al. 2011]. A more detailed list of the success of feature learning in academia and industry

can be found in [Bengio et al. 2013].

2.3.2 Metric Learning

Measuring distances (or similarities) between objects is a fundamental component of

established methods for information retrieval, machine learning, pattern recognition and

data mining. Appropriate distance measures for objects represented in high-dimensional

spaces might be difficult to obtain. Metric learning alleviates this problem by assuming

that the distance measure is not fixed in advance and that there are training samples from

which a good metric can be learned. A comprehensive overview of existing linear and

nonlinear metric learning methods is given in [Bellet et al. 2013]. Some representative

methods are reviewed in the subsection.

28

Metric learning started to emerge as a hot research topic since 2002 with the work

of [Xing et al. 2002]. The goal of their work is to adapt the Mahalanobis distance in the

form:

dM(x,x′) =
√
(x− x′)T M(x− x′), (2.9)

to the problem of interest (for example, clustering), by learning M through training samples,

with M being a positive semi-definite matrix. Note that when M is the identity matrix,

Equation 2.9 reduces to the Euclidean distance.

Unlike feature learning, most metric learning techniques are supervised; they require

some form of ground truth input for the training dataset, which can take the form of either

an accurate labeling of training samples, or some constraints between the training samples.

For example, given two widely used constraints, namely the must-link and cannot-link

constraints:

S = {(xi,x j) : xi and x j should be similar}, and

D = {(xi,x j) : xi and x j should be dissimilar},
(2.10)

the optimization problem can be stated as:

min
M ∑

(xi,x j)∈S
||xi− x j||2M

s.t. ∑
(xi,x j)∈D

||xi− x j||M ≥ 1,M � 0.
(2.11)

The condition in Equation 2.11 guarantees that the distances between data objects are not

all zero. Thus, the metric learning problem can be formulated as a convex optimization

problem. Intuitively, the metric function learned will produce small distances for labeled

data points from the same class.

Most metric learning formulations essentially differ by their choice on metric,

constraint and optimization function. Much research effort has been devoted to supervised

Mahalanobis distance learning due to its simplicity. The original Mahalanobis distance

29

incorporates the correlation between features [Mahalanobis 1936]:

dm(x,x′) =
√

(x− x′)T Ω−1(x− x′), (2.12)

where x and x′ are random vectors from the same distribution with the covariance matrix

Ω. It is generalized in Equation 2.9 with parameter M in metric learning literature. For

simplicity, it is often learned in its squared form d2
M.

Many approaches have been developed to solve for the positive semi-definite

parameter matrix M. For example, Goldberger et al. proposed neighborhood component

analysis (NCA) to optimize the expected leave-one-out error of a stochastic nearest

neighbor classifier [Goldberger et al. 2004]. They use the decomposition M = LT L for

Equation 2.9, and define pi j based on L for the probability that a point xi is the neighbor of

x j. The probability that xi is correctly classified is pi = ∑ j,y j=yi pi j, where yi and y j denote

the labels for data point xi and x j, respectively. The matrix L is then learned by maximizing

the sum of pi for all training samples. Davis et al. proposed information-theoretic metric

learning (ITML) which learns M by minimizing the differential relative entropy between

two multivariate Gaussians under constraints on the distance function [Davis et al. 2007].

In their work, the log-determinant (LogDet) divergence regularization was introduced, so

that the problem of finding M can be achieved by a cheap way that minimizes the LogDet

divergence subject to linear constraints.

The majority of research work on metric learning is linear metric learning (such as

the Mahalanobis distance) due to its convenience in optimization. However, nonlinear

metric learning is useful when linear metrics cannot capture the nonlinear structure in

data. One such approach is to learn a linear metric in the nonlinear feature space

induced by a kernel function [Davis et al. 2007; Torresani and Lee 2006], or based on

kernel principal component analysis (KPCA) [Schölkopf et al. 1998]. In KPCA, data

are implicitly projected into the nonlinear feature space induced by a kernel function.

Dimensionality reduction is performed in that space, where metric learning algorithms are

30

then applied. Other approaches are designed to optimize the nonlinear form of metrics

directly. Chopra et al. proposed to learn a nonlinear projection GW (x) for L1 distance so

that ||GW (x)−GW (x′)||1 is small for positive data pairs and large for negative data pairs,

where W is a parameter vector [Chopra et al. 2005]. Kedem et al. proposed a nonlinear

learning method for generalized Euclidean distance with the nonlinear transformation:

dφ (x,x′) = ||φ(x)− φ(x′)||2 [Kedem et al. 2012]. Norouzi et al. proposed Hamming

distance metric learning to learn mappings from real-valued feature vectors to binary

vectors, and showed that a K-NN classifier based on the binary codes achieved competitive

performance with state-of-the-art classifiers [Norouzi et al. 2012].

Metric learning can be helpful in image applications where traditional distance

measures often fail to reflect the true semantic relationships. Chang and Yeung proposed

a kernel-based approach to improve the retrieval performance of CBIR systems by

learning a metric based on pairwise constraints of images [Chang and Yeung 2007]. The

transformation is defined in a kernel-induced feature space which is nonlinearly related

to the image space. First, KPCA is used to map the input points to a higher-dimensional

space, after which a linear metric learning method is performed in the transformed space.

To boost the image retrieval performance, their metric learning is adapted in a stepwise

manner based on relevence feedback.

Guillaumin et al. proposed TagProp [Guillaumin et al. 2009], a discriminatively

trained nearest neighbor model. In TagProp, tags of a test image are predicted using a

weighted nearest neighbor model exploiting labeled training images. Neighbor weightings

are based on neighbor ranks or distances. Metric learning is integrated in the distance

weighting scheme, where the log-likelihood of the tag predictions for the training images

are maximized. The authors showed that distance-based weighting combined with metric

learning achieved better label propagation results than weighting based solely on distances

or ranks.

31

Recently, Ebert et al. proposed a graph-based image label propagation method [Ebert

et al. 2011], in which information-theoretic metric learning is used directly as a prepro-

cessing step to improve the neighborhood structure. Local and global consistency (LGC)

is then used in the new metric space to propagate the image labels.

The effectiveness of metric learning has been demonstrated in other applications,

such as in information retrieval [Lebanon 2006; McFee and Lanckriet 2010], music

recommendation [McFee et al. 2012] and other computer vision tasks [Lee et al. 2008;

Li and Perona 2005].

2.4 Feature Selection

Information retrieval, data mining, and machine learning techniques often suffer from

noise associated with collected data, especially in multimedia applications. Dimensionality

reduction is one popular technique to remove irrelevant or redundant features, which

can be broadly categorized as feature extraction or feature selection. Feature extraction

projects the original features into a new lower-dimensional vector space. Popular extraction

techniques include principal component analysis (PCA) and linear discriminant analysis

(LDA), to name two. Feature selection, on the other hand, selects a subset of features from

the original vector space, and is superior to feature extraction in terms of interpretability,

as the selected features retain their original values in the reduced feature space.

This section discusses feature selection techniques for generic data and image

applications. Section 2.4.1 reviews traditional (global) feature selection techniques for

generic data represented by high-dimensional feature vectors. Methods for local selection

of features are discussed in Section 2.4.2. Section 2.4.3 presents existing work on the

applications of feature selection to image search and annotation.

2.4.1 Feature Selection for Generic Data

According to whether labeled samples are involved in the learning process, feature selection

can be classified into two categories: supervised and unsupervised. In supervised feature

32

selection, the training dataset is labeled, and the aim is to select a subset of highly

discriminant features that better separates samples from different classes. The quality of a

feature or a feature subset can be evaluated according to its impact on the classification

performance using the training data. Unsupervised feature selection is usually more

difficult, since without labels it is often not very clear how to define the feature relevance.

However, it is still believed that proper selections of feature subsets could improve the

performance of unsupervised learning such as clustering.

Although feature selection techniques are often designed for classification and

clustering tasks, it can be naturally expected that a good subset of features could potentially

improve the neighborhood quality of data objects: semantically related objects are more

likely to be grouped together in the selected feature subspace.

Supervised Feature Selection Supervised feature selection methods can be broadly

categorized into filter models, wrapper models and embedded models. Filter models

evaluates the feature importance according to some measure on the general characteristics

of the training data. Wrapper models evaluate candidate subsets of features on their

predictive accuracy with respect to a target learning algorithm. Wrapper models often

yield better performance on the subsequent learning process, but the feature evaluation

step is much more expensive for data with a large number of features. Embedded models

incorporate feature selection as part of the learning process, which are often far more

efficient than wrapper models.

Fisher Score (FS) [Duda et al. 2012] is a filter-based supervised feature selection

method, that evaluates feature importance based on the intuition that a good feature should

have similar values for data of the same class and different values for those from different

classes. Given a training set of data points with their associated classes, the Fisher Score

of the r-th feature can be computed as follows:

FS(r) =
∑c

i=1 ni(µir−µr)
2

∑c
i=1 niσ2

ir
, (2.13)

33

where c is the number of classes, ni is the number of instances in the i-th class, µr is the

mean value of the r-th feature, and µir and σ2
ir are the mean and variance of the r-th feature

values for instances in class i, respectively. A generalized Fisher Score was proposed by

Gu et al. in [Gu et al. 2012], which allows selecting features jointly. The aim is to find a

subset of features that maximize the lower bound of the Fisher Score.

Information gain (IG) is filter model based on mutual information theory for

supervised learning. The information gain between the r-th feature fr and the class labels

C is computed as:

IG(fr,C) = H(fr)−H(fr|C), (2.14)

where H(fr) is the entropy of fr and H(fr|C) is the entropy of fr given C observed:

H(fr) =−∑
j

p(x j) log(p(x j)), and

H(fr|C) =−∑
i

p(ci)∑
j

p(x j) log(p(x j|ci)),

(2.15)

where p(x j) and p(ci) are the probabilities of observing data point x j and class ci,

respectively, and p(x j|ci) is the posterior probability of x j given ci. In IG, a feature is

important if it has a high information gain.

Another method of supervised feature selection based on mutual information is

minimum-redundancy-maximum-relevance (mRMR) [Peng et al. 2005]. mRMR considers

not only individual feature importance but also the relationships among features. The

feature selection criteria are to maximize the relevance between features and classes, and to

minimize the redundancy among features. Denoting the feature set as S, the target classes

as h, the objective functions can be defined as follows:

min
WI

, WI =
1
|S|2 ∑

i, j∈S
I(i, j), and,

max
VI

, VI =
1
|S|2 ∑

i∈S
I(h, i),

(2.16)

34

for discrete features, and

min
WC

, WC =
1
|S|2 ∑

i, j∈S
|C(i, j)|, and

max
VF

, VF =
1
|S|2 ∑

i∈S
F(i,h),

(2.17)

for continuous features, where I(i, j) is the mutual information between features fi and f j,

I(h, i) is the mutual information between feature fi and the target classes h, C(i, j) is the

correlation between features fi and f j, and F(i,h) is the F-statistic.

Relief [Kira and Rendell 1992] is a feature selection algorithm for binary classifiers.

The key idea is to estimate the feature importance according to how well the feature values

distinguish between instances that are near to each other. Given a random data point R

sampled from the training set, Relief searches for its two nearest neighbors: H from the

same class and M from a different class. The importance of a feature will be greater if R

and H have similar values on this feature; if R and M have similar values on this feature,

the feature importance will be lower. The whole process will be repeated m times, where

m is a user-specified positive number.

ReliefF [Robnik-Sikonja and Kononenko 2003] extends Relief for multi-class classi-

fication scenarios. For each randomly selected training sample, ReliefF searches its

K-NN from the same class and its K-NN from different classes. The updating of feature

importance is similar to that of Relief, but the contributions from different classes are

weighted according to the prior probability distributions of classes estimated from the

training set. Similarly as with Relief, this evaluation process repeats for m random samples.

Filter-based models do not use induction algorithms to guide the feature selection

process. Therefore, they often have worse performance than that of wrapper-based

models. Given a target classification method, typical wrapper-based methods consist of

the followings major components:

• Feature subset search;

• Feature subset evaluation using the given learning algorithm;

35

• Selection of the feature subset;

• Application of the selected features to test data.

Given that each feature vector contains m features, an exhaustive search of the

feature subset space requires O(2m) time, which is impractical even for a relatively small

m. For computational efficiency, greedy heuristic search strategies are favored, which

can be broadly categorized as forward selection and backward elimination [Guyon and

Elisseeff 2003]. In forward selection, the candidate feature subset is initialized to an empty

set, and the features that contribute most to the classification performance are progressively

included to the set from the remaining pool. In backward elimination, the candidate feature

subset is initialized using all original features, and the least promising ones are iteratively

removed.

Compared to filter models, wrapper models often have better classification accuracy.

However, they are much more computationally expensive. The selected features may also

overfit the training data. Therefore, wrapper-based methods are often used for a specific

classification task.

In embedded models feature selection is performed as part of the model construction

process (such as a classifier). Techniques based on regularization is popular for embedded

models. There, objective functions that minimize fitting errors are defined. If the estimated

coefficients of features are small or zero, the features are eliminated. A well-known

example of embedded models is the LASSO [Tibshirani 1996] regularization. LASSO

is based on the L1 regularization, which has sparse solutions — that is, many of the

estimated coefficients are zero — making it appropriate as a feature selection method. A

regularization parameter controls the number of features selected. More embedded feature

selection methods based on regularization can be found in [Ma and Huang 2008].

Unsupervised Feature Selection As there is no labeling information, unsupervised

feature selection is more difficult than supervised feature selection. Similarly as with

36

feature selection for supervised learning, unsupervised feature selection techniques can

be broadly categorized into filter, wrapper and embedded models.

Filter-based models evaluate the feature importance according to certain criteria. No

learning methods (more specifically, clustering methods) are involved. They are superior

in terms of computational cost compared with wrapper models.

Laplacian Score (LS) [He et al. 2006] was proposed as a powerful filter-based

unsupervised feature selection method for generic data. The basic idea of LS is to rank

features according to their locality-preserving abilities. Given a dataset X consisting of n

data points represented by m-dimensional feature vectors, the r-th feature can be denoted

by fr = (fr1, . . . , frn)
T , where r = 1, . . . ,m, and fri (i = 1, . . . ,n) is the feature value of fr

taken from data point xi ∈ X .

Given a nearest neighbor graph G of X , the Laplacian Score of the r-th feature can

be computed as:

LS(r) =
∑i j(fri− fr j)

2Si j

var(fr)
, (2.18)

where var(fr) is the estimated variance of the values of feature fr, and Si j of the weight

matrix S is the (Gaussian) RBF kernel on feature vectors xi and x j representing the i-th and

j-th data points, respectively:

Si j =

 exp(−||xi− x j||2/2σ2) if i and j are connected,

0 otherwise,
(2.19)

where σ is a bandwidth parameter. Note that the similarity Si j places a high weighting on

node i’s close neighbors, which are more likely to be from the same class as i. Equation 2.18

is equivalent to its matrix form:

LS(r) =
f̃T
r Lf̃r

f̃T
r Df̃r

(2.20)

where, D = diag(S1), 1 = [1, · · · ,1]T , L is the graph Laplacian D−S, and f̃r = fr− fT
r D1

1T D11.

37

Spectral feature selection (SPEC) [Zhao and Liu 2007] presents a unified framework

based on spectral graph theory for both supervised and unsupervised feature selection, in

which features are evaluated according to their consistency with the structure of a weighted

similarity graph. Three ranking functions (φ1, φ2, and φ3) were proposed to weight feature

importance based on the normalized Laplacian matrix L = D−1/2LD−1/2. The details of

the ranking functions can be found in [Zhao and Liu 2007]. It is claimed that under certain

conditions, LS and ReliefF are special cases of SPEC-φ2 and SPEC-φ1, respectively.

Wrapper models for unsupervised learning utilize clustering algorithms such as

K-means to evaluate the quality of candidate feature subsets. Similarly as with supervised

learning, feature subset search can be performed by heuristic search strategies. Different

wrapper models for unsupervised feature selection were proposed as different combinations

of the search strategy and the black-box clustering algorithm. The work proposed by Dy

and Brodley [Dy and Brodley 2004] is an example of wrapper-based feature selection

methods. Here, a mixture of Gaussians is used for clustering. The feature subset quality is

evaluated using scatter separability and maximum likelihood. Similarly as with supervised

wrapper models, those feature selection methods for unsupervised learning may overfit the

training set.

To alleviate the drawbacks of filter and wrapper models, there are approaches that

utilize filtering criteria to select candidate feature subsets, and then evaluate the feature

subsets according to their clustering performance. For example, Li et al. proposed an

unsupervised feature selection method based on ranking [Li et al. 2006b]. Individual

features are first used to cluster the dataset and ranked according to their importance on

clustering. A modified fuzzy feature evaluation index (FFEI) method [Pal et al. 2000] is

used to find a candidate feature subset, which is then refined by fuzzy C-means (FCM)

clustering [Suganya and Shanthi 2012].

Recent years have also seen many embedded unsupervised feature selection methods

using regularization techniques. Cai et al. proposed a multi-cluster feature selection

38

(MCFS) method which aims at selecting features that best preserve the multi-cluster

structure. A K-NN graph is constructed for the spectral analysis, which measures the

correlation between features. The best features are selected in MCFS by solving a sparse

eigen-problem and an L1-regularized least squares problem.

Yang et al. proposed the unsupervised discriminative feature selection (UDFS)

algorithm, which incorporates discriminative analysis and L2,1-norm minimization into a

joint framework [Yang et al. 2011]. Based on the optimization of an objective function,

important features can be selected, which corresponding to the rows of the optimized

coefficient matrix containing values of 0 (or values close to 0). The selection can also be

conducted by ranking the features according to the L2 norm of the rows of the coefficient

matrix, and returning the top ranked features.

The feature selection methods listed above, either supervised or unsupervised,

have been extensively tested according to their generalization ability in supervised or

unsupervised learning tasks, such as classification and clustering. However, there has

been little work on the evaluation of their performance in applications where the data

neighborhoods are to be improved.

2.4.2 Local Selection of Features

The feature selection methods mentioned above are all global approaches, in the sense that

they select a single subset of features across the whole dataset. If one feature is deemed

to be noisy, it is discarded from the entirety of the dataset. This, however, neglects the

possibility that a feature that is important for one semantic class (or the neighborhood of

a data point) may be irrelevant for another. This subsection reviews work on the local

selection of features (or, localized feature selection) which selects different features for

individual data objects or subsets of data objects, for supervised and unsupervised learning.

Localized Feature Selection for Unsupervised Learning There is much less work on

localized feature selection compared with that for traditional global approaches. In the

39

field of unsupervised learning, localized feature selection is combined with clustering. The

assumption is that clusters are localized in particular (different) subspaces, which means

that different clusters may have different relevant feature subsets. The outcome of such

methods is a set of {Ci,Fi}, where Ci is a cluster and Fi is the corresponding feature set.

Co-clustering [Hartigan 1972; Dhillon 2001; Dhillon et al. 2003; Cheng and

Church 2000] and subspace clustering [Agrawal et al. 2005; Cheng et al. 1999; Aggarwal

et al. 1999; Fu and Banerjee 2009] are the two major categories for localized feature

selection of unlabeled data. Co-clustering (or biclustering) is the simultaneous partitioning

of the rows and columns of a matrix. The idea of co-clustering was first introduced by

Hartigan [Hartigan 1972], which suggested that data can be clustered with respect to both

instances and features stored respectively as rows and columns in a data matrix. Co-

clustering has been well studied for documents-words [Dhillon 2001; Dhillon et al. 2003],

and gene expression data [Cheng and Church 2000].

Cheng and Church proposed to use simultaneous clustering of both genes and

conditions to discover knowledge from gene expression data [Cheng and Church 2000].

Each bicluster (I,J) corresponds to a subset of genes I ⊂ X and a subset of conditions

J ⊂ Y with a mean squared residue score:

H(I,J) =
1
|I||J| ∑

i∈I, j∈J
(ai j−aiJ−aI j +aIJ)

2, (2.21)

where ai j, aiJ , aI j, aIJ are the value at the i-th row and the j-th column, the mean value of

the i-th row in the bicluster, the mean value of the j-th column in the bicluster, and the mean

value of all the elements in the bicluster, respectively. An efficient node-deletion algorithm

was introduced to find such clusters with a maximum mean squared residue score.

Dhillon proposed a co-clustering algorithm for documents and words [Dhillon 2001].

There, a collection of documents is modeled as a bipartite graph between documents

and words. The biclustering problem is modeled as partitioning the bipartite graph into

40

several subgraphs. In [Dhillon 2001], bipartitioning and multipartitioning were achieved

by employing the spectral singular value decomposition (SVD).

Information-theoretic co-clustering was proposed for document-word clustering in

[Dhillon et al. 2003]. The goal is to cluster documents based on their common words,

and to cluster words based on the documents where they occur together. Let X and Y be

discrete random variables that take values in {x1, . . . ,xm} and {y1, . . . ,yn}, respectively, and

let p(X ,Y) be the joint probability distribution between X and Y . p(X ,Y) can be viewed as

a m×n matrix estimated using observed data (such as the co-occurrence of documents and

words). The simultaneous clustering of X and Y into k and l clusters, respectively, can be

formulated as finding maps CX and CY , such that:

CX : {x1, . . . ,xm}→ {x̂1, . . . , x̂k}, and

CY : {y1, . . . ,yn}→ {ŷ1, . . . , ŷl}
(2.22)

which minimizes

I(X ;Y)− I(X̂ ;Ŷ) = D(p(X ,Y)||q(X ,Y)), (2.23)

where I(X ,Y) is the mutual information between X and Y , D(·||·) is the Kullback-Leibler

(KL) divergence, and q(X ,Y) is a distribution in the form q(x,y) = p(x̂, ŷ)p(x|x̂)p(y|ŷ)

(x ∈ x̂, y ∈ ŷ). The cost function can be minimized by alternatively improving row clusters

and column clusters.

Subspace clustering searches for relevant feature subspaces to find clusters that

exist in the feature spaces [Kriegel et al. 2009]. The fact that different data points may

cluster better in different subspaces has been observed for the first time by Agrawal et al.

in [Agrawal et al. 2005]. Their algorithm CLIQUE discovers dense regions (clusters) in a

bottom-up way: the dense regions in each k-dimensional subspace are built from the dense

regions in the (k−1)-dimensional subspaces. In CLIQUE, each dimension is divided into

a number of intervals. A cross product of these intervals forms a unit in any given subset of

features, which will be treated as a dense region if the number of points it contains is high.

41

Cheng et al. proposed ENCLUS [Cheng et al. 1999], which discovers the subspaces

with good clusters by using an entropy-based method. The clusters are then identified in

the subspaces discovered. Their idea is based on that a subspace with clusters typically has

lower entropy than a subspace without clusters.

The projected clustering (PROCLUS) method [Aggarwal et al. 1999] searches for

clusters in projected subspaces of small dimensions, for high-dimensional feature vectors.

Clusters are first computed using K-medoid in the full feature space. The most important

features for each cluster are then selected by evaluating the locality of the space near the K

medoids. Data points are assigned to the closest medoid iteratively.

Procopiuc et al. proposed DOC [Procopiuc et al. 2002] which treats a hypercube

with a fixed side-length as a cluster if the number of data points it contains is no less

than a threshold value. The clustering results are sensitive to the choice of this value.

DOC uses another parameter to control the balance between the number of data points and

the dimensionality of a cluster. It usually does not work well for clusters embedded in

subspaces of significantly different dimensionalities.

Achtert et al. proposed DiSH [Achtert et al. 2007] for the detection of hierarchies

of subspace clusters, which is able to find clusters of different sizes, shapes, densities

and dimensionalities. DiSH first computes the dimensionality of each data point (the

dimensionality of the best subspace for the object). Based on this, the subspace distance

is defined for the clustering process, which essentially assigns small values if two points

are in a common low-dimensional subspace cluster, and large values if two points are in a

common high-dimensional subspace or are not in a common cluster. Clusters with small

subspace distances are embedded within clusters with higher subspace distances.

Fu and Banerjee considered three requirements in the problem of finding dense or

uniform sub-blocks in a given data matrix [Fu and Banerjee 2009]: (1) the sub-blocks may

overlap; (2) not all rows and columns may be a part of a sub-block; and (3) the matrix may

have missing entries. A Bayesian formulation is proposed to address these issues.

42

Joint clustering and feature selection methods have been seen in the recent literature.

Ribeiro et al. proposed ZOOM-IN for partitional hierarchical text clustering [Ribeiro

et al. 2008]. In this method, all the text documents are initially allocated to a single root

cluster, which is then recursively divided into two smaller clusters. Before each division

step, a feature selection process based on TF-IDF weightings is adopted to choose the

features that are more relevant to the cluster being divided. The number of selected features

vary according to the cluster size. The final result is a hierarchy of clusters, with each being

represented by a different subset of features.

Li et al. proposed a localized feature selection method for clustering generic data [Li

et al. 2008]. Data are first clustered in the full feature space. For each cluster, their

algorithm iteratively determines if there is a redundant or noisy feature using a sequential

backward search scheme. The noisy features are removed, and a new cluster set is

generated in the reduced feature space. If the new cluster set is better than the previous

one, it will be used for the next iteration. New data can be assigned to existing clusters by

minimizing the normalized distance from the data instance to the cluster center. However,

the feature subsets produced cannot be directly used for measuring similarities between

data instances in different subspaces. Also, the computational cost is very high which

prevents its application in high dimensional feature spaces.

Guan et al. [Guan et al. 2011] proposed a unified probabilistic model for joint

clustering and feature selection. Their approach combines a hierarchical beta-Bernoulli

prior and a Dirichlet process mixture model. Local or global feature selection can be

achieved by adjusting the variance of the beta prior. The output will be a set of clusters

with the corresponding feature sets best describing them.

Existing localized feature selection methods for unsupervised learning are combined

with clustering. The feature sets produced are difficult to use for the direct construction of

data neighborhoods. Co-clustering yields disjoint feature subsets, which is not suitable for

many applications, while subspace clustering algorithms suffer from heavy computational

43

cost, overlapping clusters, and the requirement of input parameters whose values are

difficult to determine.

Localized Feature Selection for Supervised Learning There is less work on localized

feature selection for supervised learning than that for unsupervised learning. A context-

sensitive feature selection method was proposed in [Domingos 1997], for lazy learners (the

learning methods that delay their generalization for test data until a query is made). Each

training instance finds its nearest instance with the same class label, and compares pairs of

their corresponding feature values. Those features with a large difference are discarded

whenever the new feature vector of the training instance would improve classification

accuracy. A 1-NN classification is performed for test examples, using a variant of the

Euclidean distance for numeric features, and using simplified value difference metric

(SVDM) for symbolic features. As the feature selection is embedded in a classification

framework, and the classification accuracy needs to be computed each time a training

instance changes its feature, this method is expensive in running time. The worst case

time complexity is O(n2d3), where n and d are the number of training instances and the

feature dimension, respectively. 1

Puuronen and Tsymbal proposed a localized feature selection method with dynamic

integration of classifiers, to determine which classifier and which feature subset should be

used for each test instance [Puuronen and Tsymbal 2001]. Base classifiers are first trained

using different subsets of features, and the estimated prediction errors of the base classifiers

are computed using cross-validation. A meta-level training set is formed which contains

features of the training instances and the estimations of the errors of the base classifiers

on those instances. The base classifiers are then trained again using the whole meta-level

training set. A decision tree is built for guiding the local feature filtering. A path is found

1As proposed in their paper, the complexity can be reduced to O(n2d2) using normalized Euclidean
distance.

44

for each test instance, and only those base classifiers built with features lying on the path

are considered in the final classification.

Similarly as with localized feature selection methods for unsupervised learning,

existing supervised techniques for the local selection of features are designed specifically

for learning tasks. The feature subsets produced may not be appropriate for other

applications.

2.4.3 Feature Selection for Image Retrieval and Annotation

The existence of noisy features has a negative impact on the discrimination of data from

different classes. This has motivated the use of (global) feature selection techniques on

images represented by high-dimensional feature vectors. This subsection reviews the

research literature on applications of feature selection techniques to CBIR and image

annotation.

Feature selection techniques have been widely used in image retrieval, in an attempt

to enhance the semantic quality of query results. Most of these methods are supervised. For

example, in [Vasconcelos and Vasconcelos 2004], a family of feature selection methods was

designed based on the maximization of the mutual information between features and class

labels. The selection of discriminative features and the reduction of redundant features are

performed jointly for image retrieval and recognition. Guldogan and Gabbouj integrated

three feature selection criteria involving mutual information, intra-cluster relationships, and

inter-cluster relationships in their CBIR method [Guldogan and Gabbouj 2008]. For the

determination of the final ranking of features, majority voting is applied across the feature

rankings computed according to each individual criteria.

Rashedi et al. combined image feature adaptation and selection in a simultaneous

process [Rashedi et al. 2013]. The authors claimed that each image database should have its

own parameters for the extraction of features, controlling such aspects of the process as (for

example) the quantization levels in color histograms. In their approach, the values of these

parameters are encoded together with a binary vector corresponding to the selected features.

45

A mixed gravitational search algorithm [Rashedi et al. 2009] is used for optimizing the

parameter values.

Jiang et al. proposed a relevance feedback learning method for online image feature

selection [Jiang et al. 2006]. Given a query image, the returned results are labeled as

‘relevant’ or ‘irrelevant’ by the user. The most representative features for the query concept

are then selected based on a form of similarity between the two labeled sets. A similar

method was presented in [Sun and Bhanu 2010], with feature selection being guided by

a combination of a Bayesian classifier with a measure of inconsistency from relevance

feedback. The mean feature vectors of the positive and negative labeled samples are

constructed online in each feedback session, and the angle between the two vectors is

computed as a measure of the inconsistency from relevance feedback.

The methods listed above require ground truth input for training images — either

as a semantic labeling, or from relevance feedback. Dy et al. proposed a wrapper-based

unsupervised feature selection method for medical image retrieval [Dy et al. 2003].

Sequential forward selection is applied to produce candidate feature subsets, which are

then used in expectation-maximization (EM) clustering. The quality of a feature set is then

evaluated according to a measure of compactness and separability on the resulting clusters.

However, the requirement of a target learning algorithm, as well as the huge computational

costs involved, hinder the application of such wrapper-based methods to databases with

high-dimensional feature vectors.

Feature selection methods have also been successfully applied to automated image

annotation. One example was proposed in [Setia and Burkhardt 2006], which presented a

feature weighting scheme for image annotation. 2 Images are first represented by 48-bin

global feature vectors based on color, texture, and shape. For each class corresponding to

a keyword, training images are classified into a small positive set and a large negative set.

Using the two sets, the distribution density for each feature can be estimated independently,

2The authors used feature weighting and feature selection interchangeably, as once weightings are
computed for features, the features can be ranked to select the ones with the highest weightings.

46

based on a Gaussian mixture model. Each feature then receives a weighting score inversely

proportional to its likelihood averaged over the images of the positive class. The weighted

features are fed into a modified one-class SVM to build a classifier for each keyword.

Another example can be found in [Wang and Khan 2006], where an image annotation

and retrieval framework was proposed based on weighted feature selection for blob-token

representations. There, images are first segmented into visual tokens by normalized cuts,

with each token being described by color, texture, shape and area information. Visual

tokens collected from training images are clustered by K-means into blob-tokens (clusters).

In each cluster produced, important features are identified iteratively using quantized

feature histograms, according to their distribution densities, while irrelevant features are

discarded. The blob-keyword relationship can be acquired using their co-occurrence

information. For a test image, distances are computed from its objects to all centroids

of blob-tokens. Each image object is assigned the keywords associated with its closest

blob-token. The annotation of the image includes all keywords assigned to its objects.

In [Lu et al. 2008], a wrapper-based feature selection method was applied to

image annotation. Images are represented using MPEG-7 image descriptors. A genetic

algorithm [Hadsell et al. 2006], which is an effective random search approach to wrapper

models, is applied to candidate feature subsets selection. The evaluation of the feature

subset considers the K-NN classifier accuracy and the size of the feature subset. The

selection of feature subsets and feature weighting are simultaneously optimized. Once

the image features are selected, each test image is classified using a K-NN classifier, and

the class ID is assigned the image.

CHAPTER 3

IMPROVING THE QUALITY OF K-NN GRAPHS FOR IMAGE DATABASES

THROUGH VECTOR SPARSIFICATION

K-nearest neighbor (K-NN) graphs are an essential component of many established

methods for content-based image retrieval (CBIR) and automated image annotation (AIA).

The performance of such methods relies heavily on the semantic quality of the graphs,

which can be measured as the proportion of neighbors sharing the same class labels as their

query images. Due to the noise in image features, the K-NN graphs produced by existing

methods may suffer from low semantic quality. This chapter presents NNF-Descent for

the construction of K-NN graphs based on nearest-neighbor and feature descent, in which

selective sparsification of feature vectors is interleaved with neighborhood refinement

operations in an effort to improve the semantic quality of the result. A variant of the

Laplacian Score is proposed for the identification of noisy features local to individual

images, whose values are then set to 0 (the global mean value after standardization).

Extensive experiments on several datasets were conducted to show that NNF-Descent is

able to increase the proportion of semantically-related images over unrelated images within

the neighbor sets, and that the proposed method generalizes well for other types of data

which are represented by high-dimensional feature vectors.

3.1 Introduction

The construction of K-nearest neighbor (K-NN) graphs has been widely adopted as an

essential operation for many applications, such as object retrieval [Qin et al. 2011], data

clustering [Brito et al. 1997], manifold learning [Belkin and Niyogi 2003; Roweis and

Saul 2000], and other machine learning tasks [Zhu et al. 2003].

In the research field of multimedia where images are represented by high-dimensional

feature vectors, K-NN graphs built for fixed image sets serve as important data structures

47

48

for a number of established methods. For example, Qin et al. proposed a method for

improving the accuracy of image retrieval wherein different ranking functions are applied

to disjoint subsets of the database, the ‘close set’ and the ‘far set’, as defined relative to the

query image [Qin et al. 2011]. A K-NN graph is pre-computed to efficiently identify the

reciprocal nearest neighbors of the query image, which constitute the initial close set. The

close set is then expanded to include more images according to certain selection rules.

Manifold ranking, which has received much attention in the context of content-based

image retrieval (CBIR), often uses K-NN graphs to represent the similarity relationships

between images. Initially, a positive score is assigned to the query image, and a score of

0 is assigned to all other images. Each image iteratively computes its score as a weighted

combination of its initial score and the scores of its neighbors. At termination, those images

with larger scores are considered to be more related to the query. Examples following this

protocol include [He et al. 2009] and [Tong et al. 2006].

Practical search engines for general images often require that the images be annotated

beforehand. Due to the inherent difficulty of preparing large volumes of images for

search through manual annotation, automated image annotation (AIA) techniques have

been extensively researched in recent years. One important approach to AIA is image

label propagation, in which confidence scores are disseminated from initially labeled

images to unlabeled images via a similarity graph, in which the nodes represent individual

images, and the edges join pairs of images that meet certain similarity criteria. For each

initially-unlabeled node in the graph, scores are computed individually for each label-node

combination; at termination, the label with the highest score is assigned to the node. For

example, in [Houle et al. 2011], a keyword propagation method was developed using a

modified K-NN graph in a graph-based semi-supervised learning framework.

One major difficulty with the use of K-NN graphs for image databases is the large

computational cost of construction. Due to the quadratic time complexity of brute-force

methods, much effort has been devoted to the development of faster approximate K-NN

49

graph construction techniques. One straightforward solution is to invoke approximate

K-NN search for every graph node, using such indexing techniques as cover trees

[Beygelzimer et al. 2006] or locality sensitive hashing [Gionis et al. 1999]. Another

approach involves the batch construction of K-NN graphs. Chen et al. proposed one such

method based on recursive data partitioning in L2 space [Chen et al. 2009]. In [Dong

et al. 2011], NN-Descent was developed for iterative K-NN graph construction in generic

metric space based on a simple transitivity principle: a neighbor of a neighbor is also likely

to be a neighbor. A description of NN-Descent will be given in Section 3.3.1.

Another difficulty with the use of K-NN graphs for image databases lies in its

semantic quality, which can be measured as the proportion of edges connecting two nodes

with identical labels. The semantic quality of K-NN graphs depends crucially on the

feature vectors describing the images. If many features are noisy or irrelevant for the

class associated with the query image, the images in its neighborhood list may not be

semantically related to the query, severely limiting the effectiveness of K-NN graph-based

approaches. For example, for the case where the query image belongs to the database

in question, a smaller number of correct neighbors in its K-NN list directly indicates a

lower query result accuracy. In image label propagation, each graph edge connecting two

unrelated image nodes is a source of error, in that it suggests that these two images should

share the same label despite their belonging to different classes.

The negative impact of noisy or irrelevant features has motivated the use of feature

selection techniques in CBIR [Dy et al. 2003; Guldogan and Gabbouj 2008; Jiang

et al. 2006]. For image datasets, such feature selection techniques would also be relevant

to the problem of K-NN graph construction, since the latter can be viewed as a batch of

in-dataset content-based query operations. Traditional feature selection methods have been

successfully applied in the reduction of noisy features in many contexts. However, as a

rule, most feature selection techniques are performed over the entire dataset: any feature

50

deemed to be noisy is discarded for each data point. This neglects the possibility that the

importance of the feature may vary across different data points or classes of data points.

The chapter presents NNF-Descent, a new method for the construction of K-NN

graphs with improved semantic quality, for scenarios involving image databases where

class label information is not available.

First, the Local Laplacian Score (LLS), a variant of the Laplacian Score (LS) [He

et al. 2006], is proposed to identify features that are ‘locally noisy’ — that is, noisy

relative to the neighborhood of a given target image. It will be shown that if a feature

is indiscriminative for an image class, it is very likely that the feature will be identified as

locally noisy for many images from this class.

Since the idea proposed in this chapter focuses on identifying features that are noisy

only with respect to subsets of images (that is, neighborhoods of query images), and not

with respect to the full image dataset, traditional global feature selection techniques cannot

be applied directly. To reduce the negative impact of locally noisy features, their feature

value are modified so as to encourage the reduction of intra-class distances. Ideally, one

suitable value for such replacement could be the mean for that feature, taken over all images

from the class to which the image belongs. However, this is not feasible in practice, as the

class labels of the images are not known in advance. As a heuristic solution, the noisy

feature values are changed to the global mean for that feature. Assuming that the feature

values have been standardized, as is common practice, this amounts to a replacement of

noisy feature values by 0. This operation, referred to here as feature sparsification, is then

embedded into the above-mentioned K-NN graph construction framework, NN-Descent.

During the iterative feature sparsification process, as more and more images from a

common class have had their locally noisy features identified and sparsified, the image

vectors from this class gradually converge to a new class center in the image domain.

It is worth mentioning that NNF-Descent does not make use of separate training

and test datasets as would most classifiers. The goal of this method is to build a K-NN

51

graph with better semantic quality for a fixed dataset. This technique can be applied in

such applications as in-dataset image querying, indexing, labeling, image clustering and

graph-based semi-supervised learning.

The remainder of this chapter is organized as follows. Section 3.2 formally

introduces the Local Laplacian Score and explains the rationale for feature sparsification.

Section 3.3 describes NN-Descent and proposes a new K-NN graph construction method,

NNF-Descent, based on the local selection of features. Section 3.4 presents and discusses

the results of experiments in which NNF-Descent is compared on several datasets against

existing feature selection and extraction methods, with respect to the semantic quality of

the K-NN graphs produced. This chapter concludes in Section 3.5 with a discussion of the

proposed method.

3.2 Locally Noisy Feature Detection and Sparsification

In this section a local variant of the Laplacian Score (LS), the Local Laplacian Score (LLS),

is proposed for the ranking of features with respect to individual data points. The use of

LLS in the identification of locally noisy features and the characterization of the features

identified are discussed next. This section concludes with a discussion of the effectiveness

of sparsification of locally noisy features for the reduction of intra-class distances.

3.2.1 Local Laplacian Score

Given a dataset X consisting of n data points represented by m-dimensional feature

vectors, the r-th feature of the entire dataset can be denoted by an n-dimensional vector

fr = (fr1, . . . , frn)
T , where r = 1, . . . ,m, and fri (i = 1, . . . ,n) is the feature value of fr taken

from data point xi ∈ X (more generally, let fr denote the r-th feature from an individual

data point). For the sake of convenience, the r-th feature and its value(s) will not be

distinguished; both will be simply referred to as fr (or fr).

Given a nearest neighbor graph G (for example, the K-NN graph) of dataset X , the

Laplacian Score of the r-th feature over the entire dataset can be computed as follows [He

52

et al. 2006]:

LS(r) =
∑i j(fri− fr j)

2Si j

var(fr)
, (3.1)

where var(fr) is the estimated variance of the values of feature fr, and Si j is the (Gaussian)

RBF kernel on feature vectors xi and x j representing the i-th and j-th data points,

respectively:

Si j =

 exp(−||xi− x j||2/2σ2) if i and j are connected,

0 otherwise,
(3.2)

where σ is a bandwidth parameter. LS favors those features that both preserve the nearest

neighbor graph structure and have large variance values across all data points. Note that the

similarity Si j places a high weighting on node i’s close neighbors, which are more likely to

be from the same class as i.

LS evaluates the importance of a feature as regards its overall power in locality

preservation, taken over all objects of a dataset X . Only one ranking score for each feature

fr is computed. When it is used as the criterion for traditional feature selection, fr is either

preserved for, or discarded from, the entirety of the dataset. This, however, neglects the

possibility that a feature that is important for one data class (or one data point) may be

irrelevant for another class (or point).

To identify noisy features relative to each data point, the Local Laplacian Score (LLS)

is proposed, which represents the contribution to Equation 3.1 that can be attributed to data

point xi:

LLSi(r) =
∑ j(fri− fr j)

2Si j

var(fr)
. (3.3)

As fr = (fr1, . . . , frn)
T , it is easy to verify that

LS(r) = ∑
i

LLSi(r). (3.4)

53

As with LS, a smaller LLS value indicates less variation in the feature value among

the neighbors of the data point. Intuitively, by minimizing LLSi(r), LLS favors those

features that have a high global variation and that have the greatest impact in establishing

the neighborhood of data point i.

3.2.2 Locally Noisy Features and LLS

A straightforward method is adopted for the detection of noisy features local to node i

using LLS, in which the m features are sorted in descending order of LLSi(r), and the first

z features (for some supplied value z > 0) are returned. The returned z features are referred

to as the locally noisy features of xi, and the remaining (m− z) features as the subjective

features of xi.

If all feature values have been standardized in advance, and the original values of

feature fr are denoted by f′r, the standardized value of the r-th feature for data point xi is:

fri =

 (f ′ri−µf′r)/σf′r if σf′r 6= 0,

0 otherwise,
(3.5)

where

µf′r =
∑i f ′ri

n
and σf′r =

√
∑i(f ′ri−µf′r)

2

n

are the mean and standard deviation of the original feature values f′r, respectively. It is

straightforward that each standardized feature fr has a mean of 0 and a variance of 1.

Standardization is possible provided that σf′r 6= 0. Note that if σf′r were equal to

0, all the feature values for f′r would be identical, and thus f′r would have no impact in the

computation of distances between data points, and could safely be eliminated altogether. As

a consequence, only those cases in which σf′r 6= 0 for every original feature f′r are considered

in the feature selection process.

54

Given that the values of feature fr have been standardized in advance, LLS reduces

to the following simpler form:

LLSi(r) = ∑
j
(fri− fr j)

2Si j. (3.6)

Equation 3.6 can be viewed as a form of weighted local variance of the feature values

for fr in the neighborhood of node i. As with the computation of LS (Equation 3.1), the

close neighbors of node i are given higher weightings in the computation of LLSi(r), since

they are more likely to belong to the same class as i.

Denoting the class label of i by I, when standardized feature fr is discriminative for

class I, the variance of the values for fr within I is likely to be relatively small. As a result,

the LLS scores for the r-th feature are expected to be small for most data points from I. If

feature fri nevertheless had a relatively high score LLSi(r) for node i, then fri is likely to

be an outlier among all the feature values for fr within class I.

On the other hand, when feature fr is a noisy feature for class I, the variance of the

standardized feature values for fr is large in I. Thus, many data points from I are very likely

to have large LLS scores for fr, and to identify fr as one of their own noisy features. In

other words, if feature fr is indeed noisy for a given class, many data points from this class

would tend to agree on its identification as such. A consensus, however, does not in general

occur among data points drawn from different classes.

This situation is illustrated in Figure 3.1 for the MNIST handwritten digit image

set [LeCun et al. 1998] (see Section 3.4.1 for a description of this set). For three classes

of handwritten digits, LLS is used to identify the top 50 noisy features from a total of 784

features. Figures 3.1(a-c) show the frequency by which each feature is identified as a noisy

feature for the digit classes 0, 6 and 7, respectively. Figure 3.1(d) shows the frequency by

which each feature is identified as a common noisy feature for all the three classes. It can

be seen that even with less than 7% of the features from each image deemed as noise, many

features are selected as such for 40% to 60% of the images within each class. However, the

55

 0
 10
 20
 30
 40
 50
 60

 1 200 400 600 784

F
re

qu
en

cy
 (

%
)

Feature

(a) Images of the digit 0.

 0
 10
 20
 30
 40
 50
 60

 1 200 400 600 784

F
re

qu
en

cy
 (

%
)

Feature

(b) Images of the digit 6.

 0
 10
 20
 30
 40
 50
 60

 1 200 400 600 784

F
re

qu
en

cy
 (

%
)

Feature

(c) Images of the digit 7.

 0
 10
 20
 30
 40
 50
 60

 1 200 400 600 784

F
re

qu
en

cy
 (

%
)

Feature

(d) Images of digits 0, 6 and 7.

Figure 3.1 Frequencies of features identified as noisy features in three image classes of
MNIST.

noisy feature sets receiving the most votes in the three image classes are very different. For

all the three classes, the frequencies of noisy features are more balanced, with no feature

receiving more than 30% of the votes.

3.2.3 Feature Sparsification

Traditional global feature selection methods cannot be applied directly in the reduction of

noisy features identified by LLS, as the feature importance is different across individual

data points — each data point has its own subjective feature set. Instead of discarding a

feature from the entire dataset, the noisy feature values are modified for individual data

points in an effort to reduce intra-class distances.

Given a subset X ′ ⊂ X , the mean value of the r-th feature for the data points in X ′ is

denoted by:

mean(X ′, fr) =
∑xi∈X ′ fri

|X ′|
. (3.7)

56

More specifically, the global mean of the r-th feature computed over the entire dataset

is denoted by mean(X , fr), the class mean of the r-th feature computed in class P by

mean(P, fr), and the local mean of the r-th feature with respect to node p ∈ P by

mean(Q, fr), where Q is the K-NN set of p.

A simplified example is given below to illustrate the feature sparsification process,

wherein the data points of class P have a common noisy feature fr. Ideally, if for all data

point p ∈ P, frp is replaced with mean(P, fr), the intra-class distances of P would tend

to decrease (as the intra-class variance attributed to this feature dimension is eliminated),

whereas the class mean value mean(P, fr) would not change. As a consequence, the data

points of class P become closer, and the distances between P and other classes measured

as the distances between the class centers remain the same.

Figures 3.2(a–b) illustrate a configuration of three classes of synthetic 3-D data points

before and after such replacement. Figure 3.2(a) depicts the original distributions of the

three classes of 3-D points and their class centers. The data points of each class share a

common noisy feature, the noisy feature being different for each of the three classes. It

can be seen from Figure 3.2(b) that after replacing locally noisy feature values by their

class mean values, the points of each class converge towards their class centers, while

the class centers remain the same. Outlying feature values are effectively corrected, and

discrimination of the classes is clearly improved.

Unfortunately, replacement of locally noisy feature values by class mean values

is impractical, as the class labels are generally unavailable. As a heuristic solution, a

sparsification of the data vectors is performed instead, by replacing the value of each

noisy feature fr with the global mean mean(X , fr) for standardized features, which is

0. Figures 3.2(c–d) show the configurations of the three classes after 50% and 100%

(respectively) of the data points in each class have been sparsified. During the sparsification

process, the centers of the classes can change. In this example, the distances between

the centers of classes 1 and 2, and classes 2 and 3, both increase; between the centers of

57

−1
0

1
2

−1
0

1
2

−1

−0.5

0

0.5

1

class 1
class 2
class 3
centers

(a) Original data points.

−1
0

1
2

−1
0

1
2

−1

−0.5

0

0.5

1

class 1
class 2
class 3
centers

(b) Noisy feature values changed to local
mean.

−1
0

1
2

−1
0

1
2

−1

−0.5

0

0.5

1

class 1
class 2
class 3
centers

(c) 50% noisy features sparsified.

−1
0

1
2

−1
0

1
2

−1

−0.5

0

0.5

1

class 1
class 2
class 3
centers

(d) 100% noisy features sparsified.

Figure 3.2 Distribution of 3-D data points in a dataset of three classes.

classes 1 and 3, a decrease is observed. However, the data points in each class still converge

towards their new centers as the sparsification rate increases. In fact, in Figure 3.2(d), the

sparsified data points are reduced to 2-D points which converge towards their new class

centers in three different 2-D planes.

Although the global mean of each feature is 0 due to standardization, individual

feature values could be positive or negative, and thus in general, if two data points have

different features sparsified, the distance between them could increase or decrease. Ideally,

data objects from a common class should identify the same sets of noisy features. Two data

points from different classes could conceivably share many sparsified features, resulting in

an undesirable reduction of the distance between them. However, one would expect this to

58

be more than offset by the sparsification of common noisy features across many members

of the same class, since the LLS ranking favors such features.

For data points with outlying feature values in a class (the features in question are

otherwise discriminative for the class), the sparsification of the outlying features does not

guarantee a reduction of the distances between the data points and the other members of

their class. The reason is that the features in question are less likely to be identified as

noisy features by the other data members and thus remain unchanged. However, even

if the distances did increase, one would expect the number of such outliers (data points

with outlying feature values) to be relatively small, and thus the overall negative impact

would likely be outweighed by the positive impact on class cohesion by the sparsification

of common noisy features for the class.

With more locally noisy features detected, data points from different classes are

more likely to share common noisy features. Thus, unlike traditional global feature

selection methods, the feature sparsification scheme should be employed conservatively,

by modifying only a relatively small proportion of features.

Another heuristic solution is to replace each noisy feature value frp by an approx-

imation of the class mean mean(P, fr). Here, the local mean mean(Q, f) is used as the

approximation, where Q is the K-NN set of p taken with respect to the full feature set.

The K-NN set of each data point could be precomputed in the process of the initial

graph construction for LLS feature ranking. However, this strategy suffers from several

drawbacks:

• Averaging feature values incurs cost overheads that can significantly reduce the
efficiency when the dataset is large.

• It is difficult to determine whether the original or the updated feature values should
be used in subsequent averaging processes.

• The local mean of a feature is not fixed for a data class, so that data points from the
same class may have their common noisy features changed to different values.

59

In the experimentation, this variant is compared with the feature sparsification scheme, and

the result is discussed in Section 3.4.3.

3.3 K-NN Graph Construction with Feature Sparsification

This section gives the details of the proposed adaptation of NN-Descent for the construction

of a K-NN graph for images described as high-dimensional vectors. As will be seen,

this method generalizes well for non-image data having similar representations. A

brief description of NN-Descent, and the complete algorithm of the proposed method

NNF-Descent, are given in Sections 3.3.1 and 3.3.2, respectively.

3.3.1 NN-Descent

NN-Descent is an iterative algorithm for the construction of approximate K-NN graphs with

arbitrary similarity measures [Dong et al. 2011]. Let p, q and r denote three data points.

NN-Descent seeks to take advantage of a tendency toward transitivity in the neighbor

relationship: if q is a neighbor of p, and r is a neighbor of q, then r is likely to be a neighbor

of p (Figure 3.3). Starting from a random tentative K-NN graph, the NN-Descent strategy

is to repeatedly check for each point p as to whether any neighbors of its neighbors (such

as r) could serve as a closer neighbor of p than any of the nodes currently in the neighbor

list of p.

If the neighborhood relationship is undirected, checking data pairs of the form (p,r)

is equivalent to checking all pairs of neighbors of a common point q. This operation is

referred to as a local join. The NN-Descent strategy can thus be described as that of

checking whether two neighbors of a common data point could improve over any of the

tentative neighbors in each other’s neighbor list.

The basic algorithm of NN-Descent is summarized in Algorithm 1. For convenience,

p’s reverse nearest neighbor set, which consists of data points having p in their K-NN sets,

is denoted by p’s K-RNN. The algorithm starts with an initial random K-NN graph that

will be iteratively refined in an effort to produce the true K-NN graph (lines 1–3). Lines

60

Figure 3.3 The principle of NN-Descent.

6–7 correspond to the local join operation. In the implementation, a K-NN list of a query

point consists of K entries, each of which is an ordered pair 〈x,d〉 with x being a data

point ID, and d being the distance between x and the query point. In line 7, the K-NN

entry 〈x,dist(x,y)〉 is used to update y’s K-NN list if and only if dist(x,y) < dist(qK ,y),

where qK is the K-th neighbor of y. The same rules apply to the case for 〈y,dist(x,y)〉. The

algorithm stops when the graph G is not changed in consecutive iterations, or the proportion

of recently updated K-NN entries is smaller than a user-specified threshold.

3.3.2 NN-Descent with Sparsification

This section shows how LLS feature ranking and sparsification can be integrated into

the NN-Descent framework. Starting from a near-exact K-NN graph, noisy features are

gradually sparsified as the nearest-neighbor descent progresses. After each sparsification,

the feature vector is updated for use in subsequent refinements of neighborhoods. This

allows the effects of sparsification and graph refinement to influence each other promptly:

an updated K-NN graph improves the feature ranking accuracy, and the sparsification of

noisy features improves the semantic quality of the K-NN graph in return.

The details of the NNF-Descent method can be found in Algorithm 2. For simplicity,

a fixed number of features are sparsified from each feature vector per iteration; this number

is controlled by the parameter z. As mentioned before, the value of z should be relatively

small in comparison with the total number of features. The other two parameters, K and N,

determine the neighborhood size of the target graph, and the desired number of iterations,

respectively.

61

Algorithm 1: NN-Descent [Dong et al. 2011]
input : dataset X , distance function dist, neighborhood size K

output: K-NN graph G

1 foreach data point p ∈ X do

2 Initialize G by randomly generating a tentative K-NN list for p with an

assigned distance of +∞;

3 end

4 repeat

5 foreach data point p ∈ X do

6 Check different pairs of p’s neighbors (x,y) in p’s K-NN and K-RNN

lists, and compute dist(x,y);

7 Use 〈x,dist(x,y)〉 to update y’s K-NN list, and use 〈y,dist(x,y)〉 to update

x’s K-NN list;

8 end

9 until G converges;

10 Return G.

Lines 1–2 of Algorithm 2 are preprocessing steps, the latter of which uses the

original NN-Descent to compute a K-NN graph for the original (standardized) feature

vectors. This graph should be of reasonable semantic quality; otherwise, the initial feature

ranking may be too unreliable for the sparsification strategy to further improve the graph.

Although chosen for reasons of efficiency, NN-Descent can be replaced with other exact or

approximate K-NN graph construction methods if desired.

Lines 3–13 correspond to one iteration of the proposed method, in which three main

phases are involved: feature ranking, sparsification, and K-NN updates.

In line 6, the updated K-NN graph is used to rank the features for data point p. If

desired, the feature ranking step may use a subset of the K-NN lists. For example, a 10-NN

graph can be used for LLS feature ranking in the construction of a 100-NN graph.

62

Algorithm 2: NNF-Descent
input : dataset X , distance function dist, neighborhood size K, number of

sparsifications per iteration z, and number of iterations N

output: K-NN graph G

1 Standardize the original feature vectors of X ;

2 Run NN-Descent(X ,dist,K) until convergence to obtain an initial K-NN graph

G;

3 repeat

4 Generate a list L of all data points in random order;

5 foreach data point p ∈ L; do

6 Rank p’s features in descending order of their LLS computed from p’s

current K-NN;

7 Change the values of the top z ranked features to 0;

8 Recompute the distances from p to its K-NN and K-RNN;

9 Re-sort p’s K-NN list and p’s K-RNN’s K-NN lists;

10 Check different pairs of p’s neighbors (x,y) in its K-NN and K-RNN, and

compute dist(x,y);

11 Use 〈x,dist(x,y)〉 to update y’s K-NN list, and use 〈y,dist(x,y)〉 to update

x’s K-NN list;

12 end

13 until Max number of iterations N is reached;

14 Return G.

Line 7 sparsifies a small number z of highly-ranked (noisy) features for p. The value

of parameter z is chosen empirically as described in Section 3.4. Since the values of the

noisy features will eventually be changed to 0, only those features having non-zero values

are considered. In particular, if the original data points have identical values for a given

feature, the standardized values of this feature will be 0 for every point, as indicated by

63

Equation 3.5. In traditional feature selection, such features have a high priority to be

removed, as they provide no discriminative information. However, LLS sparsification

simply ignores zero-valued features as they do not affect the semantic quality of the K-NN

graph. Ignoring zero-valued features also ensures that a sparsified feature will not be

sparsified again in further iterations.

Lines 8–11 correspond to the K-NN update phase. Lines 8 and 9 update the current

K-NN graph to be consistent with the newly-sparsified feature vector. The distances

between p and its current K-NN and K-RNN neighbors are recomputed, and the lists

of neighbors are re-sorted. Note that as a heuristic method, for the sake of efficiency,

NNF-Descent does not recompute the K-NN lists of p or of p’s K-RNN. However, the

implementation of the local join operation requires that the order of the K-NN entries

be correct. In the local join operations performed in lines 10–11, new candidate K-NN

members are created and compared with the existing neighbors, after which the neighbor

lists are updated. A data pair (x,y) that has been checked is subsequently flagged in order

to prevent it from being checked again.

It is worth mentioning that the dataset is not re-standardized after sparsification,

for the reason that standardization would introduce large computational overheads, and

change the representation of the feature vectors dramatically. During the iterative process

of feature sparsification, with respect to a given class, the class mean of an affected feature

fr eventually tends to 0 if most or all data points of this class have this feature sparsified;

the variance of fr tends to 0 as well. For simplicity, when computing the LLS for a feature

fr ∈ fr, the global mean and variance of fr are treated as if they maintained their original

(standardized) values throughout the sparsification process: with the mean fixed at 0, and

the variance fixed at 1.

In the implementation, the length of an K-RNN list is limited to K for efficiency. As

a result, the memory cost of NNF-Descent is O(n(m+K)), for storing the feature vectors

and the K-NN (K-RNN) graphs. In terms of the number of distance computations, the

64

time complexity of each NNF-Descent iteration is in O(K2n), determined by the maximum

cost of local join operations. If the dist function is L2, the cost in terms of the number of

operations on feature values is in O(K2mn). The feature ranking and selection performed

by LLS entails a small run-time overhead of O(Kmn) for each iteration of NNF-Descent.

This indicates that the algorithm scales well in terms of n, for reasonable values of

K. Several optimizations of NN-Descent can be applied directly to the NNF-Descent

(Algorithm 2). The reader is referred to [Dong et al. 2011] for the full details.

3.3.3 Variants of NNF-Descent

Several variants of NNF-Descent are presented in this subsection. First, as an alternative to

feature sparsification, another heuristic solution for adjusting the values of a locally noisy

feature is to replace it with the approximate class mean (that is, the local mean) for that

feature. More formally, a variant (Var1) is created from Algorithm 2 by modifying line 7

to:

For each feature frp appearing among the z top-ranked noisy features of p, set
frp to mean(Q, fr), where Q is the current K-NN set of p.

Note that:

1. Unlike NNF-Descent, Var1 does not skip the zero-valued features. However, a
modified feature will not be modified again in subsequent iterations.

2. The computation of mean(Q, fr) uses the original standardized feature values of fr
instead of newly computed values.

In order to illustrate the effect of iterative feature ranking, NNF-Descent is also

contrasted against two variants (Var2 and Var3) of Algorithm 2 with iterative feature

ranking disabled. Var2 maintains the nearest-neighbor descent procedure of NNF-Descent,

while Var3 performs neither nearest-neighbor descent nor feature descent. Both Var2 and

Var3 compute the LLS for features of each data point only once before the iteration begins,

based on the initial K-NN graph. In each iteration, both variants sparsify z noisy features

65

Table 3.1 Datasets Used in the Experiments

Datasets Features Instances Subjects Instances per subject

ALOI-100 641 10,800 100 108

MNIST 784 10,000 10 1000

Google-23 1937 6686 23 97–406

ORL faces 10,304 400 40 10

Movement 90 360 15 24

Secom 590 1567 2 1463 and 104

from each feature vector, with the features occupying ranks iz− z+1 to iz being sparsified

in the i-th iteration. The two variants differ in the K-NN update phase:

• Var2 maintains the iterative K-NN updating step as in Algorithm 2 (lines 8–11), so
that the K-NN graph is gradually changed.

• At the end of each iteration, after all data points have had z noisy features sparsified,
Var3 recomputes in its entirety an exact K-NN graph from the new feature vectors.

3.4 Experiments

The experimentation was conducted using six datasets (four image sets and two non-image

sets) on 3.2GHz workstations. First, the influence of the rate of feature sparsification

was investigated. NNF-Descent was then compared with the proposed variants so as to

demonstrate the effectiveness of feature sparsification and iterative feature ranking. Finally,

the proposed method was compared with existing methods including localized feature

selection methods, and traditional unsupervised feature selection and extraction methods,

with respect to the semantic quality of the K-NN graphs produced, and for a labeling task.

3.4.1 Datasets

Table 3.1 summarizes the datasets used in the experimentation.

66

ALOI-100 is a subset of the ALOI image dataset [Geusebroek et al. 2005]. It contains

the images of the first 100 objects, each object being associated with 108 images captured

from different orientations under different conditions. Each image is represented by a

641-D vector based on color and texture histograms [Boujemaa et al. 2001] and has the

corresponding object ID as its ground truth class label.

The original MNIST dataset [LeCun et al. 1998] contains 60,000 training and 10,000

test images of handwritten digits, with each image represented by a vector of 784 gray-scale

texture values. For the experimentation, a reduced subset of MNIST was constructed

containing 10,000 images, by randomly selecting 1000 images of each digit from the

training set.

The Google-23 dataset was firstly described in [Houle et al. 2011]. The names

of 23 celebrities (as per [Ozkan and Duygulu 2006]) were used to query Google Image

Search. 1 A total of 11,811 images were crawled from the query results. After manually

removing irrelevant images, the face detector of OpenCV [Bradski and Kaehler 2008]

was applied and 8381 frontal faces were detected. Of these faces, 6686 were manually

labeled with one of the 23 names, to produce a dataset referred to as Google-23. Feature

descriptors were computed by the Oxford face processing pipeline as per the description

in [Everingham et al. 2006]; for each face, 13 points of interest were detected, each of

which was represented by a 149-dimensional vector. Concatenating these 13 vectors into a

single descriptor yielded a 1937-dimensional data point for each face image.

The ORL face dataset [Samaria and Harter 1994] (collected by AT&T Laboratories

Cambridge) contains 400 images of 40 distinct subjects, each image consisting of 92×112

pixels. Each pixel is an 8-bit (0–255) gray scale integer, and is treated as one image feature.

The competing methods were also evaluated on two non-image datasets, Libras

Movement and Secom, whose data objects are represented by high-dimensional feature

vectors. Libras Movement (referred to as Movement for the remainder of this chapter)

1http://images.google.com (accessed on October 28, 2014).

67

[Dias et al. 2009] contains 15 classes of 24 instances each, with each class referring to

a hand movement type in Brazilian sign language. The 90-D feature vector for each

instance is composed of normalized coordinates captured in 45 frames of a video clip of

the hand gesture. Secom [Bache and Lichman 2013] consists of surveillance data from a

semi-conductor manufacturing process. Each instance represents a single production entity

with 591 measured features. This dataset has 1463 positive instances and 104 negative

instances.

The four image datasets were used for the testing of parameter z, the comparison

between NNF-Descent and its variants and the comparison between NNF-Descent and

localized feature selection-based methods. All six datasets were used in the comparison

between NNF-Descent and other global methods for feature selection or extraction.

For each experiment, image descriptors were standardized within each dataset, and the

Euclidean (L2) distance was employed. The class labels of data objects were used solely

for evaluating the quality of the resulting K-NN graphs.

3.4.2 Number of Features Sparsified per Iteration

Testing was performed for different choices of the number of features to be sparsified from

each data object per iteration, using the four image sets.

On ALOI-100, MNIST and Google-23, the choices of z were in {3,5,10,15,20},

whereas on ORL faces the choices were in {30,50,100,150,200}. K was set at 10, and the

updated K-NN graph in each iteration was used for LLS feature ranking. The parameter σ

in the RBF kernel was set to the average distance value stored in the exact 10-NN graph.

Graph correctness was used for the evaluation of the semantic quality of the resulting

K-NN graphs, which is defined as follow:

graph correctness =
#correct neighbors

#data×K
, (3.8)

where a correct neighbor is one whose class label coincides with that of the query object.

An alternative measure for the semantic quality of K-NN graphs could be the edge

68

precision:

edge precision =
#correct edges

#edges
, (3.9)

where the correct edges are those graph edges connecting two data points from the same

class. Of the two evaluation criteria, only the experimental results in terms of graph

correctness are reported, since all methods tested exhibited very similar performance trends

for both criteria.

Figure 3.4 plots the performances of the proposed method with different values of

z, reporting the graph correctness at every second iteration. As a baseline, the correctness

of the exact K-NN graph computed from the original feature vectors is also presented in

the figure (indicated as ‘exact K-NN’). At iteration 0, instead of performing NN-Descent

without feature selection, the correctness values produced by the exact K-NN were simply

used for all configurations of NNF-Descent, so that all curves converged to a single point

at the left-hand side of the figures.

On the four image datasets, the proposed method achieves significant improvements

in terms of the graph correctness, indicating that the average number of correct neighbors

per individual images is increased. With a larger number of features z sparsified per

iteration, the proposed method achieves its performance peak after fewer iterations, but

thereafter degrades faster, as the number of sparsified features shared by images of different

classes increases. Smaller choices of z lead to more gradual changing in performance, and

occasionally a better peak performance (for example, on ALOI-100 and MNIST). However,

it may require substantially more iterations to reach the performance peak. In practice, as

a reasonable starting point for parameter tuning, z can be set to approximately 1% of the

number of features.

Although the number of iterations at which peak performance is reached varies from

dataset to dataset, it also is influenced by the semantic quality of the initial K-NN graph,

and the number of features sparsified in each iteration. It is difficult to determine an ideal

69

 90

 91

 92

 93

 94

 95

 96

 97

 98

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
z=3
z=5

z=10
z=15
z=20

(a) ALOI-100.

 81

 83

 85

 87

 89

 91

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
z=3
z=5

z=10
z=15
z=20

(b) MNIST.

 65

 66

 67

 68

 69

 70

 71

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
z=3
z=5

z=10
z=15
z=20

(c) Google-23.

 52

 54

 56

 58

 60

 62

 64

 66

 0 5 10 15 20 25 30 35 40

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
z=30
z=50

z=100
z=150
z=200

(d) ORL faces.

Figure 3.4 Performances of NNF-Descent for different numbers of features sparsified per
iteration.

value for the number of iterations N; however, a notable improvement of NNF-Descent

over the exact K-NN can be observed in the first 30 to 50 iterations. For the remainder

of the experiments, the value of N was not fixed (except for Section 3.4.5) — instead, the

results over a large range of iterations are shown.

3.4.3 Replacing Noisy Feature Values by the Local Mean

NNF-Descent was compared with Var1 on the four image sets using K = 10. As in

Section 3.4.2, the K-NN graphs produced were subsequently used by LLS for feature

ranking. The value of z was set at 5 for ALOI-100, MNIST and Google-23, and at 100

for ORL faces.

70

The results can be found in Figure 3.5, from which it can be seen that both methods

can improve the correctness of produced K-NN graphs, indicating the effectiveness of

the feature modification scheme. On Google-23, Var1 achieves better results, whereas

the performance gap is small — the largest difference between Var1 and NNF-Descent is

roughly 0.6%. On the other three datasets, NNF-Descent outperforms Var1 within several

iterations, and has higher peak values for graph correctness.

In practice, the local mean of a feature is computed from different neighborhoods,

and is not fixed for a data class — this can be observed by considering a semantic image

class that contain several visually distinct subclasses. As a result, data objects from the

same class may be assigned different values for a common noisy feature, and thus, the

intra-class distances of the objects may not be reduced by assignment of the local mean.

One possible explanation of the better performance of Var1 on Google-23 is that the cases

in which neighboring images have many noisy features in common may occur less often

than with the other three datasets.

3.4.4 Effectiveness of Iterative Feature Ranking

To demonstrate the effectiveness of iterative feature ranking, NNF-Descent was compared

with the two remaining variants, Var2 and Var3. The framework for the experiments of

Section 3.4.3 was employed here as well.

The results can be found in Figure 3.6. They show that the performance of

NNF-Descent is consistently better than those of the two variants. This implies that

iterative feature ranking and K-NN updating are mutually beneficial: an updated K-NN

graph improves the accuracy of feature ranking, and the sparsification of noisy features

improves the semantic quality of the K-NN graph in return.

It is also interesting to note that Var2 outperforms Var3 on Google-23 and ORL faces.

On ALOI-100, Var2 has better performance after 12 iterations. On MNIST, Var3 is better,

but the difference is small. A possible reason for the relatively poor performance of Var3 is

that in each iteration, the K-NN graph is computed from scratch using new feature vectors.

71

 91

 92

 93

 94

 95

 96

 97

 98

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var1

(a) ALOI-100.

 81

 83

 85

 87

 89

 91

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var1

(b) MNIST.

 65

 66

 67

 68

 69

 70

 71

 72

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var1

(c) Google-23.

 54

 56

 58

 60

 62

 64

 66

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var1

(d) ORL faces.

Figure 3.5 Comparing NNF-Descent with Var1.

If the feature ranking is unreliable, the semantic quality of the graph is severely affected.

In contrast, Var2 adopts a conservative neighborhood updating scheme in which a K-NN

graph is updated from its previous status.

3.4.5 Comparison Against Co-clustering and Subspace Clustering-based Methods

On the four image sets, NNF-Descent was compared with methods based on information-

theoretic co-clustering (ITL) [Dhillon et al. 2003] and projected clustering (PROCLUS)

[Aggarwal et al. 1999], with respect to the correctness of produced 10-NN graphs. The

implementations of ITL and PROCLUS are from the MTBA package [J. K. Gupta 2013]

and the OpenSubspace package [Müller et al. 2009], respectively.

72

 91

 92

 93

 94

 95

 96

 97

 98

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var2
Var3

(a) ALOI-100.

 81

 83

 85

 87

 89

 91

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var2
Var3

(b) MNIST.

 66

 67

 68

 69

 70

 71

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var2
Var3

(c) Google-23.

 54

 56

 58

 60

 62

 64

 66

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var2
Var3

(d) ORL faces.

Figure 3.6 Comparing NNF-Descent with Var2 and Var3.

For NNF-Descent, z was set at 5 on ALOI-100, MNIST and Google-23, and 100 on

ORL faces. The number of iterations N was set at 10. The entire 10-NN graph was used

by LLS for feature selection. The parameter σ for the similarity function was set to the

average distance value stored in the initial 10-NN graph.

For the ITL-based and PROCLUS-based methods, the clustering algorithms were

first used to cluster each dataset. Each cluster produced is associated with a subset of

features. The nearest neighbors of a data point were then computed within its cluster using

the corresponding feature subset (or from the entire dataset using the full features, if the

data point is not clustered). The true class number of each dataset was used by both methods

as an input for the desired number of clusters. The average size of reduced feature vectors

in PROCLUS was set at 50% of their original size.

73

Table 3.2 Graph Correctness (%) on the Four Image Sets (K = 10)

Datasets exact K-NN NNF-Descent ITL PROCLUS

ALOI-100 93.97 97.53 43.51 73.65

MNIST 85.49 91.11 33.85 12.98

Google-23 68.26 69.32 23.24 58.75

ORL faces 58.82 64.84 16.42 60.28

The results on the graph correctness are reported in Table 3.2. The correctness values

of NNF-Descent were averaged over 5 experimental runs.

It can be seen that NNF-Descent improves the graph correctness over the original

K-NN graphs on the four image sets. However, ITL and PROCLUS produce even worse

K-NN graphs in most cases. ITL fails on all the four datasets. In co-clustering, the feature

dimensions are also clustered, so that one feature is only associated with one cluster. ITL

cannot deal with the features that are important for multiple semantic classes. PROCLUS

produces worse correctness values than those of exact K-NN graphs, except for ORL

faces. One reason could be the low quality of computed clusters. Also, it could be

due to the features selected for each cluster: the feature selection scheme suggests that

the intra-cluster distances should be small, however, it is unreliable to use the computed

features directly in the construction of data neighborhoods. For example, PROCLUS has

poor performance on MNIST, because it mistakenly grouped many images into one cluster

corresponding to two features. The two features describe the background of the MNIST

images, which essentially have similar values over the entire image set.

It is worth mentioning that there exist methods to compute the distance between two

objects from different subspaces for clustering. One example is the subspace distance

proposed by Achtert et al. for their hierarchical clustering algorithms [Achtert et al. 2006;

Achtert et al. 2007]. It is nontrivial to adapt these methods in the computation of data

neighborhoods, however, this could be a worthwhile topic for future research.

74

Besides PROCLUS, the same set of experiments was also conducted for other

subspace clustering algorithms such as DOC [Procopiuc et al. 2002], P3C [Moise

et al. 2006], DiSH [Achtert et al. 2007] and FIRES [Kriegel et al. 2005] (the source code

of these algorithms are from the OpenSubspace package and the ELKI package [Achtert

et al. 2013]). However, they either failed to finish within 72 hours or exceeded the 10GB

main memory limit, on most of the four datasets. The large computational cost of subspace

clustering algorithms hinders their application in the construction of data neighborhoods.

3.4.6 Comparison Against Global Feature Selection Methods with Respect to Graph

Correctness

On all six datasets, NNF-Descent was compared with PCA, LS, SPEC-φ1, SPEC-φ3 and

UDFS with respect to the correctness of produced K-NN graphs. The implementations

of LS and SPEC are from the ASU feature selection repository [Zhao et al. 2010]. The

built-in MATLAB function, and the source code from the author’s homepage 2 were used

for PCA and UDFS, respectively. Among the competing methods, NNF-Descent, PCA,

LS and SPEC-φ1 are fully unsupervised, while SPEC-φ3 and UDFS require the number of

classes as an input.

The value of z was set at 5 for ALOI-100, MNIST, Google-23 and Secom, at 100 for

ORL faces and at 1 for Movement. The neighborhood size K for the target graph was set

at 10,20,30,50 and 100 on ALOI-100, MNIST, Google-23 and Secom. On ORL faces and

Movement, only K = 10 and K ∈ {10,20} were tested, respectively, since the number of

objects in each category of the two datasets is small. The full K-NN graph was used for

feature ranking in LS, SPEC, UDFS and NNF-Descent. The RBF kernel spread parameter

σ for LS, SPEC and NNF-Descent, and the regularization parameter for UDFS, were tuned

using K = 10 for all datasets. For each method, the values that produced the best results

were chosen for use in the remainder of the experiments.

2http://www.cs.cmu.edu/ yiyang/UDFS.rar (accessed on November 30, 2014).

75

For each experimental run of NNF-Descent, the best graph correctness score over 50

iterations was computed. The average computed from 5 runs was reported for each dataset.

For the other methods, for each data point, the z least important features were

discarded per iteration, and a K-NN graph was computed from the resulting set of reduced

feature vectors. Over all K-NN graphs produced (one per iteration) — from the original

full-sized vectors to those having fewer than z features — the best correctness value

achieved over the feature reduction process was reported.

The results on graph correctness can be found in Figure 3.7. The performance of the

exact K-NN graph computed from the original feature vectors is plotted as a baseline. On

all six datasets tested, for all choices considered for the value of K, NNF-Descent is able to

achieve graph correctness scores better than those of the exact K-NN graphs. In almost all

cases, the proposed method clearly outperforms its competitors.

On ALOI-100, NNF-Descent has consistently better results than its competitors.

PCA fails to construct a K-NN graph better than exact K-NN except when K = 100. LS,

SPEC and UDFS feature selection methods outperform PCA and exact K-NN by taking

advantage of the high semantic quality of the initial K-NN graphs for this simple dataset.

On ORL faces, NNF-Descent outperforms its competitors by a large margin. When

K = 10, the best correctness value achieved by NNF-Descent is 67.1%, while the nearest

competitors SPEC-φ3 and exact K-NN achieve 60.0% and 58.8%, respectively.

On MNIST, although LS and SPEC-φ1 are both better than exact K-NN, the

best-performing methods are PCA, SPEC-φ3, UDFS and NNF-Descent. When K ≤ 30,

NNF-Descent outperforms SPEC-φ3, which in turn outperforms PCA. When K = 50,

PCA overtakes SPEC-φ3, and when K = 100, it also outperforms NNF-Descent slightly, by

0.3%. Similar outcomes are observed for PCA and NNF-Descent on Google-23, where LS,

SPEC and UDFS fail to make improvements over exact K-NN. NNF-Descent maintains

its advantage over PCA until K = 50. When K = 100, PCA outperforms NNF-Descent by

a margin of 0.9%. This outcome can be explained by the semantic quality of the K-NN

76

 65

 70

 75

 80

 85

 90

 95

 100

10 20 30 50 100

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(a) ALOI-100.

 70
 72
 74
 76
 78
 80
 82
 84
 86
 88
 90
 92

10 20 30 50 100

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(b) MNIST.

 35

 40

 45

 50

 55

 60

 65

 70

 75

10 20 30 50 100

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(c) Google-23.

 45

 50

 55

 60

 65

 70

10

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(d) ORL faces.

 35

 40

 45

 50

 55

 60

10 20

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(e) Movement.

 85

 86

 87

 88

 89

 90

 91

 92

10 20 30 50 100

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(f) Secom.

Figure 3.7 Comparing the graph correctness of NNF-Descent with that of global feature
selection methods.

graphs upon which NNF-Descent rank features. As can be seen from the degradation

of the performance of exact K-NN in Figures 3.7(a–c,e), when the neighborhood size

increases, the proportion of correct neighbors in the K-NN graph becomes smaller. All

of the evaluated methods except for PCA utilize K-NN graphs for feature ranking: if the

77

semantic quality of the K-NN graph degrades, the detection of noisy features becomes less

reliable.

On Movement and Secom, NNF-Descent outperforms its competitors, which indicates

that it can be easily adapted to other data types as long as the instances are represented as

high-dimensional feature vectors. It is worth mentioning that on Movement, NNF-Descent

is able to improve the semantic quality of the K-NN graph, even when the initial K-NN

graph has a correctness value less than 40%. On Secom, there is no obvious degradation

of the quality of produced K-NN graphs when K increases, the reason being that there are

many more positive examples than negative examples in this dataset.

The running time of all the competing methods was measured on ALOI-100, for

K = 10. NNF-Descent is implemented in C++, while the other methods are implemented

in MATLAB. Table 3.3 records the total time used by each method for producing the best

graph correctness value on ALOI-100.

To make the results comparable, the time used for computing the exact K-NN graph

was measured using both C++ and MATLAB code. Table 3.4 reports the running time

of the competing methods relative to that of the exact K-NN graph construction. As can

be seen, NNF-Descent is a bit slower than PCA, LS and SPEC, the reason being that

NNF-Descent took 11 consecutive iterations (on average) to achieve its peak performance.

On the contrary, the running time of the other methods was measured for only one iteration,

since in these methods, a new iteration for feature selection and graph construction does not

rely on the results of previous iterations. This, however, assumes that the optimal sizes of

reduced feature vectors for the other methods are known in advance. Over all the competing

methods, UDFS has a much larger overhead for feature selection. This could be due to the

time consuming optimization process for its objective functions.

3.4.7 Comparison Against Global Feature Selection Methods in Data Labeling

In-dataset labeling was performed using the K-NN graphs produced during the procedure

of feature sparsification (for NNF-Descent) and reduction (for the other methods).

78

Table 3.3 Running Time of Competing Methods on ALOI-100 (K = 10)

C++ code MATLAB code

exact K-NN NNF-Descent exact K-NN PCA LS SPEC-φ1 SPEC-φ3 UDFS

139s 422s 223s 430s 476s 489s 473s 3198s

Table 3.4 Relative Running Time of Competing Methods on ALOI-100 (K = 10)

Method exact K-NN NNF-Descent PCA LS SPEC-φ1 SPEC-φ3 UDFS

Time 1.0 3.03 1.93 2.13 2.19 2.12 14.34

The same values for z were chosen as in the experiments of Section 3.4.6. With

all six datasets, 10% of the data objects from each category were randomly selected for

initial labeling in each run. A simple labeling strategy was adopted: the class label of each

initially unlabeled data object is determined by its nearest labeled object in its K-NN list. A

large K was used to guarantee that each object would be labeled eventually (K was 100 in

this experiment). The neighborhood size for feature ranking was set at 10 for all methods

evaluated (except for PCA).

The semantic quality of the K-NN graphs was assessed using the labeling accuracy:

labeling accuracy =
#correctly labeled data

#initially unlabeled data
. (3.10)

As in Section 3.4.6, for the proposed method, the best labeling accuracy over 50

iterations was computed; for its competitors, features were reduced iteratively (z per

iteration), until all features were exhausted. All results reported in Figure 3.8 were obtained

by averaging the best accuracies from 5 trials of experiments for each method evaluated.

NNF-Descent has the best performance over all the competing methods on the six

datasets. With respect to the labeling accuracy, the differences between NNF-Descent and

its closest competitor are 1.3%, 1.8%, 1.6%, 5.3%, 2.9% and 1.9% for ALOI-100, MNIST,

79

 50

 60

 70

 80

 90

 100

ALOI-100 MNIST Google-23 ORL faces Movement Secom

La
be

lin
g

ac
cu

ra
cy

 (
%

)

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

Figure 3.8 Comparing NNF-Descent with global feature selection methods on a labeling
task.

Google-23, ORL faces, Movement and Secom, respectively. For all methods tested, the

results shown in Figure 3.8 present a trend for labeling accuracy that is generally consistent

with that of graph correctness when K = 10 (Figure 3.7).

The experiment provides evidence that the proposed method can improve the

semantic quality of K-NN graphs, in that semantically related data objects are ranked higher

within the neighborhoods in which they appear.

3.5 Conclusion

This chapter presented a K-NN graph construction method, NNF-Descent, that uses

sparsification of feature values within a nearest-neighbor descent framework to improve

the semantic quality of K-NN graphs for image databases, when the class labels are

unavailable.

The use of a local variant of the Laplacian Score was proposed for assessing whether

a feature helps or hinders the association between an image and the other members of the

class to which it belongs. To reduce intra-class image distances, a heuristic solution was

adopted in which locally noisy features (as identified using the Local Laplacian Score) are

sparsified from initially standardized feature vectors. Feature ranking and sparsification

steps were then incorporated into the NN-Descent iterative K-NN graph construction

framework so as to improve the semantic quality of the graph.

80

An experimental evaluation was provided for the comparison of NNF-Descent

against several unsupervised feature extraction and selection methods, with respect to

the correctness of the K-NN graphs produced, and in an in-dataset labeling task, on

four image datasets and two non-image datasets whose objects are also represented by

high-dimensional feature vectors. The proposed method significantly outperformed its

competitors in most cases.

NNF-Descent is designed mainly for dense vectors and may not work well for sparse

features. When the feature vectors are too sparse, the standardized features may still contain

many zero entries. In such situations, the sparsification process may undesirably remove

valuable information and greatly change the K-NN graph structure. The application of

locally noisy feature selection for sparse feature vectors would be a worthwhile topic for

future research.

CHAPTER 4

IMAGE SEARCH BASED ON LOCAL SELECTION OF FEATURES AND

QUERY EXPANSION

This chapter presents an efficient and totally unsupervised content-based image retrieval

method for images represented by high-dimensional feature vectors. During the offline

process, different sets of features are selected by a generalized version of the Laplacian

Score in an unsupervised way for individual images in the database. Online retrieval is

performed by ranking the query image in the feature spaces of candidate images. Those

candidates for which the query image is ranked highly are selected as the query results. The

ranking scheme is incorporated into an automated query expansion framework to further

improve the semantic quality of the search result. Extensive experiments were conducted

on several datasets to show the capability of the proposed method in boosting effectiveness

without losing efficiency.

4.1 Introduction

Content-based similarity search (CBSS) has been studied for different types of data, such as

images [Liu et al. 2007], audios [Pope et al. 2004; Logan and Salomon 2001], videos [Patel

and Meshram 2012] and recommender systems [Lops et al. 2011]. One of the most active

research topics of CBSS is content-based image retrieval (CBIR). There, low-level image

features are extracted from images. The similarities between images are then computed as

the distances between the corresponding feature vectors.

The effectiveness of CBIR techniques relies heavily on the neighborhood quality

of images, which is essentially determined by the adopted image features and distance

measures. Much effort has been devoted to designing new features and similarity measures

for representing and searching image data. However, the optimal setups may vary across

different applications. The work presented in this chapter does not investigate new

81

82

approaches to the extraction of features for a specific image problem, or judge whether an

existing representation or similarity measure is optimal. Instead, the problem of boosting

the semantic performance of CBIR approaches using given feature vectors and similarity

measures has been addressed. No assumption is made on the features other than that the

similarity measure be applicable to feature vectors of arbitrary length.

With a given set of image feature vectors, the existence of noisy features is one major

barrier to a feasible neighborhood structure. This motivates the use of feature selection

techniques for improving the semantic performance of CBIR. As reviewed in Section 2.4.3,

most image feature selection techniques are supervised, which have limitations when the

semantic labels of images are few or missing. Global unsupervised feature selection

methods have achieved better clustering results for generic data. However, little evidence

was provided to indicate that their direct use in CBIR improves the performance of retrieval

tasks.

The success of the LLS feature ranking in K-NN graph construction for image

databases motivates the use of localized feature selection techniques in CBIR approaches.

A generalized version of the Laplacian Score, the Generalized Laplacian Score (GLS) that

takes into account both global and local feature importance, is proposed for the offline

selection of discriminative features for individual database images. Instead of performing

feature standardization and sparsification as in LLS, a ranking scheme is designed to make

use of the feature subsets produced by GLS.

During the online retrieval process, a query image is first ranked in the feature

subspaces (determined by GLS) of database images. The database images corresponding

to the feature subspaces wherein the query image is ranked highly are selected into a query

expansion set. Images in the expansion set are then ranked again in the feature subspaces

of database images. Their ranking scores are aggregated for each database image, and the

aggregated score is treated as the final ranking score of the query image, with respect to

83

that database image. Those database images for which the query image is ranked highly

are selected as the query results and returned to the user.

To reduce the response time for online retrieval, filter-and-refine techniques are used

in an efficient variant of the proposed CBIR method, to compute the query expansion set

and the final query results.

The proposed methods were tested on several datasets where they achieved significant

improvement on retrieval accuracy over direct retrieval using full features, and over other

approaches based on query expansion or unsupervised feature selection.

The remainder of this chapter is organized as follows. In Section 4.2, a data ranking

strategy making use of a generalization of the Laplacian Score is proposed. The automated

query expansion framework and the complete algorithm for the retrieval system are given

in Section 4.3. Experimental results for several datasets are presented and discussed in

Section 4.4. This chapter concludes in Section 4.5.

4.2 Generalized Laplacian Score and Subjective Feature Spaces

In this section, a generalized version of the Laplacian Score is proposed for the selection

of a subset of features for each data point. The distance values computed from different

feature spaces are utilized by a form of ranking score, in a content-based similarity search

algorithm.

4.2.1 Generalized Laplacian Score

Given a dataset X consisting of n data points represented by m-dimensional feature vectors,

and a nearest neighbor graph G of X , the Laplacian Score (LS) of the r-th feature fr (1 ≤

r≤m) of the entire dataset, and the Local Laplacian Score (LLS) of the r-th feature fri ∈ fr

for data point xi ∈ X (1≤ i≤ n) can be computed as:

LS(r) =
∑i j(fri− fr j)

2Si j

var(fr)
, (4.1)

84

and

LLSi(r) =
∑ j(fri− fr j)

2Si j

var(fr)
, (4.2)

respectively, where var(fr) is the estimated variance of fr, and Si j is the RBF kernel on

xi and x j if nodes i and j are connected in G, or 0 otherwise. The reader is referred to

Section 3.2.1 for the detail of LS and LLS.

In the computation of LS, each feature fr receives one score computed over all items

of X . In the selection of features, fr is then either preserved for, or discarded from, the

entirety of the dataset. The Local Laplacian Score (LLS) was proposed in an effort to select

subsets of features tailored to each data point, so that by computing the distances using only

the features selected for the query point, the candidate points that are semantically related

to the query are ranked higher.

This section presents the Generalized Laplacian Score (GLS) that takes into account

both the global and local feature importance measured by LS and LLS, respectively. The

GLS of the r-th feature for xi is defined as a linear combination of LLSi(r) (the local term)

with the average contribution to LS(r) (the global term):

GLSi(r) = (1−β) · LS(r)
n

+β ·LLSi(r), (4.3)

where β is a weighting factor in the range of [0,1]. When β = 0, GLS is equivalent to LS

which selects the same features for all data points; when β = 1, GLS is reduced to LLS,

for which the feature rankings are the most diverse across different data points.

The selection of a subset of features for data point xi can be accomplished by sorting

the r features in descending order of GLSi(r), and then discarding the first z (0 < z < m)

features. As with LS, the z discarded features are referred to as the locally noisy features

of xi, and each remaining feature as a subjective feature of xi. Thus, the subjective feature

set of xi can be represented by a mask vector:

Fi = (b1,b2, . . . ,bm) ∈ {0,1}m, (4.4)

85

where Fi[r] = br (r = 1, . . . ,m) is a boolean value equal to 1 if and only if the r-th feature

is a subjective feature of xi.

Fi also straightforwardly defines an (m−z)-dimensional feature space for xi, corre-

sponding to the bins having values of 1 inFi. This space is referred to as a subjective feature

space of xi. For the sake of convenience, Fi will be used to denote both the subjective

feature set and the corresponding subjective feature space for xi.

Let d(·, ·) be a distance function over the items of X , with respect to the full set of

features. Given a subjective feature space Fi for xi, the distance between xi and x j in Fi is

denoted by:

dFi(xi,x j) = d(Fi(xi),Fi(x j)), (4.5)

where Fi(·) is the projection of a feature vector from the full feature space to the subspace

Fi.

According to the definition of GLS in Equation 4.3, the subjective feature space Fi

is selected in an effort to bring the semantically related objects of xi closer to xi, in terms

of dFi . Considering xi ∈ X as a query point and all x j ∈ X as candidates, by computing

dFi(xi,x j), one can produce a ranked list for X with respect to xi.

This semantic data ranking procedure is summarized in Algorithm 3. Note that for

different query points, the distance computation is performed in different feature spaces;

for a single query, a distance value is compared only with others computed in the same

feature subspace.

4.2.2 Ranking in Subjective Feature Spaces

In the subjective feature spaces produced by GLS in Algorithm 3, the direct use of the

original distance function has two major limitations:

• For offline feature selection, the query xq must be a point in the database;

• The quality of the subjective feature space computed for xq is critical for the ranking.

86

Algorithm 3: Ranking based on GLS
input : database X , query point xq ∈ X , distance function d, neighborhood size

K and number of noisy features z

output: ranked list of data in X with respect to xq

1 Compute the K-NN set Q of xq in X ;

2 Compute GLSq(r) for all 1≤ r ≤ m using Q;

3 Construct the (m−z)-dimensional subjective feature space Fq;

4 foreach xp ∈ X do

5 Compute dFq(xq,xp);

6 end

7 Rank xp in ascending order of dFq(xq,xp).

These limitations make it inappropriate to use Algorithm 3 for content-based similarity

search, although it has applications in K-NN graph construction and querying by in-dataset

examples.

To address these two issues, the querying strategy is modified from ranking the

candidate data points with respect to a query point in the subjective feature space of the

query point, to ranking the query point in the subjective feature spaces of the candidates.

Also, instead of selecting the candidates with high ranks in the feature space of the

query point, the feature spaces (each corresponding to a candidate point) are selected,

wherein the query point is ranked highly. The rationale here is that close neighbors in the

subjective feature spaces of candidates tend to be from the same classes as these candidates.

Any errors introduced within one subjective feature space can potentially be offset by

contributions from other feature spaces.

For database X , a subjective feature space Fi is computed in the preprocessing steps

for each item xi ∈ D. Given a query q, whether a member of X or not, the distance values

dFi(xi,q) are computed for all xi ∈ X . 1 A direct comparison of these distance values would

1q is used instead of xq for a query point, to distinguish it from a data point in the database.

87

Fi
dFi

dFi(xi, q)

Fj dFj (xj , q) dFj

0

(a) Distance values.

Fi RSFi(q)

Fj RSFj (q)

10

(b) Ranking scores.

Figure 4.1 Distance values and ranking scores of q in subjective feature spaces Fi and F j
for xi and x j, respectively.

have no intuitive meaning, as they are computed from different feature spaces. To make

proper use of these distances, the mean distance dFp from xi to the other items of X with

respect to space Fi is first computed, which is defined as:

dFi =
∑x j∈X , j 6=i dFi(xi,x j)

n−1
. (4.6)

The distance value dFi(xi,q) is then normalized by dFi , and the ratio — referred to as the

ranking score (RS) of q in Fi with respect to xi — is used as the rank of q in the subjective

feature space Fi:

RSFi(q) =
dFi(xi,q)

dFi

. (4.7)

Intuitively, RSFi(q) measures how much closer or further the distance from q to xi,

as compared to the distance from xi to an average data point, both with respect to the

subspace Fi. RS produces real-valued ranks from 0 to +∞, analogous to the discrete ranks

(1,2,3, . . .). A smaller value of RS indicates a higher rank.

Figure 4.1 illustrates the distance values and ranking scores of a point q with respect

to xi in feature space Fi, and to x j in F j. Although dFi(xi,q)< dF j(x j,q), by aligning the

mean distances dFi and dF j , q ranks higher in F j when q is relatively close to x j.

Algorithm 4 outlines a procedure for content-based similarity search, GLS+RS, that

makes use of both GLS and RS. Lines 1–5 correspond to the preprocessing steps. The

K-NN graph construction (line 1) and the computation of mean distances (line 4) could be

very expensive for large databases, even when computed offline. In the implementation, the

88

Algorithm 4: GLS+RS
input : database X , query point q, distance function d, neighborhood size K and

number of noisy features z

output: data points in X that are related to q

1 Compute the K-NN graph G for X in the full feature space;

2 foreach xp ∈ X do

3 Construct the (m−z)-dimensional subjective feature space Fp for xp, making

use of GLS scores computed from G;

4 Compute dFp;

5 end

6 foreach xp ∈ X do

7 Compute RSFp(q) according to Equation 4.7;

8 end

9 Rank xp in ascending order of RSFp(q), and return the desired number of data

points from the ranked list.

approximate K-NN graph construction method NN-Descent [Dong et al. 2011], or general

indexing methods such as LSH [Gionis et al. 1999] and RCT [Houle and Nett 2013] can

be used for faster K-NN graph construction. For a further speedup, the mean distances dFp

is estimated over a random sample of at most 10,000 data points from the database. Lines

6–9 correspond to the online querying process that directly uses RS. Since it is difficult

to index the database directly, due to the computation of ranking scores across different

subspaces, a sequential search scheme is adopted in this algorithm. The efficiency issues

will be discussed later in Section 4.3.2.

4.3 Query Expansion and Flexible Aggregation

In this section, Algorithm 4 is incorporated into an automated query expansion framework,

in which the original query point is replaced with an expansion set consisting of a few

89

top-ranked initial results. The members of the expansion set are ranked in the subjective

feature space of each candidate, and the ranks are aggregated as the final rank of the

query expansion set. Filter-and-refine techniques are applied to boost the efficiency of

the proposed method.

4.3.1 Automated Query Expansion and Flexible Aggregation

To further enhance the effectiveness of semantic retrieval, the original query point is

replaced with the first k initial results from the database using GLS+RS, in an effort to

increase the number of positive instances for the same semantic concept. The size k of the

query expansion set should be relatively small, so as to avoid the domination of unrelated

data in the expansion set.

Let QEq = {q1, . . . ,qk} ⊆ X denote the query expansion set of q with size k. With

respect to a candidate xp ∈ X , the ranking score of QEq in the subjective feature space Fp

can be computed as an aggregation of the ranking scores RSFp(qi) for qi ∈ QEq. The sum

aggregation is used in this work, so that

RSFp(QEq) = ∑
i

RSFp(qi). (4.8)

The aggregation on ranking scores in Equation 4.8 is restrictive, as the minimization

of RSFp(QEq) requires all members in QEq to have small ranking scores in Fp with respect

to xp. However, it is always possible to have irrelevant data points in the query expansion

set. It can be only expected that the semantic class of the initial query q has the largest

number of instances in QEq. It is therefore reasonable to ease the aggregation in a way that

only a subset of the expansion set contributes to its ranking score.

The versatility of the proposed system can be improved through flexible aggregation

of queries. The flexible aggregate nearest neighbor search problem was originally

introduced in [Li et al. 2011b]. Formally, for any subset X ′ ⊆ X and xp ∈ X , let NX ′(xp,k)

denote the set of top-k ranked data points from X ′ with respect to xp, as determined by

90

Algorithm 5: GLS+QE+RS
input : database X , query point q, distance function d, neighborhood size K,

number of noisy features z, expansion set size k and aggregation factor k′

output: data points in X that are related to q

1 Run lines 1–5 of GLS+RS (Algorithm 4);

2 Compute the query expansion set QEq with size k for q;

3 foreach xp ∈ X do

4 Compute RSk′
Fp
(QEq) according to Equation 4.9;

5 end

6 Rank xp in ascending order of RSk′
Fp
(QEq), and return the desired number of data

points from the ranked list.

Algorithm 3. The k′-aggregate ranking score of QEq in Fp with respect to xp is defined as:

RSk′
Fp
(QEq) = RSFp(NQEq

(xp,k′)), (4.9)

where k′ (1 ≤ k′ ≤ k) is referred to as the aggregation factor. As two special cases, the

choices k′ = 1 and k′ = k produce the min and full aggregations, respectively. Essentially,

Equation 4.9 computes the ranking score of QEq inFp as the sum of the smallest k′ ranking

scores of RSFp(qi).

Algorithm 5 outlines a content-based similarity search method, GLS+QE+RS, based

on the query expansion and rank aggregation scheme discussed in this subsection. The

influence of parameters k and k′ will be discussed in Section 4.4.

4.3.2 Practical Implementation

GLS+RS (Algorithm 4) and GLS+QE+RS (Algorithm 5) employ sequential search when

ranking query points in the subjective feature spaces of the candidates; the execution costs

are therefore very high. GLS+QE+RS applies the same search procedure to each member

of the query expansion set, which further increases the online response time. Precomputing

91

Figure 4.2 Framework of Fast GLS+QE+RS.

and storing the distance values dFi(xi,x j) and dF j(xi,x j) for all pairs of database objects

(xi,x j) would lead to quadratic time and space complexity, an impractically-high cost for

large databases.

To improve the time efficiency, filter-and-refine techniques are adopted in a variant

of GLS+QE+RS, Fast GLS+QE+RS. Figure 4.2 depicts the framework of this method. For

the construction of the query expansion set, a superset with size 10k is first obtained by

querying against an index structure built on the full feature vectors. The ranking scores of

the query point with respect to the members in the superset are then computed to refine the

query expansion set. There is no restriction on the indexing method to be used for the full

feature vectors. In the implementation, SASH [Houle and Sakuma 2005] is used to index

the feature vectors. Subsequently, the candidate set is reduced to the set containing the

K-NN entries of the expanded queries. These K-NN entries are computed from the original

feature vectors in the initial K-NN graph construction step. A relatively large K is used

for the K-NN graph construction, but only a small subgraph for the GLS computation. In

Figure 4.2, steps 1 and 3 correspond to the filtering stage, while steps 2 and 4 correspond

to the refinement stage.

The complete algorithm for Fast GLS+QE+RS can be found in Algorithm 6. In the

worst case, the number of computations of RS is of O(k2K), approximately.

92

Algorithm 6: Fast GLS+QE+RS
input : database X , query point q, distance function d, neighborhood size K,

number of noisy features z, expansion set size k and aggregation factor k′

output: data points in X that are related to q

1 Run lines 1–5 of GLS+RS (Algorithm 4);

2 Build an SASH index for X in the full feature space;

3 By querying q against the index, initialize the query expansion set QEq for q to

contain the top-(10k) results from X ;

4 Compute RSFi(q) for all xi ∈ QEq, and keep the k data points with the smallest

RSFi(q) in QEq;

5 Construct the candidate set Cq for q to contain the original K-NN entries of all

xi ∈ QEq;

6 foreach xp ∈Cq do

7 Compute RSk′
Fp
(QEq) according to Equation 4.9;

8 end

9 Rank xp in ascending order of RSk′
Fp
(QEq), and return the desired number of data

points from the ranked list.

4.4 Experiments

The experimentation was conducted using three image sets and one voice set on 3.2GHz

workstations. The influence of the weighting factor β on GLS was first investigated.

GLS+RS was next compared with the sequential search baseline and methods based on

other unsupervised feature selection techniques. The size of the query expansion set and the

aggregation factor were then tested for GLS+QE+RS and Fast GLS+QE+RS, which were

finally compared against several competing methods with respect to retrieval effectiveness

and efficiency.

93

Table 4.1 Datasets Used in the Experiments

Datasets Features Instances Subjects
Instances

per subject

Caltech-101 450 9144 102 31–800

MNIST 784 70,000 10 6313–7877

Google-23 1937 6686 23 97–406

WikiFaces 1937 100,000 – –

ISOLET 617 7797 26 300

4.4.1 Datasets

The datasets used in the experimentation are summarized in Table 4.1.

Caltech-101 contains 9144 general images of 102 categories [Li et al. 2007]. Each

image was evenly divided into 3×3 regions, with each region represented by a histogram

of 50 visual words. Concatenating these histograms results in a 450-dimensional feature

vector for each image.

The MNIST dataset has 70,000 images of handwritten digits [LeCun et al. 1998].

The 784 pixel values of each image were treated as its image features.

Google-23 (described in Section 3.4.1) consists of 6686 faces extracted from web

images of 23 celebrities. The descriptors were computed using [Everingham et al. 2006],

each of which is a concatenation of the local features of 13 points of interest detected from

each face. The total number of features is 1937.

To test the performance of the proposed methods in large scale, 100,000 faces were

extracted from images randomly crawled from Wikimedia Commons. 2 The face features

were computed in the same way as with Google-23. This dataset, which is referred to

as WikiFaces, was combined with Google-23 for the last 3 sets of experiments. The faces

2http://commons.wikipedia.org (accessed on October 28, 2014).

94

derived from Wikimedia Commons, being unlabeled, served as distractors for queries based

on faces from Google-23.

The experiments were also conducted using ISOLET [Fanty and Cole 1991] to test

the performances of the proposed methods on non-image datasets. ISOLET is available

from the UCI repository [Bache and Lichman 2013], which is a dataset of spoken letters

containing 26 classes of 300 instances each (3 instances are missing in the dataset), with

each class referring to a letter of the alphabet. The total 617 features include spectral

coefficients, contour features and sonorant features.

L1 distance was used for Caltech-101, and L2 distance was employed for the other

datasets. The 5-NN set of a data object (computed in the full feature space) was used for

feature selection. The parameter σ in the RBF kernel was set to the mean distance value

stored in the 5-NN graph. The class labels of data objects were used solely for evaluating

the semantic quality of the query result.

4.4.2 The Weighting Factor of the Generalized Laplacian Score

The influence of the weighting factor β on GLS was tested using Algorithm 3. In-dataset

querying was performed on Caltech-101, MNIST, Google-23 and ISOLET.

In each experimental run, 100 instances from each dataset were randomly chosen

as queries. The other instances were ranked in the subjective feature space of each query

instance using the original distance function. The value of z ranged from 0 to 90% of the

feature vector dimension. The choices of β were in {0,0.25,0.5,0.75,1}.

The mean average precision (mAP) was adopted to evaluate the retrieval performance

on each dataset. The results reported in Figure 4.3 are the averages of 5 runs.

It can be seen from Figure 4.3 that on Caltech-101, GLS with β > 0 outperforms

GLS with β = 0, indicating the effectiveness of the local feature selection scheme. When z

is a small positive number, GLS with β > 0 has slightly better performance than that using

full feature sets. However, its performance degrades fast when z increases. One possible

explanation is the low quality of the original K-NN graph used by GLS to rank features.

95

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 10 20 30 40 50 60 70 80 90

m
A

P

%features identified as noise

β=0.00
β=0.25
β=0.50
β=0.75
β=1.00

(a) Caltech-101.

 0.1
 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0 10 20 30 40 50 60 70 80 90

m
A

P

%features identified as noise

β=0.00
β=0.25
β=0.50
β=0.75
β=1.00

(b) MNIST.

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0 10 20 30 40 50 60 70 80 90

m
A

P

%features identified as noise

β=0.00
β=0.25
β=0.50
β=0.75
β=1.00

(c) Google-23.

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0 10 20 30 40 50 60 70 80 90

m
A

P

%features identified as noise

β=0.00
β=0.25
β=0.50
β=0.75
β=1.00

(d) ISOLET.

Figure 4.3 Influence of β on GLS.

On MNIST, Google-23 and ISOLET, GLS with β = 0 is again not able to improve the

performance over the results using full features. GLS with positive β values has generally

better results and maintains notable improvement over the results using full features, over

a broad range of choices of z. On Google-23 and ISOLET, the best β value is 1, which

shows that the participation of LS in GLS is detrimental to the performance. On MNIST,

the performance is best for β = 0.75; the sharp drop in performance at β = 1 indicates that

the contribution of LS within GLS has an important role in limiting the degree to which the

feature sets can be modified for this dataset.

For the remainder of the experiments, β was fixed at 0.5 for GLS. This is not

the optimal parameter choice for the datasets in the experiments. However, in practice,

96

when the characteristics of the features are unknown, it can be expected that β = 0.5 is a

reasonable starting value from which to assess the combined contributions of LS and LLS.

4.4.3 Comparison Against Traditional Unsupervised Feature Selection Methods

In this set of experiments, GLS+RS (Algorithm 4) was compared with approaches based on

LS, SPEC, UDFS, and max variance. As with Chapter 3, the same source code files were

used for LS, SPEC and UDFS. Due to their large memory usage for graph computations,

SPEC and UDFS were performed on at most 10,000 random samples from each dataset.

In each experimental run, Caltech-101, MNIST, Google-23 and ISOLET were firstly

split into a query set containing 100 random data objects and a candidate set containing the

rest objects. WikiFaces was combined with the candidate set of Google-23 to build a new

candidate set. The preprocessing was only performed for the candidate sets. Except for

GLS+RS, the other methods selected features globally — that is, if a feature was identified

as a noisy feature in the candidate set, it was also discarded from the query objects, and the

original distance function was used directly on the lower-dimensional feature vectors.

The results reported in Figure 4.4 are the averages over 5 test runs. The proportion

of features identified as noise was varied from 0 to 90%. As a baseline for comparison, the

performance of sequential search in the full feature space is plotted as a dashed line in each

figure (labeled as ‘Full’).

It is clear from Figure 4.4 that GLS+RS achieves better results over its competitors

which used the original distance function, for most values of z on all datasets. This

improvement can be attributed to two aspects: the ranking strategy (when z = 0), and the

GLS feature selection (when z > 0).

On all four datasets, GLS+RS achieves a higher mAP value than the baseline over a

broad range of values of z. On the other hand, none of the competing unsupervised feature

selection methods performs well. LS and SPEC produce similar results. On Caltech-101

and Google-23+WikiFaces their performances degrade fast when z increases. On MNIST

and ISOLET, LS and SPEC maintain a relatively constant mAP over a large range of z —

97

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 10 20 30 40 50 60 70 80 90

m
A

P

%features identified as noise

Full
Variance

LS
SPEC
UDFS

GLS+RS

(a) Caltech-101.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 10 20 30 40 50 60 70 80 90

m
A

P

%features identified as noise

Full
Variance

LS
SPEC
UDFS

GLS+RS

(b) MNIST.

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 10 20 30 40 50 60 70 80 90

m
A

P

%features identified as noise

Full
Variance

LS
SPEC
UDFS

GLS+RS

(c) Google-23+WikiFaces.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 10 20 30 40 50 60 70 80 90

m
A

P

%features identified as noise

Full
Variance

LS
SPEC
UDFS

GLS+RS

(d) ISOLET.

Figure 4.4 Comparison against methods using traditional unsupervised feature selection
techniques.

even with a large proportion of features discarded, their mAP values are similar with the

results using all features: their improvements over the baseline are negligible. Similarly

as with LS and SPEC, max variance and UDFS can hardly improve over the full-feature

baseline. UDFS has generally better results than those of the other competitors, however,

it requires the true number of classes as an input parameter, which makes it not fully

unsupervised.

The results show that although traditional methods for unsupervised feature selection

are capable of reducing the dimensionality without much loss of effectiveness, they yield

little improvement in the semantic quality of content-based similarity search results.

98

 0.395
 0.4

 0.405
 0.41

 0.415
 0.42

 0.425
 0.43

 0.435
 0.44

 0.445

 0 5 10 15 20 25 30 35 40 45 50

m
A

P

%features identified as noise

k=4
k=8

k=12
k=16
k=20

(a) Caltech-101.

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0 5 10 15 20 25 30 35 40 45 50

m
A

P

%features identified as noise

k=4
k=8

k=12
k=16
k=20

(b) MNIST.

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0 5 10 15 20 25 30 35 40 45 50

m
A

P

%features identified as noise

k=4
k=8

k=12
k=16
k=20

(c) Google-23+WikiFaces.

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0 5 10 15 20 25 30 35 40 45 50

m
A

P

%features identified as noise

k=4
k=8

k=12
k=16
k=20

(d) ISOLET.

Figure 4.5 The size k of the query expansion set.

4.4.4 The Size of the Query Expansion Set and the Aggregation Factor

Testing was performed using GLS+QE+RS (Algorithm 5) for different choices of k and k′.

The choices of k was first tested in {4,8,12,16,20}, with k′ fixed at k/2. The setup followed

the same procedure described in Section 4.4.3. The results can be found in Figure 4.5.

On Caltech-101 and Google-23+WikiFaces, the best performances are achieved

when k = 8 and 12, respectively. On MNIST and ISOLET, the results shows diminishing

improvements as k increases.

Intuitively, if the semantic quality of the initial query results is good, a large

expansion set would be expected to cover a variety of instances for the same semantic

concept, and therefore the retrieval performance would be expected to be better. Caltech-

101 and Google-23+WikiFaces are two difficult datasets, on which a larger expansion set

99

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0 5 10 15 20 25 30 35 40 45 50

m
A

P

%features identified as noise

k=8,k’=1
k=8,k’=2
k=8,k’=4
k=8,k’=6
k=8,k’=8

(a) Caltech-101.

 0.64

 0.645

 0.65

 0.655

 0.66

 0.665

 0.67

 0 5 10 15 20 25 30 35 40 45 50

m
A

P

%features identified as noise

k=8,k’=1
k=8,k’=2
k=8,k’=4
k=8,k’=6
k=8,k’=8

(b) MNIST.

 0.26
 0.265
 0.27

 0.275
 0.28

 0.285
 0.29

 0.295
 0.3

 0.305
 0.31

 0 5 10 15 20 25 30 35 40 45 50

m
A

P

%features identified as noise

k=8,k’=1
k=8,k’=2
k=8,k’=4
k=8,k’=6
k=8,k’=8

(c) Google-23+WikiFaces.

 0.6

 0.605

 0.61

 0.615

 0.62

 0.625

 0.63

 0.635

 0.64

 0 5 10 15 20 25 30 35 40 45 50

m
A

P

%features identified as noise

k=8,k’=1
k=8,k’=2
k=8,k’=4
k=8,k’=6
k=8,k’=8

(d) ISOLET.

Figure 4.6 The flexible aggregation factor k′.

would likely contain more irrelevant images. As the proportion of such noise increases,

more false positives will be retrieved. On the other hand, MNIST and ISOLET are relatively

easy datasets: a large expansion set would be expected to contain a great proportion of

relevant instances. However, as a larger expansion set also would require more processing

time, for the remainder of the experiments on all datasets, k was fixed at 8.

The above experiments were performed again for k = 8 and k′ ∈ {1,2,4,6,8}.

The performance curves are plotted in Figure 4.6. For this set of experiments, the best

performances are achieved when k′ = 6 on Caltech-101 and ISOLET, and when k′ = 2 on

MNIST and Google-23+WikiFaces. Note that the best results never occur when k′ = k,

which even leads to the worst performance curves on MNIST and Google-23+WikiFaces.

This demonstrates the effectiveness of the flexible aggregation strategy.

100

For simplicity, the choices of k = 8 and k′ = 2 were used for the algorithms with

query expansion in the last set of experiments.

4.4.5 Performance of the Efficient Retrieval System

Experiments were conducted to test the effectiveness and efficiency of the three content-

based similarity search algorithms proposed in this chapter: GLS+RS, GLS+QE+RS, and

Fast GLS+QE+RS. In addition, another three competing methods were evaluated: the

sequential search baseline using full feature vectors (Full), the sequential search using full

feature vectors and the proposed query expansion scheme (Full+QE), and the sequential

search using full feature vectors and the average query expansion scheme (Full+AQE).

The average query expansion scheme is a simplification of the version used by [Chum

et al. 2007]. It computes a new query vector as the average vector of the initial query and the

expanded queries; however, the expanded queries are not spatially verified as the authors

did for images, as no spatial information is available in the case under consideration. These

three competing methods used the original distance function.

The setup was essentially the same as that of Section 4.4.3. The precision at K

(K = 50 and 100) was used for the evaluation, as Fast GLS+QE+RS does not rank all

database images for a given query image. To ensure that Fast GLS+QE+RS returns a

sufficient number of results, a 100-NN graph was computed for each candidate set. The

average time cost of each online query was computed for each method evaluated.

As in previous experiments, each trial corresponded to different choice of query and

candidate sets. The results, which can be found in Figures 4.7–4.8 and Table 4.2, were

obtained by averaging the performances of each method over 5 trials.

From Figures 4.7 and 4.8, for K = 50 and K = 100, a generally consistent trend across

all evaluated methods can be observed. Comparing with the sequential search baseline, all

three of the proposed methods achieves significantly better results over a broad range of

values of z. On MNIST, the feature selection method GLS allowed further improvement in

101

 0.415

 0.42

 0.425

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0 5 10 15 20 25 30 35 40 45 50

P
@

50

%features identified as noise

Full
Full+QE

Full+AQE
GLS+RS

GLS+QE+RS
Fast GLS+QE+RS

(a) Caltech-101.

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0 5 10 15 20 25 30 35 40 45 50

P
@

50

%features identified as noise

Full
Full+QE

Full+AQE
GLS+RS

GLS+QE+RS
Fast GLS+QE+RS

(b) MNIST.

 0.23

 0.25

 0.27

 0.29

 0.31

 0.33

 0.35

 0.37

 0.39

 0.41

 0.43

 0.45

 0 5 10 15 20 25 30 35 40 45 50

P
@

50

%features identified as noise

Full
Full+QE

Full+AQE
GLS+RS

GLS+QE+RS
Fast GLS+QE+RS

(c) Google-23+WikiFaces.

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0 5 10 15 20 25 30 35 40 45 50

P
@

50

%features identified as noise

Full
Full+QE

Full+AQE
GLS+RS

GLS+QE+RS
Fast GLS+QE+RS

(d) ISOLET.

Figure 4.7 Retrieval precision when K = 50.

the performance when 15% features are identified as noise. On the other three datasets, the

performances start to increase when 5% features are deemed noisy.

The performance curves for GLS+RS and Full+QE indicate that both the proposed

ranking strategy and query expansion scheme can independently boost the semantic quality

of the final query result, to different degrees for the four datasets. One exception is that

Full+QE is outperformed by Full on ISOLET when K = 50. A possible reason could be

the nonoptimal choices of the values for k and k′ on this dataset. This could also explain

the worse performances of GLS+QE+RS and Fast GLS+QE+RS comparing with that of

GLS+RS (Figure 4.7(d)).

102

 0.37

 0.375

 0.38

 0.385

 0.39

 0.395

 0.4

 0.405

 0 5 10 15 20 25 30 35 40 45 50

P
@

10
0

%features identified as noise

Full
Full+QE

Full+AQE
GLS+RS

GLS+QE+RS
Fast GLS+QE+RS

(a) Caltech-101.

 0.83

 0.85

 0.87

 0.89

 0.91

 0.93

 0.95

 0 5 10 15 20 25 30 35 40 45 50

P
@

10
0

%features identified as noise

Full
Full+QE

Full+AQE
GLS+RS

GLS+QE+RS
Fast GLS+QE+RS

(b) MNIST.

 0.15

 0.17

 0.19

 0.21

 0.23

 0.25

 0.27

 0.29

 0.31

 0.33

 0 5 10 15 20 25 30 35 40 45 50

P
@

10
0

%features identified as noise

Full
Full+QE

Full+AQE
GLS+RS

GLS+QE+RS
Fast GLS+QE+RS

(c) Google-23+WikiFaces.

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0 5 10 15 20 25 30 35 40 45 50

P
@

10
0

%features identified as noise

Full
Full+QE

Full+AQE
GLS+RS

GLS+QE+RS
Fast GLS+QE+RS

(d) ISOLET.

Figure 4.8 Retrieval precision when K = 100.

Compared with Full+QE, Full+AQE has worse results on Caltech-101 and Google-

23, but better results on MNIST and ISOLET. In the same way as that for the parameter k

(Section 4.4.4), this can be explained by the quality of the expansion set.

Over all evaluated methods, GLS+QE+RS and Fast GLS+QE+RS perform best

on the four datasets in most cases. GLS+QE+RS outperforms Fast GLS+QE+RS on

MNIST and Google-23+WikiFaces, but the performance gaps are small. On Caltech-101,

it is outperformed by Fast GLS+QE+RS with larger values of z, and on ISOLET, Fast

GLS+QE+RS has slightly better results. This can be explained by the filtering scheme of

Fast GLS+QE+RS: the initial query expansion set and the candidate objects to be searched

are both produced according to the original distance function in the full feature spaces, so

that Fast GLS+QE+RS is less affected when the feature selection process is unreliable.

103

Table 4.2 Average Response Time (in seconds) Per Query

Method \ Dataset Caltech-101 MNIST
Google-23

+WikiFaces
ISOLET

Full 0.014 0.20 0.60 0.016

Full+QE 0.11 1.51 5.13 0.14

Full+AQE 0.029 0.37 1.34 0.032

GLS+RS 0.020 0.22 0.81 0.020

GLS+QE+RS 0.16 1.67 6.55 0.15

Fast GLS+QE+RS 0.0074 0.015 0.042 0.0077

With respect to efficiency, it can be seen from Table 4.2 that GLS+RS has similar

response time as that of the sequential search baseline, and that GLS+QE+RS is similar as

Full+QE. 3 The response time of the latter two methods is roughly 8 times of that of the

former two. Clearly this is related to the size of the query expansion set. Full+AQE takes

longer time than Full but much less time than Full+QE, the reason being its computation

of a single new query vector instead of using multiple queries.

In this set of experiments, Fast GLS+QE+RS makes the fastest response to each

online query. On Google-23+WikiFaces, it takes 42ms for one query on a 3.2GHz

computer, which is 0.6% and 7% of the time used for GLS+QE+RS and the sequential

search. The preprocessing time used for Fast GLS+QE+RS on this dataset was about 19

hours, most of which was for the exact K-NN graph construction; the time used for GLS

feature selection, dF j computation and SASH initialization was about 12, 80 and 5 minutes,

respectively. Considering the minor loss on the effectiveness comparing to its full version,

Fast GLS+QE+RS presents a practical solution for content-based similarity search.

3All the methods evaluated are implemented in C++.

104

4.5 Conclusion and Discussion

This chapter presented a novel content-based similarity search method for image data

objects described as high-dimensional feature vectors. The system is fully unsupervised

and no user interaction is needed.

The use of the Generalized Laplacian Score was proposed for the computation of

subjective feature spaces for individual data objects, and the ranking of the query object in

the feature spaces of candidate objects from the database.

This search strategy is incorporated into an automated query expansion framework

which replaces the original query object with several top-ranked initial query results. The

ranks of the expanded queries are aggregated in a flexible manner to relieve the negative

impact of the outliers in the expansion set. Filter-and-refine techniques are adopted for the

efficiency of the proposed system.

Extensive experiments were conducted to show the effectiveness of the proposed

method on several image datasets, including the comparison against other query expansion

and unsupervised feature selection methods. The full method significantly outperformed its

competitors; the efficient approximation variant achieved huge savings in execution time,

at the cost of a minor loss in effectiveness. The proposed methods were also tested using

one voice dataset and the results suggest that the proposed method generalize well for

non-image data which are represented by high-dimensional feature vectors.

Similarly as with LLS, the GLS feature selection technique proposed in this chapter

works best for dense vectors, and may not work well for sparse features, for example, the

bag-of-visual-words representations.

CHAPTER 5

IMAGE LABEL PROPAGATION VIA REFINED SIMILARITY GRAPHS

This chapter first propose an image label propagation strategy, SW-KProp for automated

image annotation, that requires no human intervention beyond the initial labeling of a

subset of the images. SW-KProp distributes semantic information within a similarity graph

defined on all images in the database: each image iteratively transmits its current label

information to its neighbors, and then readjusts its own label according to the combined

influences of its neighbors. The similarity graph that represents the neighborhood

information of the image database plays an important role in the proposed label propagation

method. To improve the semantic quality of the similarity graph, a variant of SW-KProp,

SW-KProp+, is proposed which selects a reduced feature set for each prelabeled image and

rebuilds its neighborhood. The performances the proposed methods were evaluated against

several competing methods on classification tasks for three image datasets: a handwritten

digit dataset, a face dataset and a web image dataset. SW-KProp+ outperformed SW-KProp

on the face and web image datasets, with help of its feature selection scheme. SW-KProp+

also achieved better or competitive results comparing with the other label propagation and

classification methods evaluated.

5.1 Introduction

Practical methods for the indexing and querying of large-scale image databases often

require that the images be annotated with semantic information beforehand. Unfortunately,

it is generally difficult to obtain large numbers of annotated images, due to the high costs

associated with manual annotation.

In order to resolve this problem, the topic of automated image annotation (AIA) has

received much attention from researchers in recent years. Various AIA approaches have

been developed, including those based on image recognition [Ono et al. 1996], statistical

105

106

learning [Barnard et al. 2003; Duygulu et al. 2002; Hardoon et al. 2006; Jeon et al. 2003],

content-based image retrieval (CBIR) [Li et al. 2006a; Makadia et al. 2008], image

classification [Chang et al. 2003; Cusano et al. 2003], and label propagation techniques [Hu

and Qian 2009; Liu et al. 2006; Liu et al. 2012; Tang et al. 2011].

Compared with learning- or CBIR-based AIA approaches, image label propagation

methods often show superior performance in terms of labeling accuracy, when the number

of pre-annotated images is very small. There, the propagation of labels is formulated

as a graph-based semi-supervised learning (GSSL) problem, in which both labeled and

unlabeled images are treated as nodes in an undirected graph with edge weights depending

on the similarity between the images corresponding to the two incident nodes. Popular

GSSL methods predict the labels of unlabeled nodes using minimum graph cut [Blum and

Chawla 2001], or by minimizing a cost function defined over the graph, such as Gaussian

fields and harmonic functions (GFHF) [Zhu et al. 2003].

In an earlier version of the work presented in this chapter [Houle et al. 2011], an

image-labeling strategy KProp was proposed, that propagates semantic information within

a similarity graph having images as nodes. Each node iteratively transmits its current label

information to its neighbors, and then readjusts its own labeling status according to the

combined label scores of its neighbors. KProp adopts a straightforward averaging scheme:

once the neighbors of a node have been decided, they will be treated uniformly.

This chapter first presents SW-KProp, as an extension of KProp, for the problem of

accurately labeling as many instances of images as possible, given a very small number of

prelabeled images. Instead of weighting all the edges in the graph equally, SW-KProp

weights an edge using the similarity value of the two incident nodes, which can be

computed from a linear transformation of their distance value. In addition, edges in the

new model are classified into ‘strong’ and ‘weak’ edges according to the influence types of

the connected nodes, and are treated differently.

107

Figure 5.1 Applying SW-KProp for the classification of a face image set.

Figure 5.1 illustrates the results of an SW-KProp classification of a small face image

set. Initially, faces 1 and 2 are labeled as A and B, respectively. Scores measuring the

degree of association between labels and faces are propagated from labeled faces 1 and 2 to

unlabeled faces 3 to 6. Edges in the directed graph indicate the directions of the influences.

The thin and bold arrows represent ‘strong’ and ‘weak’ edges, respectively. The scores

obtained after the convergence of SW-KProp are given in braces beside each face, with the

first value corresponding to A and the second to B. By assigning each initially-unlabeled

image with the label associated with the greater of the two scores, a labeling of images 3,

4 and 6 with A, and image 5 with B can be obtained. The details of the graph construction

and score computation will be described later, in Section 5.2.

The success of the SW-KProp method depends crucially on the semantic quality

of the similarity graph, especially that of the edges leading from labeled image nodes to

unlabeled image nodes: each graph edge connecting two unrelated image nodes suggests

that these two images should share the same label despite their belonging to different

semantic classes. For example, in Figure 5.1, node 4 is linked by node 1 with label A and

node 2 with label B. In a classification scenario, one of the two edges must be incorrect.

Node 4 iteratively receive incorrect labeling information from that edge, and propagates

this incorrect information to other nodes.

108

To improve the precision of the edges leading from labeled nodes to unlabeled nodes

in the similarity graph, a supervised method is proposed in this chapter which computes

different feature subsets for individual labeled images. Each feature of a labeled image is

used in isolation to rank the other labeled images in the database; the features that assign

high ranks to related neighboring images are treated as more important. By deleting the

least important features, a different feature set is computed for each labeled image, and is

used in the ranking of unlabeled images. This idea is adopted as a preprocessing step for

SW-KProp+, a variant of SW-KProp, in the construction of the similarity graph.

The remainder of this chapter is organized as follows. The description of SW-KProp

appears in Section 5.2, divided into two phases: graph construction (Section 5.2.2) and

label propagation (Section 5.2.3). The algorithm that computes a reduced feature set for

each prelabeled image is then described, based on which, the variant SW-KProp+ is given

next (Section 5.2.4). The experimental framework is outlined in Section 5.3. Section 5.4

presents and discusses the experimental results for three image datasets. Section 5.5

concludes this chapter.

5.2 The Influence Propagation Model

This section presents a neighborhood-based influence propagation scheme SW-KProp.

Under SW-KProp, each data item determines its labeling by iteratively consulting its

neighbors for recommendations, weighing and combining the collected opinions, and then

serving as a consultant for its own neighboring items. This iterative procedure eventually

results in the dissemination of node influences throughout the dataset. To avoid confusion

with the term ‘object of interest’ for an image, the term ‘data item’ (or simply ‘item’) is

used throughout this chapter to denote the element of a database (for example, an image or

a region thereof).

Let X = {x1,x2, · · · ,xn} be a set of n data items, with each item associated with a

subset of label set L = {λ1,λ2, · · · ,λc}. If the label set L(x) associated with x ∈ X is empty,

109

then x will be said to be unlabeled; otherwise, x will be referred to as labeled. Given an

initial labeling ℜ⊆ X×L whose elements 〈x,λ 〉 refer to the association of item x ∈ X with

label λ ∈ L, the goal is to determine an n× c score matrix F whose elements fi, j (1≤ i≤

n,1≤ j ≤ c) measure the degree of association of item xi with label λ j. SW-KProp solves

this problem in two phases, by first modeling the similarity information of data items as a

neighborhood graph (referred to as an influence graph), and then propagating label scores

through the graph according to certain weighting and combination rules.

The general framework of the SW-KProp algorithm is presented next in Section 5.2.1.

This is followed by discussions of the construction of the influence graph and the

computation of the influence scores, in Sections 5.2.2 and 5.2.3, respectively. Section 5.2.4

presents a feature selection strategy for the computation of a reduced feature set for each

prelabeled image. A variant of SW-KProp, SW-KProp+, is also given which utilizes

the features subsets produced to refine the structure of the influence graph for better

propagation results.

5.2.1 The SW-KProp Algorithm

The overall framework of the SW-KProp algorithm is shown in Algorithm 7. Line 1 of

the algorithm acquires the number of data items and the number of distinct labels in the

dataset. Line 2 corresponds to the first phase of the model, in which an influence graph

is constructed according to the neighborhood information of items in the dataset. The

definition of the neighborhood relies on a user-supplied distance measure.

The remainder of the algorithm corresponds to the second phase, propagation through

the influence graph. Lines 3–4 and 5 prepare the propagation matrix and the initial

score matrix, respectively. The propagation of label scores is accomplished by iterative

multiplication of these two matrices (lines 6-9).

The details of the two phases are presented in Sections 5.2.2 and 5.2.3. As will be

seen, the iteration converges toward a unique solution Fq, which can be interpreted by

reading off either its rows or its columns. If each column is sorted in non-increasing order,

110

Algorithm 7: Framework of SW-KProp
input : dataset X , label set L, initial labeling ℜ

output: score matrix F

1 n← |X |, c← |L|;

2 Let G be an influence graph modeling the neighborhood relationships of items in

X ;

3 Compute the n×n adjacency matrix A of G;

4 Compute the n×n propagation matrix P from A;

5 Initialize the n× c score matrix F with respect to ℜ;

6 repeat

7 F ′← F ;

8 F ← PF ′;

9 until F = F ′;

10 return F .

a ranked list of items can be obtained, with the first item having the highest degree of

association with a specific label. By sorting each row in non-increasing order, ranked lists

of labels can be obtained, with the first entries corresponding to the maximum likelihood

assignment of labels to items.

The decision of annotating initially-unlabeled data items can be made based on the

ranked lists, via a simple thresholding scheme. Let ri, j denote the rank of label λ j with

respect to item xi on the list corresponding to xi. Given two user-supplied threshold values

rmax, on the maximum rank, and fmin, on the minimum score, each unlabeled item xi can

be annotated by the label set {λ j|ri, j ≤ rmax ∧ fi, j ≥ fmin}. As a special case, if rmax = 1

and fmin = 0, each distinct label will be treated as a class identifier, and the entire set of

unlabeled data items will be classified (assuming that any unlabeled item is reachable from

some prelabeled item).

111

5.2.2 The Influence Graph

As a preprocessing step, a directed graph is constructed whose nodes represent the data

items, and whose edges denote pairs of items whose similarity is sufficient to allow

propagation of contextual information from one to the other. The semantic quality of the

influence graph has great influence on the performance of the label propagation method.

The modeling of data relationships as graph edges often arises naturally according to

the specific data domain. In some domains, such as web pages with embedded hyperlinks,

scientific papers with citations, and user-item pairs in a recommender system, the similarity

relationships are explicitly indicated by link structure, references, or pairings as the case

may be. However, for the problem being studied in this chapter, no explicit item pairings

are defined, but a pairwise similarity measure (or distance measure) exists. A natural

assumption for the scenario in question could be that contextual information should be

shared and propagated between items whose similarity is sufficiently high.

First, the symmetric pairwise distance between two items x,x′ ∈ X is denoted by

d(x,x′). Given an item x, the distance function d determines a ranking of the items of

X relative to x. More precisely, the rank of x′ relative to x is given by ρ(x,x′) = |{z ∈

X |d(x,z) < d(x,x′)}|. Note that under this definition it is possible for two items to have

the same rank with respect to x. Uniqueness of ranks is guaranteed only if all pairwise

distance values between items of X are unique; if desired, this can be achieved by breaking

ties arbitrarily yet consistently.

Let τρ(x) and τd(x) be positive threshold values for item ranks and distances,

respectively. The region of influence of item x is then defined as the set of nodes

simultaneously falling within distance τd(x) of x, and rank τρ(x) of x:

Infl(x) = {z ∈ X |d(x,z)≤ τd(x)∧ρ(x,z)≤ τρ(x)}.

An item x influences item x′ if x′ lies within the region of influence associated with x.

112

More formally, item relationships can be modeled as a directed influence graph

G(V,E), with the node set partitioned into V = Vl ∪Vu, where Vl and Vu represent the

initially-labeled (source) item set Xl and initially-unlabeled (non-source) item sets Xu,

respectively. E is composed of three types of edges:

1. ∀v ∈Vl , 〈v,v〉 ∈ E;

2. 〈v,u〉 ∈ E whenever v ∈Vl , u ∈Vu and u ∈ Infl(v); and

3. 〈u,u′〉,〈u′,u〉 ∈ E whenever u,u′ ∈Vu, and either u ∈ Infl(u′), or u′ ∈ Infl(u), or both.

It can be observed that each v ∈Vl has a self-edge, and all other edges lead to nodes

of Vu. This construction prevents items whose labels are known in advance from being

influenced by other items.

In general, there are several difficulties associated with the selection of a distance

threshold for the region of influence. Rank thresholds have an important advantage over

distance thresholds in that they do not require an explicit interpretation of distance values.

Choosing a fixed rank threshold K — that is, considering K-nearest neighbor (K-NN) sets

of the items — compensates for local variations in data density in a way that distance

thresholds cannot. Although distance threshold can be (and sometimes should be) used

together with rank thresholds for some applications, only rank thresholds are considered

for methods proposed in this chapter. The problem of choosing a practical value of the

rank threshold K will be addressed empirically in light of the pre-experimental test results

of Section 5.3.3. A method that automatically computes a reasonable value for K will be

given as well.

The influence graph of SW-KProp differs from those of other graph-based methods,

such as the K-NN graphs that are commonly used in LGC and GFHF, in that edges 〈v,u〉 are

excluded from the graph if u ∈Vu influences v ∈Vl and v does not influence u. The reason

is that this type of edge may introduce imbalanced distributions in the number of edges

leading from source nodes, and thereby bias the propagation of label scores. For a pair of

non-source nodes u,u′ ∈Vu, the influence is applied in both directions, even if the influence

113

relationship is unidirectional. Furthermore, the edges connecting two mutually influenced

nodes are referred to as strong edges, and those connecting two singly influenced nodes

as weak edges. As will be seen in Section 5.2.3, the two types of edges will be treated

differently.

Figure 5.1 shows the influence graph based on the following 2-NN lists of faces 1 to

6: {3,4},{4,5},{4,6},{1,6},{1,6} and {3,4}. The three types of edges mentioned above

are in green, red and black, respectively. Bold arrows indicate strong edges. Note that

there is no edge between faces 1 and 5: although face 5 influences face 1, face 1 does not

influence face 5.

5.2.3 Label Propagation

The SW-KProp procedure is formulated in terms of iterative matrix multiplications of

a propagation matrix with the score matrix. As will be seen, the problem of label

propagation can finally be reduced to a linear system with a sparse strictly-diagonally

dominant coefficient matrix, to which faster iterative methods can be applied.

Let item xi correspond to row i and column i of the n×n adjacency matrix A of the

influence graph G(V,E):

ai, j =


α · sim(xi,x j) if 〈 j, i〉 is a strong edge,

sim(xi,x j) if 〈 j, i〉 is a weak edge,

0 otherwise,

(5.1)

where α ≥ 1 is an amplifying factor that favors strong edges, and sim(·, ·) denotes the

similarity value between two items. Instead of using a binary value to weight the edges as in

KProp, of the RBF kernel as in typical graph-based methods, a simple linear transformation

is adopted for the similarity function:

sim(x,x′) = 1− d(x,x′)−dmin

dmax−dmin
, (5.2)

114

where dmin and dmax are the minimum and maximum pairwise distances between different

items in the graph, respectively. This similarity function normalizes the similarity values

between pairs of graph nodes into [0,1], and requires no parameter tuning (such as for the

bandwidth parameter σ in the RBF kernel). The amplifying factor α is applied in order to

increase the influences of strong edges. Intuitively, two nodes are more likely to share a

same label if each is a member of the K-NN list of the other. The influence of α will be

discussed in Section 5.3.3.

Entries of the n×n propagation matrix P can be computed by:

pi, j =

 ai, j if node i ∈Vl ,

β · ai, j
∑n

q=1 ai,q
otherwise.

(5.3)

Here, β is a damping factor (0 < β < 1) used to penalize nodes that are far away from

source nodes, and to accelerate the convergence.

Let item xi ∈ X correspond to row i of the score matrix F , and let label λ j ∈ L

correspond to column j of F . Entries of the n× c initial score matrix F0 can be computed

as:

fi, j =

 1 if xi is associated with λ j,

0 otherwise.
(5.4)

Let F t be the state of the score matrix in the t-th iteration. F t is computed from the

previous state according to the formula

F t = PF t−1. (5.5)

The iteration continues until each element δ t
i, j in ∆t = F t −F t−1 falls within the bound

|δ t
i, j| ≤ ε , where ε is a small tolerance value (10−6 is used in the implementation).

Let q be the iteration at which convergence is achieved; accordingly, Fq is the final

state of the score matrix. Given a propagation matrix P, each column Cq
j (1≤ j ≤ t) of Fq

115

is entirely decided by its corresponding column C0
j of the initial score matrix F0. Cq

j will

turn out to be an eigenvector of the propagation matrix P for the eigenvalue 1.

A proof is given as follows that by iteratively multiplying the propagation matrix with

the score matrix (starting from F0), the process converges to a unique score matrix Fq, of

which each column Cq
j represents the stabilized scores of all items for label λ j, while each

row Rq
i represents the stabilized scores of λ1 through λc for item xi.

Theorem 1. Given a propagation matrix P corresponding to an influence graph G(V,E),

the sequence of score matrices (F t) in Equation 5.5 converges to a unique matrix Fq.

Proof. By remapping the order of all data items, source nodes can be labeled from 1 to l,

and non-source nodes from l + 1 to n. The propagation matrix P and the score matrix F t

can then be converted into the following forms:

P =



1 · · · 0 0 · · · 0
...

...

0 · · · 1 0 · · · 0

pl+1,1 · · · pl+1,l pl+1,l+1 · · · pl+1,n

...
...

pn,1 · · · pn,l pn,l+1 · · · pn,n


, (5.6)

and

F t =



f t
1,1 · · · f t

1,c
...

...
...

f t
l,1 · · · f t

l,c

f t
l+1,1 · · · f t

l+1,c
...

...
...

f t
n,1 · · · f t

n,c


. (5.7)

P can be divided into four submatrices. Denoting a submatrix by the ranges of rows

and columns, let P0 = P(1 : l,1 : l), P1 = P(1 : l, l + 1 : n), P2 = P(l + 1 : n,1 : l), and

116

P3 = P(l + 1 : n, l + 1 : n). P0 is then an identity matrix corresponding to the self-links of

labeled items, and P1 is a zero matrix.

Let F t
0 =F t(1 : l,1 : c) and F t

1 =F t(l+1 : n,1 : c). Then F t =PF t−1 can be computed

by:

F t
0 = P0×F t−1

0 +P1×F t−1
1 = F0

0 (5.8)

and

F t
1 = P2×F t−1

0 +P3×F t−1
1 . (5.9)

F t
0 remains equal to F t−1

0 , and its entries are either 0 or 1, confirming that scores

of labeled items remain fixed at every step of the iteration. Let X t = F t
1 , H = P3 and

Bt = P2F t
0 = P2F0

0 , then

X t = HX t−1 +Bt−1. (5.10)

Clearly, B is a constant matrix, and thus H is an iteration matrix. X converges if and only if

the spectral radius r of H is smaller than 1. By the Gershgorin circle theorem [Higham and

Tisseur 2003], each eigenvalue of H lies within at least one closed disc centered at hi,i with

radius ri, where hi,i is the element on the major diagonal and ri is the sum of the absolute

values of the non-diagonal elements in row i of H. Observing that elements on the major

diagonal of H are zeros, and that the sum of each row of H is less than or equal to the

damping factor β , the absolute value of each eigenvalue lies in [0,β]. Therefore r≤ β < 1,

and X has a unique solution:

X = (I−H)−1B. (5.11)

It can be seen from Equation 5.11 that the problem of label propagation is modeled

as a linear system. The direct matrix inversion takes O(|Vu|3) operations. The time

117

complexity of the iterative matrix multiplication (Algorithm 7) is O(Ncn2). When the

number of iterations N, the label set size c, and the number of prelabeled nodes |Vl| are

much smaller than n, the iterative method is much more efficient. Observing that I−H is

a sparse strictly-diagonally dominant matrix, X can be solved by two widely used iterative

methods, Jacobi and Gauss-Seidel [Hageman and Young 2004]. There also exist faster

iterative methods for this problem, such as the conjugate gradient method (CG) [Hestenes

and Stiefel 1952] and the generalized minimal residual method (GMRES) [Saad and

Schultz 1986]. The details of these methods are beyond the scope of this work.

In the implementation of SW-KProp, P is stored as a sparse matrix. As a

consequence, the overall memory cost is O((K + c)n).

5.2.4 The SW-KProp+ Variant

This section presents a feature selection strategy that selects a reduced feature subset

for each prelabeled image that is discriminative for its immediate neighborhood. This

strategy is then adopted by SW-KProp+, a variant of SW-KProp, for the computation of

new neighborhoods of prelabeled images.

Ideally, edges in the influence graph should connect images that share the same

labels. However, for any given image, due to the presence of features that are irrelevant

or indiscriminative for that image, and due to the difficulty of choosing an appropriate

value for K, there usually exist ‘false positive’ edges connecting it to images whose label

sets differ greatly.

As the most important edges for the propagation are those that lead from labeled

nodes to unlabeled nodes, the focus of this work is to reduce the number of false positive

edges that originate from labeled nodes. In the following, an algorithm is proposed that

computes a reduced feature vector for each prelabeled image. The new feature vectors are

then used to rebuild the graph link structure.

For each labeled item x ∈ Xl , given its original feature descriptor F ∈ Rm, a reduced

feature set for x can be computed according to Algorithm 8.

118

Algorithm 8: Reduced feature set selection
input : prelabeled set Xl and corresponding feature vectors, x ∈ Xl , parameters

rd ∈ (0,1) and tc ∈ (0,1)

output: a reduced feature vector Fx for x

1 foreach dimension i (1≤ i≤ m) of the feature vectors; do

2 Compute d(x,x′) for all x′ ∈ Xl and x′ 6= x;

3 Find x’s tc · |Xl| nearest neighbors {x1,x2, · · · ,xtc|Xl |} with respect to i;

4 Measure the discriminative ability of dimension i for x by

∑tc|Xl |
j=1 I(L(x),L(x j)), where I(L(x),L(x j)) is an indicator function equal to 1

if L(x) = L(x j), and to 0 otherwise;

5 end

6 Rank all m dimensions according to their discriminative abilities with respect to

x, and concatenate the features in the top rd ·m highest ranking dimensions into

Fo.

For each prelabeled image x, Algorithm 8 selects those dimensions (features) for

which neighboring prelabeled images of the same label as x rank higher (closer to x)

in terms of the value of the feature, as compared to those prelabeled images from the

neighborhood of x with labels different to that of x. By combining those features that

achieve the best discrimination in ranks for all images sharing the label of x, it is expected

that the produced feature set discriminates well for this label, even when it is applied

elsewhere within the dataset. The two parameters tc and rd control the number of nearest

neighbors of x to check, and the target dimension of the reduced feature vector, respectively.

The influence of the two parameters will be discussed experimentally in Section 5.3.3.

A variant of SW-KProp, SW-KProp+ is proposed that incorporates the feature

selection scheme (Algorithm 8) as a preprocessing step for refining the influence graph.

119

SW-KProp+ differs from SW-KProp only in the graph construction step (line 2 of

Algorithm 7, which can be described as 4 sub-steps:

2.1 Compute the influence graph G using original feature vectors;

2.2 For each prelabeled image node x, compute a new feature set Fx using Algorithm 8;

2.3 Compute the discriminative abilities of Fx and the original feature set F for x in the
same spirit of Algorithm 8, lines 2-4;

2.4 If the discriminative ability of Fx is greater than that of F , use Fx to recompute the
K-NN set of x.

Note that ifFx is chosen to replaceF , then along edges oriented outwards from x, distances

of the form d(x,x′) are computed using the reduced feature set Fx rather than the full set

F , regardless of whether x′ is labeled or unlabeled. The complexity of the entire feature

selection process is O(m|Vl|2log|Vl|), where m = dim(F) and |Vl|= |Xl|.

This simple feature selection strategy differs from traditional feature selection

algorithms, which aim at removing redundant and irrelevant features from the full set of

features, and applying the reduced set of features uniformly across the entire data domain.

The proposed method instead computes different sets of dimensions for each prelabeled

image, in an effort to identify subspaces within which clusters of prelabeled images reside.

5.3 Experimental Framework

This section presents the experimental framework for the comparison of SW-KProp and

SW-KProp+ with several competing methods on image classification tasks. The three

datasets used for the experimentation are described in Section 5.3.1, and the evaluation

criteria is given in Section 5.3.2. The influence of the parameters for SW-KProp and

SW-KProp+ is discussed in Section 5.3.3. In Section 5.3.4, the methods to be evaluated

in the experimentation are summarized.

5.3.1 Datasets

Three image datasets were used in the experimentation including MNIST, Google-23 and

NUS-WIDE-OBJECT.

120

MNIST and Google-23 have been described in Section 3.4.1. The original MNIST

dataset [LeCun et al. 1998] contains 70,000 images of handwritten digits, each image being

represented by 784 texture values. As in Section 3.4.1, a reduced set was constructed for

the experiments by randomly selecting 1000 images for each digit. The Google-23 dataset

consists of 6686 faces extracted from web images of 23 celebrities. The number of faces

per individual ranges from 97 to 406. The dimension of the face descriptors is 1937.

The NUS-WIDE-OBJECT dataset is a subset of NUS-WIDE [Chua et al. 2009], a

collection of general web images from the Flickr image sharing website. 1 The original

NUS-WIDE-OBJECT set contains 30,000 images associated with 31 different concepts.

To evaluate the performance of classification methods on this dataset, images with multiple

labels were removed and the remained 23,953 images were retained. The number of

images for each concept varies greatly, from 108 to 3201. Each image in the dataset is

represented by a 634-dimensional descriptor produced from a combination of five types

of dataset features: color histogram, color correlogram, edge direction histogram, wavelet

texture and color moments.

5.3.2 Evaluation Criteria

For simplicity, each image is associated with at most one label, which in the experiments

is the class ID or name. For each method, at the termination of each run, each test

(initially-unlabeled) image was assigned the label with the maximum association score for

that image. No score- or distance-based thresholding was applied when assigning a label

to an image.

The overall propagation performance was evaluated — that is, the proportion of

correct label assignments to the total number of unlabeled items — by the labeling

accuracy (as in Section 3.4.7):

labeling accuracy =
#correctly labeled data

#initially unlabeled data
. (5.12)

1http://www.flickr.com (accessed on Oct 28, 2014).

121

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Neighborhood size (K)

MNIST
Google-23

NUS-WIDE-OBJECT

Figure 5.2 Labeling accuracy with respect to K.

As the methods were tested in a classification scenario, their performances in terms

of average classification accuracy were also evaluated.

5.3.3 Influence of SW-KProp and SW-KProp+ Parameters

The influence of native SW-KProp parameters, as well as rd and tc for SW-KProp+ are

discussed in this section.

The Rank Threshold K To test the influence of the parameter K on the performance of

SW-KProp, for each of the three datasets, one random image per category was prelabeled,

and the average labeling accuracy was computed over 3 testing runs with respect to K over

the range 1≤K ≤ 15. The damping factor β was set at 0.9, α was set at 1.0, and no feature

selection was applied. The result is plotted in Figure 5.2.

It can be seen from the figure that, The highest average labeling accuracy is achieved

when K = 10, 9, and 14 for MNIST, Google-23 and NUS-WIDE-OBJECT, respectively.

SW-KProp produces stable results on all datasets when K is sufficiently large. For

simplicity and efficiency, the value of K was fixed at 10 throughout remainder of the

experiments.

The effect of the choice of K on the proportion of nodes that are unreachable from

any source node was also tested. The value of K was iteratively increased from 1 until

the set of unreachable nodes became empty. The result is plotted in Figure 5.3. When

122

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7

P
ro

po
rt

io
n

(%
)

Neighborhood size (K)

MNIST
Google-23

NUS-WIDE-OBJECT

Figure 5.3 Proportion of nodes unreachable from source nodes with respect to K.

K = 1, the majority of the nodes lie in small connected components that do not include

source nodes. Every node in the graph becomes reachable from at least one source node

for K ≥ 3, 7, and 3 on MNIST, Google-23 and NUS-WIDE-OBJECT, respectively.

For smaller choices of K, items unrelated to labeled items are more likely to be

isolated from annotation sources, and (as one would expect) remain unlabeled. On the other

hand, an inappropriately-small value of K could severely limit the range of the propagation.

Unreachable nodes counted as incorrect label assignments would have a negative effect

on assessments of classification performance: as shown in Figure 5.2 and Figure 5.3, the

average labeling accuracy improves as the number of unreachable nodes decreases, and

stabilizes as the number of unreachable nodes approaches zero.

Based on this observation, a method that computes a reasonable value of K can be

designed for scenarios in which an estimate p is available for the proportion of unlabeled

data items in a dataset containing n items. Denoting the set of non-source nodes that are

reachable from source nodes by V R
u , the idea is to expand the influence graph by increasing

K from 1 until |V R
u | ≥ pn, or until a constant number of consecutive iterations have been

performed during which V R
u did not increase. For example, for classification applications,

The value of K can increased until all nodes are reachable from source nodes in the dataset.

In practice, the proportion of unreachable nodes decreases rapidly as K increases, as can be

seen from Figure 5.3. This method does not necessarily determine the best possible value

123

Table 5.1 Labeling Accuracy and the Number of Iterations Required for Convergence
with Respect to β Values for the Google-23 Set (One Prelabeled Face Per Individual)

β 0.75 0.80 0.85 0.90 0.95 0.99

Labeling accuracy (%) 36.38 36.84 37.44 37.84 38.12 35.17

#(Iterations) 31 38 51 75 137 457

of K; however, it does eliminate the need for tuning of this parameter while still allowing

most if not all nodes to be reachable from source nodes.

The Damping Factor β The influence of β on the performance of SW-KProp was

also assessed. For each choice of β considered, one face per person from Google-23

was randomly labeled, and the average labeling accuracy and iterations required for

convergence were computed. The neighborhood size K was set to 10, α was set to 1.0,

and no feature selection was applied. The score matrix was computed using Equation 5.5.

The results (averaged over 3 testing runs) can be found in Table 5.1.

It can be observed from Table 5.1 that the labeling accuracy improves slightly as

β grows, and drops rapidly when β approaches 1; the number of iterations used for

convergence increases rapidly when β exceeds 0.9. For the remaining experiments, β = 0.9

was chosen as a good trade-off between performance and efficiency.

The Amplifying Factor α Instead of using an arbitrary value for the parameter α ≥ 1,

a wide range of values from 1 to 512 (in the form of powers of 2) were tested. From

each dataset, 5 random images per category were prelabeled. Figure 5.4 plots the average

performance of 3 test runs versus α .

On MNIST, the labeling accuracy keeps increasing until α > 128 (Figure 5.4(a)).

This means that if an image node has both weak and strong edges pointing to it, the strong

edges should dominate the label propagation. However, it might not be appropriate to

simply remove the weak edges from the graph — nodes having only weak edges pointing

124

 85

 86

 87

 88

 89

1 2 4 8 16 32 64 128 256 512

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Amplifying factor (α)

(a) MNIST.

 51

 52

 53

 54

 55

1 2 4 8 16 32 64 128 256 512

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Amplifying factor (α)

(b) Google-23.

 11

 12

 13

 14

 15

1 2 4 8 16 32 64 128 256 512

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Amplifying factor (α)

(c) NUS-WIDE-OBJECT.

Figure 5.4 The labeling accuracy with respect to α on the three datasets.

to them would be disconnected from the graph and remain unlabeled. The best performance

is achieved when α = 2 on Google-23, and when α = 4 on NUS-WIDE-OBJECT

(Figures 5.4(b) and 5.4(c)). This implies that the strong edges between image nodes of

the two datasets deserve higher weights, but they should not dominate over weak edges.

In practice, for relatively simple datasets (in terms of discrimination between classes),

a large value of α should be used to increase the influences of strong edges, as for such

sets it can be reasonably expected that images with a common label are close in distance.

However, in datasets whose semantically related images present largely diverse visual

features, such mutual influences are rare, and a small value of α should be considered.

The Parameters for Feature Selection For all datasets, the values of rd and tc were

tested in a {1/6,2/6,3/6,4/6,5/6} grid. Five images per category were prelabeled and

α was set to 2. For each pair of values of rd and tc, the labeling accuracy values were

averaged over 3 test runs. In addition, the performance of SW-KProp+ with rd = 1 (which

125

Table 5.2 Average Labeling Accuracy (%) with Respect to rd and tc on the Three Image
Datasets

(a) MNIST

rd = 1/6 2/6 3/6 4/6 5/6 1

tc = 1/6 79.03 82.74 82.16 82.51 82.62

2/6 57.36 77.98 80.97 83.15 83.44

3/6 53.52 79.88 81.18 82.10 84.14 83.30

4/6 56.32 79.96 83.26 82.75 83.38

5/6 48.71 81.92 83.24 83.02 83.30

(b) Google-23

rd = 1/6 2/6 3/6 4/6 5/6 1

tc = 1/6 53.08 54.88 55.26 54.67 54.08

2/6 54.06 55.35 55.64 55.24 54.20

3/6 54.03 55.04 55.27 55.31 54.42 53.36

4/6 53.61 53.92 54.97 55.03 53.93

5/6 53.29 54.26 54.61 54.58 54.33

(c) NUS-WIDE-OBJECT

rd = 1/6 2/6 3/6 4/6 5/6 1

tc = 1/6 14.79 14.65 14.23 13.62 12.89

2/6 15.19 15.74 15.29 13.89 13.34

3/6 15.32 15.16 15.19 14.51 13.21 12.89

4/6 14.71 15.14 14.68 14.56 13.61

5/6 13.94 14.62 14.37 13.78 13.38

is equivalent to SW-KProp no matter what value tc uses) were also evaluated in the same

configuration. The results are recorded in Table 5.2.

126

It can be seen from Table 5.2 that the best values of the parameters rd and tc depend

heavily on the quality of the original descriptors. With the MNIST dataset, the performance

of SW-KProp+ increases when both rd and tc approach 1 (Table 5.2(a)), indicating that

better performance is achieved when each prelabeled image produces a feature vector that

resembles the full feature set. Conversely, for the Google-23 and NUS-WIDE-OBJECT

sets, SW-KProp+ (with rd and tc smaller than 1) performs better than SW-KProp in most

cases. The best performances are achieved when rd and tc are relatively small, indicating

that the original image descriptors of the Google-23 and NUS-WIDE-OBJECT datasets are

less reliable than those of the MNIST set.

In practice, SW-KProp+ is not able to greatly boost the annotation performance on

simple image datasets with discriminative feature vectors (such as MNIST with aligned

digit images). For web image datasets (such as Google-23 and NUS-WIDE-OBJECT)

whose original descriptors are not fully reliable, it can be expected that choosing small

values for rd and tc (for example, on the order of 1/3 or 1/2) can effectively improve the

classification performance.

5.3.4 Methods Evaluated

The implementation details of SW-KProp, SW-KProp+, and their predecessor KProp are

summarized. Several traditional supervised feature selection methods, which can be used

as alternatives to the proposed feature selection scheme for SW-KProp are discussed next.

Some other methods for image annotation including label propagation and classification

methods adopted in the experiments are also discussed.

KProp, SW-KProp and SW-KProp+ The KProp, SW-KProp and SW-KProp+ propa-

gation methods are implemented in C++. All require that the nearest neighbor set of

each data item be available. Neighbor sets can be generated by pre-computing the K-NN

lists of all data items, by retrieving them on demand via fast index structures such as

RCT [Houle and Nett 2013], or by approximate K-NN graph construction methods such

127

as NN-Descent [Dong et al. 2011]. The corresponding distance values between an item

and its neighboring items are also required by SW-KProp and SW-KProp+. The Jacobi

method was used to compute the score matrices, which saved up to 32% of the iterations

required for convergence, as compared to the original implementation of KProp based on

Equation 5.5.

SW-KProp with Traditional Supervised Feature Selection To evaluate the effec-

tiveness of the proposed feature selection method, SW-KProp+ was compared against

SW-KProp with three supervised feature selection methods: Fisher Score (FS) [Duda

et al. 2012], ReliefF [Robnik-Sikonja and Kononenko 2003], and minimum-redundancy-

maximum-relevance (mRMR) [Peng et al. 2005]. Descriptions of these feature selection

methods can be found in Section 2.4.1. The source code of these algorithms are from the

ASU feature selection repository [Zhao et al. 2010].

It is worth noting that all the three supervised feature selection methods are global in

the sense that they compute a single set of features across the entire dataset. To make a fair

comparison, only the features for the prelabeled images were selected in the experiments.

Similarities between pairs of unlabeled images were computed in the full feature space.

Label Propagation Methods The proposed methods were tested against two well-known

label propagation approaches: local and global consistency (LGC) [Zhou et al. 2003] and

Gaussian fields and harmonic functions (GFHF) [Zhu et al. 2003]. GFHF is implemented

in C++, and the source code of LGC is from the package used for [Xu et al. 2011].

LGC allows unlabeled nodes to influence the labeled nodes, while GFHF explicitly

protects the original scores for the labeled nodes. The damping factor of LGC was set at

0.9. Both methods used traditional undirected K-NN graphs with K = 10 and edges being

weighted by exp(−d2/2σ2), where d is the distance between two incident nodes, and σ is

a bandwidth parameter.

128

SVM and LapSVM As suggested in [Zhu et al. 2008], for the experimentation, SVM

and Laplacian SVM (LapSVM) [Melacci and Belkin 2011] were used as represen-

tative supervised learning and semi-supervised learning classifiers, respectively. The

LibSVM [Chang and Lin 2011] package was used for SVM. The source code for [Melacci

and Belkin 2011] was used as the implementation of LapSVM.

SVMs are widely used in classification and other machine learning tasks. Using a

supplied kernel function for similarity computation, they build a global boundary that has

the largest distances to the two nearest data points from both positive and negative training

sets. Once the boundary has been established, each unlabeled data item can be classified

clearly as belonging to one set or the other.

Among semi-supervised learning methods, LapSVMs have achieved state-of-the-art

performance [Belkin et al. 2006]. They incorporate kernel methods in a manifold

regularization framework, that seeks to minimize a loss function involving quantities such

as classification scores together with regularization terms. The regularization term that

ensures the smoothness of the target function over the manifold structure of the input data

is approximated by a weighted graph defined over all input data points, in the form of a

symmetrically normalized Laplacian matrix.

For both the SVM and LapSVM methods, multi-class classifiers were assembled

according to the one-versus-all scheme, and trained using the linear kernel. The number of

nearest neighbors used for the construction of the weighted graph in LapSVM was set to

10.

5.4 Experimental Results and Discussion

This section presents and discusses the experimental results for the classification of the

three datasets under consideration. In MNIST and Google-23, 1 to 7 images from each

class were randomly selected for initial labeling in each experimental run. The largest

number of prelabeled images per concept in NUS-WIDE-OBJECT was increased to 100,

129

due to the fact that in this dataset, the images associated with a common concept are

more visually and semantically diverse, and thus more labeled examples are required for a

comprehensive performance evaluation. Five experimental runs were conducted for each

choice of the number of prelabeled images per class, All experiments were conducted

on 3.2GHz workstations. Euclidean (L2) distance was used as the distance measure.

The parameters for the evaluated methods, including α , rd and tc for SW-KProp and

SW-KProp+, the sizes of the selected feature subsets for FS, ReliefF and mRMR, σ for

LGC and GFHF, C for SVM, and the regularization parameters γA and γI for LapSVM

were tuned using the same configuration as that of Section 5.3.3.

5.4.1 Comparing SW-KProp+ against SW-KProp with Other Supervised Feature

Selection Methods

To show the effectiveness of the proposed feature selection scheme, SW-KProp+ was

compared against SW-KProp with FS, ReliefF and mRMR. These traditional feature

selection methods recomputed a subset of features for labeled images, which were used

subsequently to rebuild the neighborhood of labeled images.

Results on the precision of the edges leading from labeled nodes to unlabeled nodes

are reported in Table 5.3. Five random images from each category were prelabeled. It

can be seen from the table that Algorithm 8 boosts the precision of the edges connecting

labeled and unlabeled image nodes, on all the three image datasets. On Google-23 and

NUS-WIDE-OBJECT, the differences in the edge precision between Algorithm 8 and the

original graph are 12.8% and 4.5%, respectively. The other evaluated feature selection

methods achieve little or no improvement. On the simple digit image set MNIST, none of

the methods evaluated improves over the original similarity graph significantly.

Figure 5.5 plots the performance curves of the labeling accuracy versus the number

of prelabeled images per image class. Results on the average classification accuracy are

omitted as they present a similar trend for the methods evaluated.

130

Table 5.3 Precision (%) of Edges Leading from Labeled Nodes to Unlabeled Nodes in the
Influence Graphs of the Three Datasets (Five Images Prelabeled Per Category)

Datasets No feature selection Algorithm 8 FS ReliefF mRMR

MNIST 91.4 92.4 91.5 91.6 90.4

Google-23 66.5 79.3 69.2 69.1 67.0

NUS-WIDE-OBJECT 18.0 22.5 18.7 19.1 17.2

 65

 70

 75

 80

 85

 90

 1 2 3 4 5 6 7

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Number of prelabeled images per category

SW-KProp
SW-KProp+

SW-KProp w/ Fisher Score
SW-KProp w/ ReliefF
SW-KProp w/ mRMR

(a) MNIST.

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Number of prelabeled images per category

SW-KProp
SW-KProp+

SW-KProp w/ Fisher Score
SW-KProp w/ ReliefF
SW-KProp w/ mRMR

(b) Google-23.

 5

 10

 15

 20

 25

 30

1 5 10 20 50 100

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Number of prelabeled images per category

SW-KProp
SW-KProp+

SW-KProp w/ Fisher Score
SW-KProp w/ ReliefF
SW-KProp w/ mRMR

(c) NUS-WIDE-OBJECT.

Figure 5.5 Labeling accuracy of SW-KProp+ and SW-KProp with different feature
selection methods on the three datasets.

On Google-23 and NUS-WIDE-OBJECT, SW-KProp+ has better labeling accuracy

comparing with SW-KProp when the number of prelabeled images per category is greater

131

than 1. On MNIST, however, the use of the proposed feature selection technique for

prelabeled images does not lead to an improvement. One possible reason is that MNIST

is a relatively easy dataset, for which the original image features are already highly

discriminative.

As expected, on all of the three datasets, FS, ReliefF and mRMR fail to improve the

labeling accuracy of SW-KProp, since their improvements on the influence graph are small.

5.4.2 Comparing SW-KProp+ with Other Image Annotation Methods

The results of the proposed methods and the other image annotation methods evaluated in

the experiments are given in this subsection.

Figure 5.6 plots the labeling accuracy versus the number of prelabeled images per

category. It can be observed that, in terms of labeling accuracy, the best performance of all

tested methods is achieved on MNIST (Figure 5.6(a)). There, SW-KProp and SW-KProp+

obtained better results than their competitors. The other label propagation methods also

clearly outperform SVM and LapSVM classifiers. It is worth noting that for MNIST the

average classification accuracy (Table 5.4) is equivalent to the labeling accuracy, due to the

fact that in this dataset, data items are evenly distributed among the classes.

For Google-23, the labeling accuracy performance curves are plotted in Figure 5.6(b),

and the values of average accuracy are recorded in Table 5.5. From these results, it can

be observed that the labeling accuracy and the average classification accuracy present a

consistent trend. When the number of prelabeled faces per person is relatively small,

SW-KProp and SW-KProp+ perform better than their competitors. However, LapSVM and

SVM outperform SW-KProp+ when 6 and 7 face images are prelabeled for each individual,

respectively.

For the web image dataset NUS-WIDE-OBJECT, the label prediction problem is

quite difficult, as can be seen from Figure 5.6(c). None of the methods tested are able

to achieve an labeling accuracy of more than 30%, even with 100 images prelabeled per

category. In terms of labeling accuracy, KProp and SW-KProp consistently outperform

132

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

 1 2 3 4 5 6 7

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Number of prelabeled images per category

SVM
LapSVM

LGC
GFHF
KProp

SW-KProp
SW-KProp+

(a) MNIST.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 1 2 3 4 5 6 7

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Number of prelabeled images per category

SVM
LapSVM

LGC
GFHF
KProp

SW-KProp
SW-KProp+

(b) Google-23.

 5

 10

 15

 20

 25

 30

1 5 10 20 50 100

La
be

lin
g

ac
cu

ra
cy

 (
%

)

Number of prelabeled images per category

SVM
LapSVM

LGC
GFHF
KProp

SW-KProp
SW-KProp+

(c) NUS-WIDE-OBJECT.

Figure 5.6 Labeling accuracy of SW-KProp+ and competing methods on the three image
datasets.

MR and GFHF. The best performing methods are SVM, LapSVM and SW-KProp+. When

more than 5 images are prelabeled for each category, these three methods have similar

labeling accuracy results on this dataset. However, SVM and LapSVM achieve better

average classification accuracy (Table 5.6). Thus, even if SVM and LapSVM were to

correctly label fewer images than SW-KProp+, it would still be possible to use them to

build classifiers for NUS-WIDE-OBJECT with better average quality. For each concept

in NUS-WIDE-OBJECT, the number of training images is the same, but the number of

test images varies greatly. With an unreliable distance measure, test images from a very

133

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14 16

D
is

tr
ib

ut
io

n
de

ns
ity

 (
%

)

Distance value

intra-class
inter-class

(a) MNIST.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

D
is

tr
ib

ut
io

n
de

ns
ity

 (
%

)

Distance value

intra-class
inter-class

(b) Google-23.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45

D
is

tr
ib

ut
io

n
de

ns
ity

 (
%

)

Distance value

intra-class
inter-class

(c) NUS-WIDE-OBJECT.

Figure 5.7 Distance distributions for the three datasets.

small concept class are less likely to be linked close to the source images, and thus tend to

be mislabeled. SVM and LapSVM, on the other hand, have better performance on small

concept classes, which boosts the average accuracy of individual classifiers.

In Figure 5.6, the three datasets are arranged in increasing order of their level

of difficulty in classification. MNIST is a relatively easy dataset to process, in that

the distance measure is discriminative. On the other hand, images of Google-23 and

NUS-WIDE-OBJECT are taken under uncontrolled conditions, resulting in great variation

and diversity. Inter- and intra-class distance distributions of the three datasets are shown in

Figure 5.7.

134

Ta
bl

e
5.

4
A

ve
ra

ge
A

cc
ur

ac
y

(%
)f

or
M

N
IS

T

#(
la

be
le

d
im

ag
es

)/
cl

as
s

SV
M

L
ap

SV
M

L
G

C
G

FH
F

K
Pr

op
SW

-K
Pr

op
SW

-K
Pr

op
+

1
3.

00
±

0.
86

42
.1

9±
2.

51
68

.7
5±

3.
66

64
.7

1±
3.

41
65

.4
8±

3.
06

70
.0

8±
3.

59
70

.0
8±

3.
59

2
39

.3
5±

4.
53

52
.8

9±
2.

61
78

.4
7±

2.
28

76
.7

5±
2.

00
76

.3
2±

2.
01

79
.4

3±
2.

21
79

.6
1±

2.
19

3
52

.6
8±

3.
45

58
.2

1±
2.

36
79

.7
1±

2.
14

79
.2

1±
1.

96
77

.7
7±

2.
03

82
.3

7±
2.

04
82

.3
9±

2.
05

4
60

.6
2±

2.
84

63
.5

6±
2.

55
84

.2
4±

1.
72

81
.6

8±
1.

79
81

.2
6±

1.
53

84
.2

0±
1.

86
83

.8
7±

2.
08

5
65

.3
6±

2.
88

67
.4

1±
2.

12
85

.6
5±

1.
53

83
.7

5±
1.

67
82

.9
6±

1.
45

86
.9

6±
1.

47
86

.8
4±

1.
40

6
65

.8
1±

2.
39

66
.3

9±
1.

73
85

.9
4±

1.
43

84
.3

0±
1.

50
84

.4
5±

1.
30

87
.6

7±
1.

37
87

.6
0±

1.
36

7
68

.9
6±

2.
68

69
.3

2±
2.

17
87

.6
5±

1.
18

85
.1

4±
1.

43
84

.1
1±

1.
44

88
.5

5±
1.

31
88

.4
5±

1.
28

135

Ta
bl

e
5.

5
A

ve
ra

ge
A

cc
ur

ac
y

(%
)f

or
G

oo
gl

e-
23

#(
la

be
le

d
im

ag
es

)/
cl

as
s

SV
M

L
ap

SV
M

L
G

C
G

FH
F

K
Pr

op
SW

-K
Pr

op
SW

-K
Pr

op
+

1
2.

00
±

0.
43

24
.0

8±
1.

89
35

.9
6±

2.
79

30
.1

7±
2.

92
35

.6
5±

2.
62

37
.1

3±
2.

85
37

.1
3±

2.
85

2
28

.6
2±

2.
65

36
.9

5±
2.

11
44

.2
3±

2.
66

41
.7

0±
2.

76
42

.0
1±

2.
51

44
.1

9±
2.

76
45

.0
8±

2.
64

3
35

.2
2±

2.
85

45
.2

8±
2.

00
48

.6
4±

2.
41

46
.4

3±
2.

60
46

.3
8±

2.
36

49
.6

4±
2.

49
51

.2
1±

2.
40

4
46

.4
6±

2.
75

53
.0

9±
1.

89
52

.6
5±

2.
37

50
.2

5±
2.

48
50

.7
5±

2.
36

53
.7

4±
2.

40
54

.8
9±

2.
36

5
53

.9
7±

2.
25

56
.6

6±
1.

70
55

.2
1±

2.
32

52
.3

4±
2.

43
53

.0
8±

2.
26

55
.9

5±
2.

37
57

.2
2±

2.
26

6
58

.2
1±

2.
10

60
.0

3±
1.

66
56

.1
1±

2.
22

53
.9

8±
2.

40
54

.5
1±

2.
18

56
.6

6±
2.

31
58

.3
6±

2.
09

7
60

.7
8±

1.
99

62
.3

4±
1.

52
58

.2
6±

2.
10

55
.5

8±
2.

29
55

.8
9±

2.
13

58
.1

2±
2.

18
59

.7
2±

2.
03

136

Ta
bl

e
5.

6
A

ve
ra

ge
A

cc
ur

ac
y

(%
)f

or
N

U
S-

W
ID

E
-O

B
JE

C
T

#(
la

be
le

d
im

ag
es

)/
cl

as
s

SV
M

L
ap

SV
M

L
G

C
G

FH
F

K
Pr

op
SW

-K
Pr

op
SW

-K
Pr

op
+

1
7.

80
±

1.
04

9.
72
±

0.
89

9.
56
±

0.
80

8.
92
±

0.
88

9.
50
±

0.
73

9.
43
±

0.
78

9.
36
±

0.
85

5
16

.2
9±

1.
59

17
.6

6±
1.

58
15

.8
5±

1.
10

15
.2

5±
1.

13
15

.6
5±

1.
05

15
.8

7±
1.

12
16

.8
5±

1.
12

10
20

.8
9±

1.
70

21
.6

1±
1.

74
18

.2
1±

1.
22

17
.3

7±
1.

21
18

.1
7±

1.
18

18
.0

8±
1.

20
20

.1
6±

1.
15

20
24

.3
1±

1.
65

25
.0

5±
1.

80
20

.7
9±

1.
27

20
.2

0±
1.

26
20

.8
8±

1.
25

20
.6

8±
1.

24
23

.2
4±

1.
18

50
28

.7
6±

1.
80

29
.7

1±
1.

95
24

.2
3±

1.
37

23
.4

8±
1.

31
24

.2
2±

1.
37

23
.9

6±
1.

35
26

.8
2±

1.
21

10
0

31
.4

6±
1.

84
31

.2
8±

1.
96

26
.3

7±
1.

47
25

.7
8±

1.
36

26
.4

5±
1.

40
26

.6
2±

1.
40

28
.5

1±
1.

12

137

Clearly, compared to the digits from MNIST, based solely on their L2 distance, it is

more difficult to tell whether two faces of Google-23 belong to a common individual, and

nearly impossible to distinguish images of different concepts in NUS-WIDE-OBJECT.

On the three datasets, LapSVM has generally better performance over SVM by

incorporating unlabeled images in the learning process. When the number of prelabeled

images increases, SVM catches up with and even outperforms LapSVM. SW-KProp and

SW-KProp+ are outperformed by SVM and LapSVM on Google-23 and NUS-WIDE-

OBJECT eventually. The relative performance of the proposed methods can be explained

in terms of the transitivity of data item relationships. Unlike classifiers which build global

boundaries between instances of different classes, SW-KProp and SW-KProp+ transmits

label information locally, along paths leading from labeled images to unlabeled images.

The reliability of links connecting image nodes decays as their graph link distance from

source nodes increases. MNIST is a relatively simple dataset whose influence graph

contains well-established paths from labeled images to unlabeled images of the same

object. Conversely, such transitivity is rare or non-existent within the face image and the

web image datasets. When image a is similar to image b, and b is similar to image c, it

is often the case that a does not resemble c; in such situations, c would iteratively receive

incorrect information from a, and propagate this incorrect information to its adjacent nodes.

Classifiers, by not relying on the transitivity of similarity information, can avoid such errors

when there are adequate numbers of training examples. Any ambiguous items are classified

once, and incorrect decisions will not be propagated.

SW-KProp has consistently better performance over LGC and GFHF on all datasets,

and over KProp on MNIST and Google-23. This confirms the effectiveness of its edge

weighting schemes. On NUS-WIDE-OBJECT, SW-KProp has no particular advantage over

KProp, the reason being that for the web images, similarity values are less reliable with

respect to semantic concepts, and the influence relationships defined by distances and ranks

suffer greatly from noise.

138

Table 5.7 Running Time of the Feature Selection and Graph Refinement Process of SW-
KProp+ on NUS-WIDE-OBJECT

Labeled images per class 1 5 10 20 50 100

Time 0.0082s 8s 23s 72s 372s 1425s

On Google-23 and NUS-WIDE-OBJECT, SW-KProp+ outperforms SW-KProp,

when the number of prelabeled images per category is larger than 1. This implies that

with only a few images of the same category, SW-KProp+ can effectively select a subset

of features with better discriminative ability for each prelabeled image, and enhance the

quality of the similarity graph by recomputing the neighborhood of prelabeled images.

The running time of the competing methods was evaluated using NUS-WIDE-

OBJECT. In the preprocessing step of SW-KProp+, the construction of the initial graph

took 566 seconds; the time used for the feature selection (and graph refinement) is recorded

in Table 5.7. It can been seen that when the number of prelabeled image per class is

less than 50, the process for refining the similarity graph introduces small overheads to

the preprocessing step of SW-KProp+ on this dataset. When the training set is large, the

algorithm is much less efficient. The reason is that the feature ranking is performed for

each prelabeled image.

Figure 5.8 reports the running time of all the competing methods relative to the time

required for the construction of an exact K-NN graph on NUS-WIDE-OBJECT. It is clear

that the running time of the label propagation methods including LGC, GFHF, KProp and

SW-KProp does not vary much when the number of prelabeled images increases. Their

running time is roughly 1 relative to that of the initial graph construction, which means that

the computation of the similarity graph uses most of the time.

When the number of prelabeled images per class is less than 20, SW-KProp+ has a

similar performance as that of SW-KProp. When this number is larger, the overall running

time of SW-KProp+ increases notably.

139

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 5 10 20 50 100

R
un

ni
ng

 T
im

e
R

el
at

iv
e

to
 G

ra
ph

 C
om

pu
ta

tio
n

Number of prelabeled images per category

SVM
LapSVM

LGC
GFHF
KProp

SW-KProp
SW-KProp+

Figure 5.8 The running time of all competing methods relative to that of the similarity
graph construction.

SVM does not need to compute a similarity graph over the entire database. The

classifiers are built using only the labeled data. The classification of unlabeled data is

efficient. Therefore, SVM is much more faster than the other methods when the size of the

prelabeled set is small; when the size of the prelabeled set grows, the efficiency of SVM

degrades fast. When 100 images are prelabeled from each category, SVM takes roughly

the same amount of time as that of SW-KProp+, for the annotation of this image set.

Over all of the methods evaluated, LapSVM is significantly slower than the others.

The reasons are that both labeled and unlabeled images are involved in the LapSVM

optimization process, and that the one-versus-all scheme used in the experiments requires

LapSVM to compute multiple classifiers, one for each image class.

5.5 Conclusion

This chapter proposed SW-KProp for the propagation of annotations associated with a

small number of images to the remaining images in an image database. SW-KProp operates

in two phases: by first modeling data items in an influence graph according to their visual

140

similarities, and then propagating influence scores representing a tentative labeling of these

items along the edges of the graph. The computation of influence scores of SW-KProp

can be performed by solving a sparse linear system to which fast iterative methods and

optimized matrix operations can be applied.

To enhance the quality of the influence graph, a localized feature selection scheme

was also proposed and adopted in a variant of SW-KProp, SW-KProp+, that computes

a discriminative subset of the features, and reconstructs the neighborhood of prelabeled

images according to the reduced feature sets.

The proposed methods were compared with several competing methods on three

image datasets: a handwritten digit dataset, a face dataset and a web image dataset.

Experimental results showed the effectiveness of SW-KProp and SW-KProp+ in image

classification tasks, comparing with label propagation and classification-based methods,

especially when the number of prelabeled data items per class is small.

It is possible to adapt the proposed approach as an initial step for classifiers to boost

performance, for such applications as family photo management and the identification of

individuals in surveillance videos.

CHAPTER 6

CONCLUSION

This dissertation proposed several techniques for the local selection of features, in an

attempt to improve the neighborhood quality of data in high-dimensional feature spaces.

Methods that utilize the feature subsets produced by these techniques were designed, for

image applications such as content-based image retrieval and image label propagation.

The Local Laplacian Score (LLS) and Generalized Laplacian Score (GLS) feature

ranking techniques were proposed as two unsupervised methods, for the construction of a

reduced feature set for individual data objects. LLS favors those features that have a high

global variation across the entire database, and that have the greatest impact in establishing

the local neighborhood for a particular data object. LLS is embedded into an approximate

K-NN graph construction method NN-Descent. The feature ranking and sparsification

process is interleaved with neighborhood updating so as to improve the quality of K-NN

graphs for image databases.

GLS combines LS and LLS linearly so that both global and local feature relevance

are considered in its feature ranking strategy. This technique is then applied to a content-

based image retrieval framework. There, a query image is ranked in the feature subspaces

of candidate database images. Those candidates that correspond to the feature subspaces

wherein the query image is ranked highly are selected as the query results. Automated

query expansion and filter-and-refine techniques are applied to this framework to further

improve its effectiveness and efficiency.

In an image label propagation problem, a supervised method was proposed for

the computation of a discriminative feature subset for individual prelabeled images. By

rebuilding the links leading from prelabeled images using their new feature vectors, related

labeled-unlabeled image pairs are more likely to be connected in the similarity graph for

label propagation. As a consequence, the annotation performance could be improved.

141

142

Extensive experiments were conducted to demonstrate the effectiveness of the

proposed methods on several datasets. They improved the semantic quality of data

neighborhoods over the methods using the full feature set, and achieved better performance

than that of the competing methods, in the image applications under consideration.

It is worth noting that the methods proposed in this dissertation are not for computing

new features. Instead, these methods identify important feature dimensions from existing

feature vectors, and utilize the selected feature subsets in different image applications. The

proposed methods require that the original features and distance measures are of reasonable

quality for separating data of different classes. Due to the local property of the proposed

methods, the selected feature subsets are tailed to specific data objects in the database,

which cannot be used directly for out-sampled data.

Possible directions for future research are listed as follows.

Applications to Other Image Problems A straightforward extension of the work

presented in this dissertation would be the applications of the proposed methods to other

image problems. For example, the K-NN graphs produced by NNF-Descent could be

evaluated in image clustering. It is also possible to use SW-KProp+ to augment training

sets to boost the performance of image classifiers.

Local Selection of Features for Sparse Data The proposed methods may not work

well for sparse features, which are widely used for document and image representations.

In such cases, the feature selection schemes in LLS and GLS may undesirably remove

discriminative information stored as non-zero feature values; in SW-KProp+, when using a

single feature of a labeled image to rank other labeled images, many of these ranks would

be identical due to the sparsity in the feature vectors, so that the feature relevance would not

be evaluated correctly. Techniques for the local selection of features from sparse feature

vectors should be employed more conservatively; the corresponding similarity measures

should be adapted so as to prevent the original neighborhood structure from being changed

143

dramatically. It would be worthwhile to convert other possible global feature selection

methods into their local variants, to improve the effectiveness of feature selection, for both

dense and sparse data representations.

Combining Proposed Feature Selection Techniques It has been demonstrated that, the

supervised feature selection technique in SW-KProp+ can improve the quality of the edges

leading from labeled image nodes to unlabeled image nodes. It is possible to integrate the

proposed unsupervised feature selection technique LLS (or GLS) into SW-KProp+, in an

attempt to refine the edges between unlabeled image nodes, so that the annotation accuracy

could be further improved. Several issues need to be addressed for the success of such a

combination. The supervised and unsupervised feature selection techniques have their own

parameters for the size of reduced feature vectors. Using a uniform feature size for both

labeled and unlabeled images would make the combined system easier to tune and evaluate,

however, the annotation performance might degrade. There is also an inconsistency in the

distance computation for labeled-unlabeled image pairs and unlabeled-unlabeled image

pairs. Only the feature vectors of labeled images are considered for labeled-unlabeled

image pairs, since there is no edge leading from unlabeled images to labeled images.

However, to compute a distance between an unlabeled-unlabeled image pair, features of

both images should be considered. Another problem would be that after LLS (or GLS)

feature selection and neighborhood reconstruction, images would tend to be connected in

their local neighborhoods. The similarity graph is likely to be disconnected, which hinders

the label propagation process.

Improving the Scalability The proposed techniques for the local selection of features

are performed offline for fixed datasets. The overheads introduced by these techniques are

generally small compared with the computing resources required by the nearest neighbor

updating in NNF-Descent, by the initialization process of Fast GLS+QE+RS, and when the

number of prelabeled images is small, by the similarity graph construction in SW-KProp+.

144

However, due to the nature of these techniques, feature ranking is performed for each data

object; when the number of data objects or the number of feature dimensions is too large,

the overheads of the proposed methods can not be ignored. There are several possible ways

that can potentially improve the scalability of the proposed methods. First, the localized

feature selection techniques can be applied to a small set of data objects. It would be

worthwhile to study the methods for picking ‘important’ data objects for feature selection,

so that a good balance between effectiveness and efficiency could be achieved. Second,

when the size of the feature vectors is too large, it is possible to apply global feature

selection methods to reduce the dimensionality, as a preprocessing step for the proposed

techniques. The global feature selection methods should be conducted conservatively: a

feature should be removed only if it is indiscriminative for the majority of the data objects.

Third, it is an option to rank the features for individual data objects in parallel. In this

case, the neighborhood updating should be delayed until all the data objects in the parallel

processing have new feature vectors. Last but not least, one could also consider to adapt the

proposed methods for incremental feature selection. The feature selection is performed first

on a relatively small set of data objects. When a new data object is added to the database,

its features are then ranked according to the feature subsets of its nearby data objects. The

features and neighborhoods of all data objects can be recomputed after a certain number

of new data objects have been added to the database. Note that such incremental schemes

may bias the initial set of data objects.

BIBLIOGRAPHY

Achtert, E., Böhm, C., Kriegel, H., Kröger, P., Müller-Gorman, I., and Zimek, A. (2006).
Finding hierarchies of subspace clusters. In Proceedings of the 10th European
Conference on Principles and Practice of Knowledge Discovery in Databases,
pages 446–453.

Achtert, E., Böhm, C., Kriegel, H., Kröger, P., Müller-Gorman, I., and Zimek, A. (2007).
Detection and visualization of subspace cluster hierarchies. In Proceedings of the
12th International Conference on Database Systems for Advanced Applications,
pages 152–163.

Achtert, E., Kriegel, H., Schubert, E., and Zimek, A. (2013). Interactive data mining with
3D-parallel-coordinate-trees. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 1009–1012.

Aggarwal, C. C., Procopiuc, C. M., Wolf, J. L., Yu, P. S., and Park, J. S. (1999).
Fast algorithms for projected clustering. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 61–72.

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (2005). Automatic subspace
clustering of high dimensional data. Data Mining and Knowledge Discovery,
11(1):5–33.

Ames, M. and Naaman, M. (2007). Why we tag: motivations for annotation in mobile
and online media. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 971–980.

Bach, J. R., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, R., Jain, R.,
and Shu, C. (1996). Virage image search engine: An open framework for image
management. In Storage and Retrieval for Image and Video Databases (SPIE),
pages 76–87.

Bache, K. and Lichman, M. (2013). UCI machine learning repository.
http://archive.ics.uci.edu/ml/ (accessed on October 28, 2014).

Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D. M., and Jordan, M. I. (2003).
Matching words and pictures. Journal of Machine Learning Research, 3:1107–
1135.

Baya, H., Essa, A., Tuytelaarsb, T., and Van Goola, L. (2008). Speeded-up robust features
(SURF). Computer Vision and Image Understanding, 110(3):346–359.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–1396.

145

146

Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of Machine
Learning Research, 7:2399–2434.

Bellet, A., Habrard, A., and Sebban, M. (2013). A survey on metric learning for
feature vectors and structured data. Computing Research Repository (CoRR),
abs/1306.6709.

Bengio, Y. (2008). Neural net language models. Scholarpedia, 3(1):3881.

Bengio, Y., Courville, A. C., and Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828.

Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is “nearest
neighbor” meaningful? In Proceedings of the International Conference on
Database Theory, pages 217–235.

Beygelzimer, A., Kakade, S., and Langford, J. (2006). Cover trees for nearest neighbor. In
Proceedings of the International Conference on Machine Learning, pages 97–104.

Blum, A. and Chawla, S. (2001). Learning from labeled and unlabeled data using
graph mincuts. In Proceedings of the 18th International Conference on Machine
Learning, pages 19–26.

Bouachir, W., Kardouchi, M., and Belacel, N. (2009). Improving bag of visual words
image retrieval: A fuzzy weighting scheme for efficient indexation. In Proceedings
of the 5th International Conference on Signal-Image Technology & Internet-Based
Systems (SITIS), pages 215–220.

Boujemaa, N., Fauqueur, J., Ferecatu, M., Fleuret, F., Gouet, V., Saux, B. L., and Sahbi, H.
(2001). IKONA: Interactive Generic and Specific Image Retrieval. In International
workshop on Multimedia Content-Based Indexing and Retrieval.

Bradski, G. R. and Kaehler, A. (2008). Learning OpenCV - computer vision with the
OpenCV library: software that sees. Sebastopol, CA: O’Reilly.

Brito, M., Chávez, E., Quiroz, A., and Yukich, J. (1997). Connectivity of the mutual k-
nearest-neighbor graph in clustering and outlier detection. Statistics & Probability
Letters, 35(1):33–42.

Carson, C., Belongie, S., Greenspan, H., and Malik, J. (2002). Blobworld: Image segmen-
tation using expectation-maximization and its application to image querying. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(8):1026–1038.

Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., and Slaney, M.
(2008). Content-based music information retrieval: Current directions and future
challenges. Proceedings of the IEEE, 96(4):668–696.

147

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27.

Chang, E., Goh, K., Sychay, G., and Wu, G. (2003). CBSA: content-based soft annotation
for multimodal image retrieval using bayes point machines. IEEE Transactions on
Circuits and Systems for Video Technology, 13(1):26–38.

Chang, H. and Yeung, D. (2007). Kernel-based distance metric learning for content-based
image retrieval. Image and Vision Computing, 25(5):695–703.

Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning.
Cambridge, MA: MIT Press.

Chatzichristofis, S. A., Iakovidou, C., and Boutalis, Y. S. (2011). Content based image
retrieval using visual-words distribution entropy. In Proceedings of the 5th
International Conference on Computer Vision/Computer Graphics Collaboration
Techniques, pages 204–215.

Chen, J., Fang, H., and Saad, Y. (2009). Fast approximate kNN graph construction for high
dimensional data via recursive Lanczos bisection. Journal of Machine Learning
Research, 10:1989–2012.

Chen, X. and Cham, T. (2004). Discriminative distance measures for image matching. In
Proceedings of the 17th International Conference on Pattern Recognition (ICPR),
pages 691–695.

Chen, Y. and Wang, J. Z. (2002). A region-based fuzzy feature matching approach to
content-based image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(9):1252–1267.

Cheng, C. H., Fu, A. W., and Zhang, Y. (1999). Entropy-based subspace clustering for
mining numerical data. In Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 84–93.

Cheng, Y. and Church, G. M. (2000). Biclustering of expression data. In Proceedings of the
8th International Conference on Intelligent Systems for Molecular Biology, pages
93–103.

Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discrimina-
tively, with application to face verification. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
539–546.

Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., and Zheng, Y.-T. (2009). NUS-WIDE:
A real-world web image database from national university of singapore. In
Proceedings of ACM Conference on Image and Video Retrieval.

148

Chum, O., Philbin, J., Sivic, J., Isard, M., and Zisserman, A. (2007). Total recall:
Automatic query expansion with a generative feature model for object retrieval.
In Proceedings of the 11th International Conference on Computer Vision, pages
1–8.

Coates, A., Ng, A. Y., and Lee, H. (2011). An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the 14th International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 215–223.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–
297.

Cusano, C., Ciocca, G., and Schettini, R. (2003). Image annotation using SVM. In Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
5304, pages 330–338.

Davis, J. V., Kulis, B., Jain, P., Sra, S., and Dhillon, I. S. (2007). Information-theoretic
metric learning. In Proceedings of the 24th International Conference Machine
Learning, pages 209–216.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1–38.

Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep
learning. APSIPA Transactions on Signal and Information Processing.

Desai, C., Kalashnikov, D. V., Mehrotra, S., and Venkatasubramanian, N. (2009).
Using semantics for speech annotation of images. In Proceedings of the IEEE
International Conference on Data Engineering, pages 1227–1230.

Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph
partitioning. In Proceedings of the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 269–274.

Dhillon, I. S., Mallela, S., and Modha, D. S. (2003). Information-theoretic co-clustering.
In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 89–98.

Dias, D. B., Madeo, R. C. B., Rocha, T., Bı́scaro, H. H., and Peres, S. M. (2009). Hand
movement recognition for Brazilian sign language: A study using distance-based
neural networks. In Proceedings of the International Joint Conference on Neural
Networks, pages 697–704.

Domingos, P. (1997). Control-sensitive feature selection for lazy learners. Artificial
Intelligence Review, 11(1-5):227–253.

149

Dong, W., Charikar, M., and Li, K. (2011). Efficient k-nearest neighbor graph construction
for generic similarity measures. In Proceedings of the 20th International
Conference on World Wide Web, pages 577–586.

Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern classification. New York, NY:
John Wiley & Sons.

Duygulu, P., Barnard, K., de Freitas, J. F. G., and Forsyth, D. A. (2002). Object recognition
as machine translation: Learning a lexicon for a fixed image vocabulary. In
Proceedings of the 7th European Conference on Computer Vision:Part IV, pages
97–112.

Dy, J. G. and Brodley, C. E. (2004). Feature selection for unsupervised learning. The
Journal of Machine Learning Research, 5:845–889.

Dy, J. G., Brodley, C. E., Kak, A. C., Broderick, L. S., and Aisen, A. M. (2003).
Unsupervised feature selection applied to content-based retrieval of lung images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(3):373–378.

Ebert, S., Fritz, M., and Schiele, B. (2011). Pick your neighborhood–improving labels
and neighborhood structure for label propagation. In Pattern Recognition, pages
152–162. Berlin Heidelberg: Springer-Verlag.

Everingham, M., Sivic, J., and Zisserman, A. (2006). “Hello! My name is... Buffy” –
automatic naming of characters in TV video. In Proceedings of the British Machine
Vision Conference, pages 899–908.

Fanty, M. A. and Cole, R. A. (1991). Spoken letter recognition. In Advances in Neural
Information Processing Systems 3, pages 220–226.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT
Press.

Fu, Q. and Banerjee, A. (2009). Bayesian overlapping subspace clustering. In Proceedings
of the 9th IEEE International Conference on Data Mining, pages 776–781.

Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W. M. (2005). The Amsterdam
Library of Object Images. International Journal of Computer Vision, 61(1):103–
112.

Gevers, T. and Smeulders, A. W. M. (2000). PicToSeek: combining color and shape
invariant features for image retrieval. IEEE Transactions on Image Processing,
9(1):102–119.

Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Conference on Very Large Data
Bases, pages 518–529.

150

Goldberger, J., Roweis, S. T., Hinton, G. E., and Salakhutdinov, R. (2004). Neighbourhood
components analysis. In Advances in Neural Information Processing Systems 17.

Gondra, I. and Heisterkamp, D. R. (2004). Learning in region-based image retrieval with
generalized support vector machines. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshop, pages 149–149.

Goodfellow, I. J., Le, Q. V., Saxe, A. M., Lee, H., and Ng, A. Y. (2009). Measuring
invariances in deep networks. In Advances in Neural Information Processing
Systems 22, pages 646–654.

Gu, Q., Li, Z., and Han, J. (2012). Generalized fisher score for feature selection. Computing
Research Repository (CoRR), abs/1202.3725.

Guan, Y., Dy, J. G., and Jordan, M. I. (2011). A unified probabilistic model for global
and local unsupervised feature selection. In Proceedings of the 28th International
Conference on Machine Learning (ICML), pages 1073–1080.

Guillaumin, M., Mensink, T., Verbeek, J. J., and Schmid, C. (2009). TagProp:
Discriminative metric learning in nearest neighbor models for image auto-
annotation. In Proceedings of the IEEE 12th International Conference on Computer
Vision (ICCV), pages 309–316.

Guldogan, E. and Gabbouj, M. (2008). Feature selection for content-based image retrieval.
Signal, Image and Video Processing, 2(3):241–250.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. The
Journal of Machine Learning Research, 3:1157–1182.

Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an
invariant mapping. In Proceedings of the IEEE computer society conference on
Computer vision and pattern recognition, volume 2, pages 1735–1742.

Hageman, L. and Young, D. (2004). Applied Iterative Methods. Mineola, NY: Dover
Publications.

Hamel, P., Lemieux, S., Bengio, Y., and Eck, D. (2011). Temporal pooling and multiscale
learning for automatic annotation and ranking of music audio. In Proceedings of
the 12th International Society for Music Information Retrieval Conference (ISMIR),
pages 729–734.

Hardoon, D. R., Saunders, C., Szedmák, S., and Shawe-Taylor, J. (2006). A corre-
lation approach for automatic image annotation. In Advanced Data Mining and
Applications, pages 681–692.

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Proceedings
of the Alvey Vision Conference (AVC), pages 1–6.

151

Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of the American
Statistical Association, 67(337):123–129.

Hassanat, A. B., Abbadi, M. A., Altarawneh, G. A., and Alhasanat, A. A. (2014). Solving
the problem of the K parameter in the KNN classifier using an ensemble learning
approach. Computing Research Repository (CoRR), abs/1409.0919.

He, R., Zhu, Y., and Zhan, W. (2009). Fast manifold-ranking for content-based image
retrieval. In ISECS International Colloquium on Computing, Communication,
Control, and Management, volume 2, pages 299–302.

He, X., Cai, D., and Niyogi, P. (2006). Laplacian score for feature selection. In Advances
in Neural Information Processing Systems 18, pages 507–514.

Hechenbichler, K. and Schliep, K. (2004). Weighted k-nearest-neighbor techniques
and ordinal classification. Technical Report, Discussion Paper 399, Ludwig
Maximilians University Munich, Munich, Germany.

Helala, M. A., Selim, M. M., and Zayed, H. H. (2012). A content based image retrieval
approach based on principal regions detection. International Journal of Computer
Science Issues, 9(4):204–213.

Herbrich, R., Graepel, T., and Campbell, C. (2001). Bayes point machines. Journal of
Machine Learning Research, 1:245–279.

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409–436.

Higham, N. J. and Tisseur, F. (2003). Bounds for eigenvalues of matrix polynomials. Linear
Algebra and its Applications, 358(1-3):5–22.

Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5):5947.

Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7):1527–1554.

Houle, M. E. and Nett, M. (2013). Rank cover trees for nearest neighbor search. In
Proceedings of the International Workshop on Similarity Search and Applications,
pages 16–29.

Houle, M. E., Oria, V., Satoh, S., and Sun, J. (2011). Knowledge propagation in large
image databases using neighborhood information. In Proceedings of the ACM
International Conference on Multimedia, pages 1033–1036.

Houle, M. E. and Sakuma, J. (2005). Fast approximate similarity search in extremely
high-dimensional data sets. In Proceedings of the 21st International Conference on
Data Engineering, pages 619–630.

152

Hu, X. and Qian, X. (2009). A novel graph-based image annotation with two level bag
generators. In Proceedings of the International Conference on Computational
Intelligence and Security, pages 71–75.

J. K. Gupta, S. Singh, N. K. V. (2013). Mtba: Matlab toolbox for biclustering analysis.
In Proceedings of the IEEE Workshop on Computational Intelligence: Theories,
Applications and Future Directions, pages 94–97.

Jeon, J., Lavrenko, V., and Manmatha, R. (2003). Automatic image annotation
and retrieval using cross-media relevance models. In Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 119–126.

Jiang, W., Er, G., Dai, Q., and Gu, J. (2006). Similarity-based online feature selection in
content-based image retrieval. IEEE Transactions on Image Processing, 15(3):702–
712.

Jing, F., Li, M., Zhang, H.-J., and Zhang, B. (2004). An efficient and effective region-based
image retrieval framework. IEEE Transactions on Image Processing, 13(5):699–
709.

Jirina, M. and Jr., M. J. (2010). Using singularity exponent in distance based classifier.
In Proceedings of the 10th International Conference on Intelligent Systems Design
and Applications (ISDA), pages 220–224.

Karger, D. R. and Ruhl, M. (2002). Finding nearest neighbors in growth-restricted metrics.
In Proceedings of the 34th Symposium on Theory of Computing, pages 741–750.

Kedem, D., Tyree, S., Weinberger, K. Q., Sha, F., and Lanckriet, G. R. G. (2012). Non-
linear metric learning. In Advances in Neural Information Processing Systems 25,
pages 2582–2590.

Kira, K. and Rendell, L. A. (1992). A practical approach to feature selection. In
Proceedings of the 9th International Workshop on Machine Learning, pages
249–256.

Kogler, M. and Lux, M. (2010). Bag of visual words revisited: An exploratory study
on robust image retrieval exploiting fuzzy codebooks. In Proceedings of the 10th
International Workshop on Multimedia Data Mining, pages 3:1–3:6.

Kriegel, H., Kröger, P., Renz, M., and Wurst, S. H. R. (2005). A generic framework for
efficient subspace clustering of high-dimensional data. In Proceedings of the 5th
IEEE International Conference on Data Mining, pages 250–257.

Kriegel, H., Kröger, P., and Zimek, A. (2009). Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Transactions on Knowledge Discovery from Data, 3(1).

153

Krizhevsky, A. and Hinton, G. E. (2011). Using very deep autoencoders for content-based
image retrieval. In Proceedings of the 19th European Symposium on Artificial
Neural Networks.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems 25, pages 1106–1114.

Lebanon, G. (2006). Metric learning for text documents. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(4):497–508.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2006). Efficient sparse coding algorithms. In
Advances in Neural Information Processing Systems 19, pages 801–808.

Lee, H., Ekanadham, C., and Ng, A. Y. (2007). Sparse deep belief net model for visual
area V2. In Advances in Neural Information Processing Systems 20.

Lee, J., Jin, R., and Jain, A. K. (2008). Rank-based distance metric learning: An application
to image retrieval. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR).

Li, F. and Perona, P. (2005). A bayesian hierarchical model for learning natural scene
categories. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 524–531.

Li, F.-F., Fergus, R., and Perona, P. (2007). Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories. Computing Vision and Image Understanding, 106(1):59–70.

Li, X., Chen, L., Zhang, L., Lin, F., and Ma, W.-Y. (2006a). Image annotation by large-scale
content-based image retrieval. In Proceedings of the 14th annual ACM international
conference on Multimedia, pages 607–610.

Li, Y., Dong, M., and Hua, J. (2008). Localized feature selection for clustering. Pattern
Recognition Letters, 29(1):10–18.

Li, Y., Geng, B., Zha, Z.-J., Li, Y., Tao, D., and Xu, C. (2011a). Query expansion by
spatial co-occurrence for image retrieval. In Proceedings of the ACM International
Conference on Multimedia, pages 1177–1180.

Li, Y., Li, F., Yi, K., Yao, B., and Wang, M. (2011b). Flexible aggregate similarity search.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 1009–1020.

Li, Y., Lu, B., and Wu, Z. (2006b). A hybrid method of unsupervised feature selection
based on ranking. In Proceedings of the 18th International Conference on Pattern
Recognition (ICPR), pages 687–690.

154

Liu, J. (2013). Image retrieval based on bag-of-words model. Computing Research
Repository (CoRR), abs/1304.5168.

Liu, J., Li, M., Ma, W.-Y., Liu, Q., and Lu, H. (2006). An adaptive graph model for
automatic image annotation. In Multimedia Information Retrieval, pages 61–70.

Liu, W., He, J., and Chang, S.-F. (2010). Large graph construction for scalable
semi-supervised learning. In Proceedings of the 27th International Conference on
Machine Learning, pages 679–686.

Liu, W., Wang, J., and Chang, S.-F. (2012). Robust and scalable graph-based semisu-
pervised learning. Proceedings of the IEEE, 100(9):2624–2638.

Liu, Y., Zhang, D., Lu, G., and Ma, W.-Y. (2007). A survey of content-based image retrieval
with high-level semantics. Pattern Recognition, 40(1):262–282.

Ljubovic, V. and Supic, H. (2013). Comparative study of color histograms as global
feature for image retrieval. In Proceedings of the 36th International Convention
on Information & Communication Technology Electronics & Microelectronics
(MIPRO), pages 1059–1063.

Logan, B. and Salomon, A. (2001). A music similarity function based on signal analysis.
In Proceedings of the IEEE Conference on Multimedia and Expo.

Lops, P., de Gemmis, M., and Semeraro, G. (2011). Content-based recommender systems:
State of the art and trends. In Recommender Systems Handbook, pages 73–105.
New York, NY: Springer.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), pages 1150–
1157.

Lu, J., Zhao, T., and Zhang, Y. (2008). Feature selection based-on genetic algorithm for
image annotation. Knowledge-Based System, 21(8):887–891.

Lv, Q., Josephson, W., Wang, Z., Charikar, M., and Li, K. (2006). Ferret: a toolkit for
content-based similarity search of feature-rich data. In Proceedings of the 2006
EuroSys Conference, pages 317–330.

Ma, S. and Huang, J. (2008). Penalized feature selection and classification in bioinfor-
matics. Briefings in Bioinformatics, 9(5):392–403.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the
National Institute of Sciences (Calcutta), 2:49–55.

Makadia, A., Pavlovic, V., and Kumar, S. (2008). A new baseline for image annotation. In
Proceedings of the 10th European Conference on Computer Vision: Part III, pages
316–329.

155

Marukatat, S. (2008). Image annotation using label propagation algorithm. In Proceedings
of the 5th International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, volume 1, pages
57–60.

Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004). Robust wide-baseline stereo from
maximally stable extremal regions. Image and Vision Computing, 22(10):761–767.

McFee, B., Barrington, L., and Lanckriet, G. R. G. (2012). Learning content similarity
for music recommendation. IEEE Transactions on Audio, Speech & Language
Processing, 20(8):2207–2218.

McFee, B. and Lanckriet, G. R. G. (2010). Metric learning to rank. In Proceedings of the
27th International Conference on Machine Learning (ICML), pages 775–782.

Melacci, S. and Belkin, M. (2011). Laplacian support vector machines trained in the primal.
Journal of Machine Learning Research, 12:1149–1184.

Mikolov, T., Deoras, A., Kombrink, S., Burget, L., and Cernocký, J. (2011).
Empirical evaluation and combination of advanced language modeling techniques.
In Proceedings of the 12th Annual Conference of the International Speech
Communication Association (INTERSPEECH), pages 605–608.

Moise, G., Sander, J., and Ester, M. (2006). P3c: A robust projected clustering algorithm.
In Proceedings of the 6th IEEE International Conference on Data Mining, pages
414–425.

Mukherjee, J., Mukhopadhyay, J., and Mitra, P. (2014). A survey on image retrieval
performance of different bag of visual words indexing techniques. In 2004 IEEE
Students’ Technology Symposium (TechSym), pages 99–104.

Müller, E., Günnemann, S., Assent, I., and Seidl, T. (2009). Evaluating clustering
in subspace projections of high dimensional data. Proceedings of the VLDB
Endowment, 2(1):1270–1281.

Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E. H., Petkovic, D., Yanker,
P., Faloutsos, C., and Taubin, G. (1993). The QBIC project: Querying images by
content, using color, texture, and shape. In Storage and Retrieval for Image and
Video Databases (SPIE), pages 173–187.

Norouzi, M., Fleet, D. J., and Salakhutdinov, R. (2012). Hamming distance metric learning.
In Advances in Neural Information Processing Systems 25, pages 1070–1078.

Nov, O. and Ye, C. (2010). Why do people tag?: motivations for photo tagging.
Communications of the ACM, 53(7):128–131.

Ono, A., Amano, M., Hakaridani, M., Satou, T., and Sakauchi, M. (1996). A flexible
content-based image retrieval system with combined scene description keyword. In
Proceedings of the 3rd IEEE International Conference on Multimedia Computing
and Systems, pages 201–208.

156

Ozkan, D. and Duygulu, P. (2006). A graph based approach for naming faces in news
photos. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2, pages 1477 – 1482.

Pal, S. K., De, R. K., and Basak, J. (2000). Unsupervised feature evaluation: a neuro-
fuzzy approach. IEEE Transactions on Neural Networks and Learning Systems,
11(2):366–376.

Patel, B. V. and Meshram, B. B. (2012). Content based video retrieval systems. Computing
Research Repository (CoRR), abs/1205.1641.

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238.

Pentland, A., Picard, R. W., and Sclaroff, S. (1996). Photobook: Content-based
manipulation of image databases. International Journal of Computer Vision,
18(3):233–254.

Pham, H. D., Kim, K.-H., and Choi, S. (2014). Semi-supervised learning on bi-relational
graph for image annotation. In Proceedings of the International Conference on
Pattern Recognition.

Pope, S. T., Holm, F., and Kouznetsov, R. (2004). Feature extraction and database
design for music software. In Proceedings of the International Computer Music
Conference, pages 596–603.

Procopiuc, C. M., Jones, M., Agarwal, P. K., and Murali, T. M. (2002). A monte carlo
algorithm for fast projective clustering. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 418–427.

Puuronen, S. and Tsymbal, A. (2001). Local feature selection with dynamic integration of
classifiers. Fundamenta Informaticae, 47(1-2):91–117.

Qin, D., Gammeter, S., Bossard, L., Quack, T., and Gool, L. J. V. (2011). Hello neighbor:
Accurate object retrieval with k-reciprocal nearest neighbors. In Proceedings of the
24th IEEE Conference on Computer Vision and Pattern Recognition, pages 777–
784.

Rahman, M. M., Antani, S., and Thoma, G. R. (2011). A query expansion framework in
image retrieval domain based on local and global analysis. Information Processing
& Management, 47(5):676–691.

Rajam, I. F. and Valli, S. (2013). A survey on content based image retrieval. Life Science
Journal, 10(2):2475–2487.

Ranzato, M. and Hinton, G. E. (2010). Modeling pixel means and covariances using
factorized third-order boltzmann machines. In Proceedings of the 23rd IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2551–
2558.

157

Ranzato, M., Poultney, C. S., Chopra, S., and LeCun, Y. (2006). Efficient learning of sparse
representations with an energy-based model. In Advances in Neural Information
Processing Systems 19, pages 1137–1144.

Raoui, Y., Bouyakhf, E. H., Devy, M., and Regragui, F. (2011). Global and local image
descriptors for content based image retrieval and object recognition. Applied
Mathematical Sciences, 5(42):2109–2136.

Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. (2009). GSA: A gravitational search
algorithm. Information Sciences, 179(13):2232–2248.

Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. (2013). A simultaneous feature
adaptation and feature selection method for content-based image retrieval systems.
Knowledge-Based Systems, 39:85–94.

Ribeiro, M. N., Neto, M. J. R., and Prudêncio, R. B. C. (2008). Local feature selection in
text clustering. In Proceedings of the 15th International Conference on Advances
in Neuro-Information Processing, pages 45–52.

Robnik-Sikonja, M. and Kononenko, I. (2003). Theoretical and empirical analysis of
ReliefF and RReliefF. Machine Learning, 53(1-2):23–69.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323–2326.

Russell, B., Torralba, A., Murphy, K., and Freeman, W. (2008). LabelMe: A database and
web-based tool for image annotation. International Journal of Computer Vision,
77(1-3):157–173.

Saad, Y. and Schultz, M. H. (1986). GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 7:856–869.

Samaria, F. S. and Harter, A. C. (1994). Parameterisation of a stochastic model for human
face identification. In Proceedings of the 2nd IEEE Workshop on Applications of
Computer Vision, pages 138–142.

Schölkopf, B., Smola, A. J., and Müller, K. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

Setia, L. and Burkhardt, H. (2006). Feature selection for automatic image annotation. In
Proceedings of the 28th Symposium on Pattern Recognition, pages 294–303.

Shen, X., Lin, Z., Brandt, J., Avidan, S., and Wu, Y. (2012). Object retrieval and
localization with spatially-constrained similarity measure and k-nn re-ranking. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3013–3020.

158

Shi, R., Lee, C.-H., and Chua, T.-S. (2007). Enhancing image annotation by integrating
concept ontology and text-based bayesian learning model. In Proceedings of the
15th International Conference on Multimedia, pages 341–344.

Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., and Jain, R. (2000). Content-
based image retrieval at the end of the early years. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(12):1349–1380.

Smith, J. R. and Chang, S. (1996). VisualSEEk: A fully automated content-based
image query system. In Proceedings of the 4th ACM International Conference
on Multimedia, pages 87–98.

Srikanth, M., Varner, J., Bowden, M., and Moldovan, D. (2005). Exploiting ontologies for
automatic image annotation. In Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
552–558.

Suganya, R. and Shanthi, R. (2012). Fuzzy C-means algorithm—A review. International
Journal of Scientific and Research Publications, 2(11):1.

Sun, Y. and Bhanu, B. (2010). Image retrieval with feature selection and relevance
feedback. In Proceedings of the 17th IEEE International Conference on Image
Processing, pages 3209–3212.

Tang, J., Hong, R., Yan, S., Chua, T.-S., Qi, G.-J., and Jain, R. (2011). Image annotation by
kNN-sparse graph-based label propagation over noisily tagged web images. ACM
Transactions on Intelligent Systems and Technology, 2(2):14.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B (Methodological), pages 267–288.

Tirilly, P., Claveau, V., and Gros, P. (2009). A review of weighting schemes for bag of
visual words image retrieval. Research Report PI 1927, TEXMEX-INRIA-IRISA.

Tong, H., He, J., Li, M., Ma, W.-Y., Zhang, H.-J., and Zhang, C. (2006). Manifold-ranking-
based keyword propagation for image retrieval. EURASIP Journal on Advances in
Signal Processing, 2006.

Torresani, L. and Lee, K. (2006). Large margin component analysis. In Advances in Neural
Information Processing Systems 19, pages 1385–1392.

Vanegas, J. A., Arevalo, J. E., and González, F. A. (2014). Unsupervised feature
learning for content-based histopathology image retrieval. In the 12th International
Workshop on Content-Based Multimedia Indexing (CBMI), pages 1–6.

Vasconcelos, N. and Vasconcelos, M. (2004). Scalable discriminant feature selection
for image retrieval and recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages 770–775.

159

von Ahn, L. and Dabbish, L. (2004). Labeling images with a computer game. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 319–326.

Wang, J., Wang, F., Zhang, C., Shen, H. C., and Quan, L. (2009). Linear neighborhood
propagation and its applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(9):1600–1615.

Wang, J. Z., Li, J., and Wiederhold, G. (2001). SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(9):947–963.

Wang, L. and Khan, L. (2006). Automatic image annotation and retrieval using weighted
feature selection. Multimedia Tools and Applications, 29(1):55–71.

Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. J. (2002). Distance metric learning with
application to clustering with side-information. In Advances in Neural Information
Processing Systems 15, pages 505–512.

Xu, B., Bu, J., Chen, C., Cai, D., He, X., Liu, W., and Luo, J. (2011). Efficient manifold
ranking for image retrieval. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 525–534.

Yang, Y., Shen, H. T., Ma, Z., Huang, Z., and Zhou, X. (2011). l2,1-norm regularized
discriminative feature selection for unsupervised learning. In Proceedings of the
International Joint Conferences on Artificial Intelligence, pages 1589–1594.

Zhao, Z. and Liu, H. (2007). Spectral feature selection for supervised and unsupervised
learning. In Proceedings of the 24th International Conference on Machine
Learning, pages 1151–1157.

Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand, A., and Liu, H. (2010).
Advancing feature selection research – ASU Feature Selection Repository.
Technical report, Arizona State University.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. (2003). Learning
with local and global consistency. In Advances in Neural Information Processing
Systems 16.

Zhu, J., Hoi, S., and Lyu, M. (2008). Face annotation using transductive kernel fisher
discriminant. IEEE Transactions on Multimedia, 10(1):86–96.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of the 20th International
Conference on Machine Learning, pages 912–919.

	Local selection of features and its applications to image search and annotation
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Improving the Quality of K-NN Graphs For Image Databases Through Vector Sparsification
	Chapter 4: Image Search Based on Local Selection of Features and Query Expansion
	Chapter 5: Image Label Propagation Via Refined Similarity Graphs
	Chapter 6: Conclusion
	Bibliographhy

	List of Figures (1 of 2)
	List of Figures (2 of 2)

