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ABSTRACT 

EFFECT OF SCAN TIME ON RESTING STATE PARAMETERS 

by 

Dhruti Patel 

In the past decade the interest in studying the spontaneous low-frequency fluctuations 

(LFF) in a resting-state brain has steadily grown. By measuring LFF (< 0.08 Hz) in 

blood-oxygen-level-dependent (BOLD) signals, resting-state functional magnetic 

resonance imaging (rs-fMRI) has proven to be a powerful tool in exploring brain network 

connectivity and functionality. Rs-fMRI data can be used to organize the brain into 

resting state networks (RSNs).  In this thesis, rs-fMRI data are used to determine the 

minimum data acquisition time necessary to detect local intrinsic brain activity as a 

function of both the amplitude of low frequency fluctuations (ALFF) and the fractional 

amplitude of low frequency fluctuations (fALFF) in BOLD signals in healthy subjects. 

The data are obtained from 22 healthy subjects to use as a baseline for future rs-fMRI 

analysis. Voxel-wise analysis is performed on the whole brain, gray matter volume, and 

two previously established RSNs: the default mode network (DMN) and the visual 

system network, for all the subjects in this study. 

Pearson’s correlation coefficients (r-values) are calculated from each subject. The 

entire time series for one subject is divided into 31 subsections and the r-values are 

calculated between each consecutive subsection in a subject. In total, there are 30 r-

values. To better understand what the results mean across subjects and within subjects 

Fisher transformations are applied to the 30 calculated r-values for each subject to get a 

normal z-distribution. The mean across 22 subjects’ z-values is calculated for group 



ii 

analysis. In the end, there are 30 mean values. Finally, an exponential curve fit model is 

calculated across the 22 subjects using the calculated mean values, and an asymptotic 

growth model is used to detect the minimum data acquisition time required to obtain both 

ALFF and fALFF of the BOLD signals at rest. The results show that the minimum time 

required to detect an ALFF and fALFF of the BOLD signals at rest is 12 and 13.33 

minutes respectively. Future studies can focus on determining the minimum scanner time 

using similar analysis for different physiological states of the brain.  
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CHAPTER 1 

INTRODUCTION 

1.1 Preliminary Research 

Functional magnetic resonance imaging (fMRI) is another branch of magnetic resonance 

imaging (MRI). Both of these modalities are non-invasive methods of brain imaging 

utilizing a strong magnetic field (usually a magnetic field strength of 3 Tesla). They also 

incorporate several radio frequency pulses to acquire either structural or functional 

images of the brain. Unlike MRI, which only gives high-resolution anatomical images of 

the brain, fMRI is able to detect brain activity and behavior with low-resolution structural 

images of the brain. To study the brain function, most studies measure task-related 

changes in the local hemodynamic activity within each region by measuring the blood 

oxygenation-level dependent (BOLD) signal. The current study focuses on the neural 

activity and BOLD signal at rest, without the stimulus of a task.  

Positron emission tomography (PET) imaging is similar to fMRI; it gives 

functional information of the brain. However, instead of measuring differences in 

magnetic property of used vs. unused blood, PET imaging measures blood flow by 

tracking the distribution of an injected positron-emitting tracer. PET imaging technique is 

more invasive and provides poorer spatial and temporal resolution than fMRI [1].  

As previously stated, this particular study focuses on resting-state fMRI (rs-

fMRI).  The BOLD signal obtained from an fMRI study is in time domain but once 

converted into frequency domain it provides a statistically significant temporal 

correlation between regions of the brain that are active and lack direct anatomical 
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projections known as functionally connected regions. The reconstruction of the signal in 

the frequency domain is accomplished with Fourier transform (FT) and band pass filtered 

to specific frequency bands (0.01-0.1 Hz). The filter is set to these numbers to remove 

noise artifacts and other components underlying the BOLD signal, such as cardiac or 

respiratory components. Rs-fMRI studies look at the intrinsic properties of the brain; so 

the functionally connected regions observed at rest are correlated through their 

synchronous BOLD signals.   

Over the years, these synchronous BOLD signals between regions that are 

spatially distinct have been examined to identify resting state networks (RSNs). The most 

fundamental RSN is the default mode network (DMN). There are seven more RSNs that 

have been identified based on different mental processes at rest. These seven RSNs are 

also detected during the onset of a particular task [2-4].   

1.2 Overview 

Although most rs-fMRI studies are focused on the examination of temporal correlations 

between low-frequency oscillations (LFOs) in BOLD signal, the current study explores 

the amplitude information in these BOLD signals. Specifically, this study focuses on the 

total power within the low frequency range using amplitude low frequency fluctuations 

(ALFF) and fractional ALFF (fALFF) as reliable indices for local intrinsic brain activity 

in healthy people. The ALFF and fALFF measurements in each voxel can be used to 

detect the RSNs. Individual variability in these measurements have been linked to 

changes in neural activation and behavior [5].  

Rs-fMRI experiment is also a preferable method for clinical studies to look at 

brain system integrity patterns as a powerful tool for detecting differences among healthy 
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people and people suffering from neurological and psychiatric disorders. Changes in 

either ALFF or fALFF values in each voxel for different regions of interest (ROIs) within 

the brain have also been reported for a number of neuropsychiatric disorders, including 

autism, depression, attention deficit hyperactivity disorder, and schizophrenia [6].  

1.3 Objective 

The aim of this study is to determine the minimum amount of scan time necessary to 

obtain viable rs-fMRI data from healthy subjects. Viable data is defined here as data that 

features the ideal ALFF and fALFF values from the BOLD signal at rest. The ideal 

values are the values that remain constant after reaching a certain measurement of ALFF 

and fALFF for different ROIs. The main reasons to study the rs-fMRI are it does not 

involve active participation from the subject, it can be performed on coma induced or 

sedated patients, and it creates a set baseline for all the participants. The reason to study 

the minimum resting state scan time is because for each hour the subject is in the scanner 

for; it costs the Principal Investigator (PI) of the study at least $500. Also, the longer the 

subject is in the scanner, greater the possibility for head motion by the subject and this 

decreases the chance of any significant statistical analysis on this data.  

 In this study, 22 healthy subjects were scanned for 41 minutes each to acquire 

their rs-fMRI data. While the subject is in the scanner, several low-resolution images of 

the brain are taken at a specified repetition time (TR) between each image. In this study, 

the TR between each image is 2.5 seconds.  

Next, the time series from each subject is divided into different subsections or 

runs. Each subject ends up with 31 different subsections within the 995 pre-processed 

time series. Spatial maps of the ALFF and fALFF measurements are calculated for each 
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subject’s subsection. Then using these spatial maps, Pearson’s correlation coefficients (r-

values) are calculated between each consecutive subsection for each subject. Each subject 

now has 30 different calculated r-values. Finally, group level and inter-subject analysis 

are performed on the calculated r-values to determine the minimum resting state scan 

time for different ROIs. 

1.4 Outline 

This thesis analyzes rs-fMRI data taken from 22 healthy subjects who are in the MRI 

scanner for about 41 minutes each. Chapter 2 goes into detail about MRI neuroimaging 

technique. The following chapter describes fMRI modality. Chapter 4 goes over the 

methods performed in this study. Chapter 5 and 6 talk about results and conclude the 

study, respectively.  
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CHAPTER 2 

MAGNETIC RESONANCE IMAGING  

Magnetic Resonance Imaging (MRI) is similar to nuclear magnetic resonance (NMR). 

NMR describes the precession when a certain nuclei placed in a strong magnetic field 

resonates at radiofrequencies (RF) described by the Larmor frequency specific to that 

atom. The Larmor frequency depends on the strength of the external magnetic field (B0) 

and an intrinsic property of the nucleus, the gyromagnetic ratio [7]. The decay rate of the 

signal detected from a sample depends on the relaxation time constants T1 and T2 after 

the atom has been excited.  

 The image contrasts are detected by localized variation in the tissue relaxation 

time constants. The use of additional magnetic field gradients is required to allow spatial 

localization of the signal detected by altering the Larmor frequency of Hydrogen atom in 

water molecules depending on their location in the field. Thus MRI similar to NMR is an 

acceptable modality to study the anatomy of the brain and to diagnose different diseases 

by providing great tissue contrast using different types of pulse sequences. 

2.1 Overview of MRI 

Nuclear magnetic resonance is a method to observe the magnetic properties of different 

materials when the nuclei are immersed in a static magnetic field (B0) and exposed to the 

RF pulse.  The magnetic property depends on the spin associated with the nuclei of that 

material; every nuclei posses a spin of +1/2 and -1/2, this spin generates a magnetic field, 

thus hydrogen protons have magnetic moments. MR imaging is predominantly concerned 

with the signal detection from hydrogen nuclei in water molecules, constituting 70% of 

body weight, 70.6% of gray matter, and 84.3% of white matter in the brain. The hydrogen 
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nucleus has only one proton and this aligns either in parallel or anti-parallel direction 

with the B0 [8].  The interaction of the magnetic moment (+/- ½) of the hydrogen proton 

with B0 causes the proton to precess (circular rotary motion) around the magnetic field.  

                                             

Figure 2.1 The precession of a proton in a strong magnetic field. Θ is the angle between 
the spinning magnetic moment (μ) and the external magnetic field (B0). 
 
The speed of rotation (precession) is given by the Larmor equation 

v0= γ B0  / 2π      (2.1) 

where v0 is the Larmor frequency (Hz), γ is the gyromagnetic ratio (hydrogen = 42.58 

MHz / T), and B0 is the external magnetic field in Tesla (T) [9].  

2.2 Static Magnetic Field 

The static external magnetic field (B0) is usually in the range from 1.5T to 3.0T and is 

applied in positive z direction perpendicular to x-y axis. The hydrogen protons align in 

parallel with the direction of B0 (lower energy state) or anti-parallel with B0 (higher 

energy state).  In the absence of Bo these states have equal energy. In the presence of Bo 

a proton in the state E↑ (lower energy) can switch to the state E↓ (higher energy) by 

absorbing a photon with energy equal to equation 2.2.  

E↓ − E↑ = hγ B0  / 2π    (2.2) 
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Where h is Planck’s constant and the Larmor frequency is proportional to gyromagnetic 

ratio and B0. The B0 allows the protons to have zero net magnetization in x-y direction 

because per every 1T there is 0.1% of hydrogen protons that are aligned parallel 

(precessing) to B0. As the magnetic field strength increases, more and more protons align 

parallel to B0 [10].  

2.3 RF Pulse 

Sending alternating currents in two coils positioned along the x and y direction generates 

the electromagnetic RF pulse.  The dynamic equilibrium is disturbed through the 

transmission of photons with the Larmor frequency as described by equation 2.1; 

applying a 90◦ pulse for a short period excites the protons. The angle between the z-axis 

and M is called the flip angle (equation 2.3), 

θ = γB1t     (2.3) 

where θ= flip angle, γ= Gyromagnetic ratio, B1 = External Magnetic Field (RF pulse), t= 

duration of RF pulse. The net magnetization vector has both a longitudinal (z direction) 

and transverse (x-y plane) component as the protons precess at a fast rate once excited by 

the RF pulse. When the RF pulse is switched off, the system returns to its dynamic 

equilibrium (relaxation process) oscillating around the new Larmor frequency around M. 

The transverse component returns to zero, and the longitudinal component becomes Mo 

again, the return to equilibrium is called relaxation.  

To summarize the excitation process, the protons are excited by the RF pulse and 

the transverse component of the net magnetization vector in each voxel rotates clockwise 

at the precession frequency in the stationary reference frame. This induces an alternating 

current in an antenna (coil) placed around a person’s head in the xy-plane. Depending on 



 8 

the level of excitation, different relaxation images are detected.  This is described by 

figure 2.2 [10].  

                                        

Figure 2.2 Overview of NMR experiment. [10] 

The decay of Mxy (transverse magnetization vector) is defined by T2 relaxation 

time causing the disappearance of the transverse component of the net magnetization 

vector. T2 can be defined as the time taken by Mxy to reduce to 37% of its original value 

due to both magnetic field in homogeneities and spin-spin interactions. The relationship 

between decay of Mxy and T2 is given by equation 2.4. 

Mxy (t) = M0 e –t/T2      (2.4) 

Where M 0 is the value of the transverse component immediately after the RF pulse and 

T2= transverse relaxation time.  

The T1 relaxation time is related to the regeneration of longitudinal magnetization 

vector Mz. This is defined as the time taken by longitudinal magnetization vector Mz to 

recover 63% of its original value after application of RF pulse. T1 relaxation time 

depends on the external magnetic field: the higher the field, the higher T1. Equation 2.5 

gives the relationship between Mz and T1 at any instantaneous time t. 
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Mz (t)= Mo (1-e t/T1)               (2.5) 

  

Figure 2.3 T1  & T2 relaxation times for CSF and fat with a flip angle of 90. 

2.4 Image Acquisition 

To create images, the scanner uses a series of changing magnetic gradients and oscillating 

electromagnetic fields, known as a pulse sequences. The images are constructed using 

both the frequency and phase encoding information of the hydrogen atom. On T1-

contrast images, fluid appears as black, gray matter appears as dark gray, and white 

matter appears as light gray. However, on T2- contrast images, the gray matter is light, 

white matter is dark, and fluid is very bright. The ability to distinguish different locations 

within an image is known as spatial resolution. Since MR images sample the brain in 

three dimensions, the basic sampling units of MRI are known as voxels or volume 

elements. As the voxel size decreases, the ability to identify fine structure in a brain 

image improves. Although, structural MR images are considered to be static 

representation of the brain, fMRI is inherently dynamic, in that it measures changes in 

brain activity over time. The rate at which a technique acquires images or its sampling 

rate, determines its temporal resolution [11]. Therefore, fMRI samples the brain in four 

dimensions; the fourth dimension is the different number of images generated in the MRI 

scanner. 
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In order to get the right spatial resolution, the magnetic field must be spatially 

dependent. A series of linear magnetic field gradients in the x, y, and z-directions are 

superimposed onto the z-component of the B0 field. As the gradients change, the scanner 

produces noise that needs to be canceled with earplugs. The Gz-gradient selects the 

number of slices needed to cover the whole brain in one image. The dimensions are in 

units of mm. As a result, the new Larmor frequency becomes equation 2.6. 

      ω (z)= γ (B0 +Gz z)          (2.6) 

The thickness of the selected slice is defined by equation 2.7. 

Δz= Δω/ γ Gz = BW/ γ Gz        (2.7) 

The slice thickness is proportional to the bandwidth (BW) of the RF pulse and inversely 

proportional to the Gz. The minimum slice thickness used is typically 1mm on a 3T 

imaging system [10].  

 The next step is the phase encoding gradient, which causes a change in the 

precession frequency of individual columns for a particular time. Once it is turned off, the 

precession frequencies in the columns are same. However, the term phase encoding arises 

from the fact that not all columns precess at the same frequency. The last step is the 

frequency-encoding gradient applied only during the time of signal readout or when the 

RF pulse is ON. Each pixel in an individual column has the same phase difference but 

slightly different precession frequency.  

To understand how and in which order the three different gradients have to be 

applied to sample the whole Fourier space, the k-theorem is used. It states that for a given 

data point in k-space (kx, ky), its signal S (kx, ky) is the sum of all the little signal from 
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each voxel (x, y) in the physical space, under the gradient field. The acquired MR signal, 

in 2-D space, is the Fourier transform of the imaged object. 

                                    

Figure 2.4 Illustration of K-theorem.  (a) The raw data measured by the MR Imaging 
system.  (b) Modulus of the image obtained from a 2D inverse FT of the raw data. 
 
To measure k-space, the 2D spin-echo pulse sequence is demonstrated by figure 2.5.  

                             

Figure 2.5 Gradient echo pulse sequence [10]. 

In order to obtain an image, the complete k-space is sampled and the inverse FT is then 

calculated. To understand the function of the brain, images need to be acquired very 

rapidly, at approximately the same rate as the physiological changes of interest. For this 

reason, fast pulse sequences have been developed sensitive to T2* contrast relaxation 

times, providing high temporal resolution study of functional changes in human brain 

through fMRI. T2* is the time constant associated with the loss of phase coherence 

among spins oriented at an angle to the B0 field. Echo planar imaging (EPI) is a method 

where the entire k-space is filled using rapid gradient switching pattern following a single 

excitation of the RF pulse.  
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Figure 2.6 EPI pulse sequence and its K-space trajectory [11] 

2.4.1 Image Types 

Based on the type of contrast involved, MRI images can divide into three types; T1 

weighted images, T2 weighted images, and proton density images. All these types of 

images differ from each other in terms of tissue contrast and values of TR and TE.   

T1 weighted images define the contrast between different tissues due to 

differences in longitudinal relaxation time. A short TR and short echo delay time (TE) is 

required to acquire T1 images. For T2 weighted images the TR and TE are chosen as to 

reduce the differences of longitudinal relaxation time T1 and to increase the differences 

in transverse relaxation time T2 between tissues. The last type of images, proton density 

detects differences in proton density between two tissue types. This is mainly due to the 

differences in water content. Table 2.1 summarizes TR and TE for three MRI image types.  

Table 2.1 TR and TE times for different weighted images. 
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2.4.2 MRI Signal 

The MRI signal is generated in time domain; however, it is best analyzed in the 

frequency domain. Fourier transform is a method the converts the signal from time 

domain to frequency domain. From plot of signal intensity vs. time to signal intensity vs. 

frequency, resulting in a peak for each resonance frequency of nuclei in the sample [9].  
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CHAPTER 3 

FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 

3.1 Background on fMRI 

In the past two decades, fMRI has gained widespread acceptance as a powerful tool for 

mapping brain function [12]. It is used to quantify physiological changes taking place in 

the brain over time by analyzing the BOLD signal. The BOLD signal gives information 

about the brain activity either at rest or while performing a task. The signal is used to 

detect functional connectivity patterns, RSNs, reflecting the intrinsic energy demands of 

neuron population that, via firing together with a common functional purpose, have 

subsequently wired together through synaptic plasticity. The focus of the current thesis is 

to look into the influence of time on rs-fMRI BOLD signals at LFOs amplitude 

information at rest. 

3.1.1 BOLD Signal 

Ogawa et al., was the fist one to analyze fMRI images with BOLD contrast with the idea 

that changes in blood oxygenation could be measured. BOLD contrast has its origin in 

the fact that when normally diamagnetic oxygenated hemoglobin gives up its oxygen, it 

results in deoxygenated hemoglobin that is paramagnetic. The effect of paramagnetic 

molecules in blood produces a difference in magnetic susceptibility between the blood 

vessels and the surrounding tissue creating a darker image [13]. The paramagnetic 

property distorts the magnetic field causing spin de-phasing, resulting in a decay of 

transverse magnetization, which depends on the time constant T2*.  Therefore, MR pulse 
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sequences sensitive to T2* show more MR signal where blood is highly oxygenated and 

less MR signal where blood is highly deoxygenated as illustrated by figure 3.1 [11]. 

 

                          

Figure 3.1 Summary of BOLD signal generation [11]. 

The BOLD signal reflects changes in blood flow, blood volume, and oxygen 

consumption; these are the physiological changes associated with the BOLD signal.  At 

the onset of a task, the active neurons require two metabolites, oxygen and glucose, to 

provide the energy for restoration of their membrane potentials. However, these 

metabolites are not stored locally but are rather delivered through the vascular system, 

which sends more blood to regions of the brain that are active. Because the blood 

supplies more oxygen than can be used by the neurons, the result is a systematic increase 

in blood oxygenation in more active brain regions, which in turn leads to an increase in 

these regions’ BOLD signals. To sum it up, the change in deoxygenated hemoglobin 

effects the active brain regions’ BOLD signals [11].  
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3.1.2 Hemodynamic Response Function 

Over the years, scientists have attempted to capitalize on the spatial temporal dynamics of 

the hemodynamic response. The spatial temporal dynamics was first observed at the 

onset of a neural activity where a small rise in deoxygenated hemoglobin peaked at 4 

seconds (initial dip) and decreasing several seconds after the termination of the 

stimulation. The initial dip was believed to originate due to an increase in metabolism 

before the hemodynamic response kicked in [14]. The hemodynamic response function 

(HRF) (figure 3.2) illustrates the concentration of oxygenated hemoglobin when the 

neurons are active and it can be used as an impulse function to find the output of 

unknown signal. The variation in the BOLD signal across regions result from neural 

activity related to stimulus and vascular factors [15]. 

 

                                             

Figure 3.2 The hemodynamic response function (neuronal activity) [14]. 

3.1.3 Components of BOLD Signal 

Raw BOLD signals’ time courses, continuous over time, are noisy due to scanner 

artifacts, motion, and physiological noises such as cardiac and respiratory cycle. As a 

result of the spurious noise, multiple preprocessing steps are typically used to increase 

signal to noise ratio to detect the frequency at which the BOLD signal occurs [6]. The 
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BOLD fluctuations that produce correlations within functional networks occur within a 

range of 0.01-0.08 Hz, useful for understanding the intrinsic process at rest [3, 16]. Thus, 

this avoids any positive correlation between regions unlikely to be functionally connected 

[17].   

LFOs have gained increased attention and researchers have identified spontaneous 

low frequency fluctuations (LFF) in the 0.01-0.1 Hz during both resting and active-task 

conditions. The information derived from LFO amplitude gives meaningful differences 

among brain regions; however, several physiological and neural factors can impact LFO 

amplitudes. To understand why the spontaneous BOLD fluctuations occur at .01-.08 Hz, 

Zuo et al. [18] subdivided the low frequency range into four bands: slow 5 (.01-.027 Hz), 

slow 4 (.027-.073 Hz), slow 3 (.073-.198 Hz) and slow 2 (.198-.25 Hz). It was observed 

that for both ALFF and fALFF measures, slow 4 and slow 5 oscillations were detected 

within gray matter and slow 2 and slow 3 were restricted to white matter. Respiratory and 

aliased cardiac signals fall in the range of slows 2 and 3 which are not important [18].   

3.2 Two Types of fMRI Experiments 

Areas of the brain that exhibit BOLD signal fluctuations at low frequencies (<0.1 Hz) 

linked in time are assumed to be functionally connected. Measuring the amplitude of 

resting-state BOLD fluctuations calculated in the low-frequency band and determining 

the time when these values level out can help detect connectivity patterns in healthy 

subjects. 

3.2.1 Task-Based fMRI 

The current understanding of brain function using fMRI has been focused on task-based 

or stimulus-driven paradigm. Using the relative changes from baseline in the BOLD 
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signal during the performance of a task or in response to a stimulus, the active brain 

region during that task is identified [2]. The results acquired from the present study 

would not be relevant to task-based fMRI because someone performing a finger-tapping 

task would not need to be in the scanner for an equivalent amount of time.  

3.2.2 Resting-state fMRI 

The second type of fMRI scan is the resting-state fMRI scan. This particular type of scan 

looks at the brain when it’s at rest, the brain under normal physiological condition 

remains neuro-electrically and metabolically active [12]. Studies have stated that brain at 

rest consumes about 90% of brain’s energy while brain during task-evoked activity only 

consumes about 5% of brain’s energy.  

3.2.2.1 Analysis on Rs-fMRI 

Rs-fMRI BOLD signal can be used to detect functional connectivity patterns as 

discovered by Biswal et al. They demonstrated that under resting conditions, the BOLD 

signal fluctuations that are measured in the left sensorimotor cortex, become 

interconnected with fluctuations in the contralateral sensorimotor cortex, in the right 

supplementary motor area and in right premotor areas, a set of regions constituting the 

sensorimotor network [16]. Several researchers since then have confirmed that many of 

the networks engaged during various cognitive tasks are also recognizable during resting 

state scan [19].  Spontaneous activity in the LFF range is observed across various 

behavioral states including resting state condition, task performances, and different 

consciousness states including sleep, anesthesia, and in disorders of consciousness. These 

spontaneous fluctuations at rest are a representation of different memory, thinking, or 

intrinsic processes [12].   
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Cordes et al., studied the rs-fMRI to identify brain regions that show activation on 

rs-fMRI maps using correlation coefficient analysis. They showed that functionally 

related regions are identified by means of their synchronous slow fluctuations in signal 

intensity [20]. 

3.2.2.2 Clinical Applications of Rs-fMRI 

For clinical studies, the resting state paradigm is appealing because it does not require 

sophisticated experimental setup and is suitable with uncooperative patient population. 

This can be performed on coma or anesthesia induced patients. Researchers are applying 

rs-fMRI scans to study various neurological and psychiatric disorders. The first clinical 

application of rs-fMRI was on Alzheimer’s (AD) patients. Li et al., reported that AD 

patients have impaired functional connectivity in both hippocampi, compared to normal 

controls. This was correlated with the loss of cognitive ability [21]. Thus, rs-fMRI is used 

to obtain patient-specific diagnostic and prognostic information [22].   

3.3 Resting State Networks 

Resting state networks (RSNs) are localized to gray matter regions and reflect functional 

systems supporting perceptual and cognitive processes; they display a high level of 

correlated BOLD signal activity. The anatomical connections consist of white matter 

tracts that both directly and indirectly interconnect brain regions. Combining functional 

connectivity with diffusion tensor imaging (DTI), a MRI technique that allows the study 

of white matter fiber bundles, shows a direct association between functional and 

structural connectivity.  Using ROI-based analysis and independent component analysis 

(ICA), eight major RSNs have been detected. The ROI based method requires a prior 

selection of a voxel or cluster. It provides a direct answer to direct question. ICA, on the 
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other hand, works by decomposing a two-dimensional data matrix into the time course 

and associated spatial maps of the underlying hidden signal. Similar to ROI method, ICA 

approach has identified networks of spontaneous coherence to known sensory and 

cognitive processing systems [23]. The key networks typically observed during rest 

include: DMN, the sensorimotor network, the executive control network, the auditory 

network, the temporal-parietal network, and up to three visual networks.  

3.3.1 Default Mode Network 

The most studied network during resting-state fMRI is DMN. In fMRI, the cognitive 

functions that are present in the DMN are linked to self-related and internal processes, 

such as stimulus independent thoughts, mind wandering, social cognition, and 

introspection. The DMN consists of signals that are identifiable in posterior cingulate 

cortex, lateral parietal cortex, and mesial prefrontal cortex [12]. These set of regions are 

activated during rest and relatively de-activated during task activity. This network was 

identified through seed-based correlation analysis. Spontaneous correlations have also 

been observed throughout the DMN across various states of altered consciousness, 

including sleep and anesthesia [24]. Decreased connectivity in the DMN reflects 

restricted abilities for self-referential processing in patients with disorders of 

consciousness. 

3.3.2 Visual Network 

The visual system consists of three different networks. The first network is characterized 

by the activity in mesial visual areas, striate cortex and extra-striate regions typically 

mesial, such as lingual gyrus. The second network is associated with lateral visual areas 

such as the occipital pole and occipital-temporal regions. The third network includes 
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activity in the striate cortex and in polar visual areas.  Rs-fMRI studies have shown that 

resting-state BOLD fluctuations are controlled by a visual task performed prior to the 

data acquisition. This shows that resting-state BOLD fluctuations have dynamic 

components that are experience dependent and which may play a role in memory 

consolidation [12].  

As stated in this section, there are many brain networks that play a major role in 

rs-fMRI experiment. These networks are also seen during a task stimulus fMRI 

experiment but the network that is observed is related to that specific task. ALFF and 

fALFF approaches look at the frequency-domain characteristic of the BOLD signals at 

rest.  
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CHAPTER 4 

METHODS 

4.1 Subject Information 

In this experiment 22 healthy subjects were scanned. In total, there were 10 female and 

12 male subjects.  A Siemens 3.0 Tesla scanner equipped for EPI was used for data 

acquisition. 

4.2 fMRI Data Acquisition 

Two scans were performed for each subject. The first scan looked at the anatomical 

information, which was obtained from high-resolution MPRAGE images through T1 

relaxation times. The second scan was the resting-state scan where the subjects were 

instructed to stare at the cross hair. All the subjects have the same baseline criteria; so 

eyes open or closed at rest should not affect the rs-fMRI analysis.   

Each subject had resting-state data of 1000 continuous EPI functional volumes 

(TR = 2500ms; TE = 30ms; flip angle = 90 degrees; 34 slices, matrix = 80x80, field of 

view {FOV} = 240mm, slice thickness = 4mm, voxel size = 3x3x4mm).  The resting-

state scan for each subject lasted for 2500s. MPRAGE volume was acquired with 

acquisition matrix 256x256x144.  

4.3 fMRI Data Pre-Processing 

Different software packages are used for pre-processing steps in this study, including 

AFNI, FSL, and SPM8. Some of the pre-processing steps include realignment, co-

registration, truncation of time points, de-oblique datasets, changing orientation of 

datasets, creating gray matter volume/segments, creating a functional to standard .mat 

file, transforming data sets from raw into standard space.  



 23 

4.3.1 Realignment and Co-registration in SPM8 

For this study, all subjects resting-state and MPRAGE fMRI data were pre-processed 

using SPM8, at tool box in MATLAB2011 [25]. The EPI images were corrected for 

motion related signal changes using the realignment tool in SPM8. This realigns a time-

series of images acquired from the same subject using a least squares approach and 6 

parameters. The parameters included 3 translations (x-, y-, & z- directions) and 3 

rotations (roll, pitch, & yawn). These spatial transformations try to minimize the 

differences between each successive scan and a reference scan. The aim is to remove 

movement artifact in fMRI time-series data; however, the drawback of head motion is 

that the same voxel might represent different location of brain over time.  

Once all the slices are corrected for head motion co-registration takes place. This step 

attempts to co-register the functional head motion corrected images and anatomical 

MPRAGE images for each subject in SPM8 [26].    

4.3.2 Truncation of Original Time Series 

Before the realigned and co-registered time series can be used for further pre-processing 

steps, the slices in the entire volume of the brain were de-obliqued using AFNI software 

package. FMRI EPI datasets are generally acquired in oblique pattern while anatomical 

datasets are in cardinal space. All datasets are transformed into orthogonal space, where 

the images are observed from three-axis coordinate system: axial, sagittal, and coronal 

plane. It is necessary to de-oblique the EPI datasets when transforming it to a standard 

MNI brain template.  
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4.3.2.1 Removal of T1 Saturation Effect 

In order to account for the longitudinal relaxation time (T1) at the beginning of data 

acquisition, the first five time points from each subject were removed. This step was 

performed using fslori command in AFNI.  All preprocessing steps try to increase 

contrast between network correlations and reduce nonspecific/noise correlations [6]. 

4.3.2.2 Calculation of Different Runs 

After all the subjects had the same time series, 31 different runs were created starting 

with 32 time points with an increment of 32 time points going up to 992 time points for 

each subject, calculated in AFNI. Picking increments of 32 time points is essential for 

FFT calculations because the Cooley-Tukey (Butterfly) diagram only takes into account 

half of the data either sine or cosine component and the data has to be a power of two. 

The run scan time started at 1.33 minutes and ended at 41.33 minutes with a TR of 2.5 

seconds. The goal of this study is to identify the minimum amount of time a healthy 

person needs to be in the scanner during a rs-fMRI scan, by detecting the spontaneous 

BOLD signal using two resting state properties from the frequency domain analysis 

(ALFF and fALFF).  

4.4 Creating Functional to Standard Matrix 

In order to convert the fMRI dataset into standard space, the new truncated time series 

was first deobliqued. Then the time series was converted to RPI (Right to Left, Posterior 

to Anterior and Inferior to Superior) format. Using the FLIRT command in AFNI the 

time series was converted to MNI152_T1_3mm_brain standard space template provided 

by FSL software (voxel size= 3x3x3 mm). This registers the fMRI time-series dataset to 
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MNI template for any type of analysis on this dataset. The Perl script to calculate the 

standard matrix is in APPENDIX A. 

4.5 Extract Gray Matter Segment 

The next pre-processing step was to get the gray matter segment for each subject from the 

preprocessed time-series and the MPRAGE images using AFNI. According to 

APPENDIX B, 3dvolreg specifies the processing step to be spatial realignment by taking 

the reference volume as mean_rREST and using interpolation technique as Fourier 

interpolation and does two passes of the registration algorithm.  Using MPRAGE images 

from each subject and converting it to NIFTI format creates three different segments of 

the brain; white matter, gray matter, and cerebral spinal fluid (csf). The gray matter 

segment is created with a 0.7 threshold.  

The gray matter segment is now converted to standard space using the standard 

space MNI template provided by FSL software incorporating the previously created 

func2std.mat file. This process involved a 3-step process: first, a 6 degree of freedom 

linear affine transformation was carried out using FLIRT to align the functional data into 

structural space. The anatomical image of the gray matter mask was then aligned to the 

standard MNI152 space using a 12 degree of freedom linear affine transformation using 

FLIRT [27].  

4.6 ALFF and FALFF Calculation 

As previously mentioned, this thesis looks in to the amplitude information of the BOLD 

signal and not the signal itself for connectivity patterns. For each subject, to measure the 

properties of amplitude of low frequency fluctuations at each voxel two common 

approaches were measured: ALFF and fALFF.   
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4.6.1 ALFF Calculations 

ALFF analysis was done on the frequency information of the BOLD signal using REST 

toolbox in MATLAB2011. It measures the strength and intensity of LFO amplitudes. To 

get ALFF measures at each voxel, the time series for each voxel was filtered (band-pass, 

0.01-0.8 Hz) to remove the effects of very low-frequency drift and high frequency noise. 

Next, the filtered time series was then transferred to the frequency domain by FFT. The 

power spectrum was then computed by squaring the amplitude at each frequency. Then 

the square root of the power spectrum was calculated for each voxel at each frequency 

range across 0.01-0.08 Hz. Finally, the average square root was taken across 0.01-0.08 

Hz as the ALFF measurement for each single voxel. To get better measure of ALFF 

values at each voxel, the mean ALFF (mALFF) was calculated by dividing the whole 

brain ALFF measures at each voxel. ALFF can clearly distinguish between gray matter 

and white matter because these LFF are better detectable within gray matter [18].  

4.6.2 FALFF Calculations 

Similarly, to improve the original ALFF approach, a ratio of the power of each frequency 

at the low-frequency range (0.01-0.08 Hz) to that of the entire frequency range  (0-0.2 

Hz) was used. The sampling rate for this study is 0.4 Hz (1/TR=1/2.5 secs). This was 

again calculated using the REST toolbox in MATLAB2011. The time series of each 

voxel was transformed to a frequency domain. The square root was calculated at each 

frequency of the power spectrum. Finally, the sum of amplitude across 0.01-0.08 Hz was 

divided by that across the entire frequency range (0-0.2Hz). This value is known as the 

fALFF values at each voxel [28]. FALFF measures the relative contribution of specific 

LFO to the whole frequency range and it can provide a more specific measure of LFO. 
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However, the total energy of the signal may be different across brain regions (voxels), 

which can lead fALFF to differ from ALFF in some regions more than others [18].  

4.6.3 Conversion into Standard Space Maps 

In order to perform various analyses on this dataset, the mALFF maps and fALFF maps 

were further pre-processed. The maps were first converted to NIFTI (.nii) format in AFNI 

and then converted to standard space map using the func2std matrix previously created. 

The matrix now becomes 61x73x61 and the voxel size 3x3x3mm for each run. This is 

described in APPENDIX C.  

4.7 Gray Matter Masks 

For the gray matter mask, for each run, the mALFF maps and the gray matter segment 

were multiplied to get a 3D mask of just the gray matter mALFF voxel values. The 

MATLAB2011 script is in APPEDIX D. The fALFF values are within one and the 

mALFF values range from 0.3 to 9.0 to illustrate the mALFF values at each voxel, figure 

4.1. 

 
Figure 4.1 GM mask at rest with axial, coronal, and sagittal brain-views. (fALFF (L) ; 
mALFF (R)). 
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4.8 Pearson’s Correlation Coefficient 

Correlation is a statistical procedure to measure the degree of similarity between two 

different sets of data. The correlation value between any two sets of data ranges from -1 

to 1. In this study, the correlation value measure between two fALFF/mALFF spatial 

maps in an ROI comparing two consecutive runs was positive. Pearson’s correlation 

coefficient r-values were calculated using corr2 function in MATLAB2011 for each time 

point’s voxel. After the gray matter mask for each run was calculated, the 3D mALFF 

and fALFF spatial maps were reshaped to 1D maps and all the nonzero values were 

extracted for correlation calculation. APPENDIX E describes the MATLAB2011 script 

for calculating gray matter r-values. Similar script was used to calculate whole brain 

correlation values on the standard space mALFF and fALFF spatial maps. 

4.9 Independent Component Networks (ICNs) Calculation 

During rs-fMRI, the brain activates a number of networks described by coherent neuronal 

LFOs from 0.01-0.08 Hz. This study looks into the DMN and the visual state network at 

rest. The 6 different standard space IC masks were calculated by Beckhman et. al [29]. 

The authors generated these masks using the probabilistic independent component 

analysis (PICA) approach. The specific IC masks were used from Taylor et al., where 

they identified what each component corresponds to in the RSNs.  The IC masks used 

were 1,2,3 (visual network) and 5,6,13 (DMN) [30]. The mask calculation was similar to 

the gray matter masks previously described.  Pearson’s correlation coefficient was again 

calculated from each successive run for each of the 22 subjects. Figures 4.2 and 4.3 

illustrate regions activated by specific IC mask.  
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Figure 4.2 Three different IC masks that represent the visual network at rest with axial, 
coronal, and sagittal brain-views. (fALFF (L); mALFF (R)) 
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Figure 4.3 Three different IC masks that represent the DMN at rest with axial, coronal, 
and sagittal brain-views. (fALFF (L); mALFF (R)) 
 
 

4.10 Time Calculation 

Once all the Pearson’s correlation coefficients were generated for each subject from 

whole brain, gray matter, and the 6 different ICs minimum resting state scan time was 

calculated. To calculate the time across all 22 subjects, all the r-values were transformed 

to fisher’s z scores, equation 4.1.    

   Z=0.5 * ln [(1+r) / (1-r)]             (4.1) 
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4.10.1 Group Level Analysis Based on Pearson’s Correlation Coefficient 

Using the Pearson’s correlation coefficients r- values at each run (30) across 22 subjects, 

the minimum resting-state scan time was obtained. This was done by plotting all the 22 

subjects r-values for whole brain ROI and eyeing when the lines asymptote to a steady 

point. 

4.10.2 Group Level Analysis Based on Fisher’s Z Transformation 

The mean across each run was calculated across 22 subjects z-scores. Using 

MATLAB2011 curve fitting toolbox, an exponential curve fit was fit to the data. This 

type of model represented the curve for the mean values, equation 4.2. 

F (x) = a*exp^ (b*x) + c* exp ^ (d*x)                (4.2) 
 
Once all the mean values were fit to equation 4.2, tau  (time constant) was calculated. 

This is the time it takes the system’s step response to reach 1-1/e = 63.2% of its final 

value using the values derived from equation 4.2. This type of model best characterizes 

the asymptote in the plot. This quantifies the ideal resting state scan time for 22 healthy 

subjects to detect the amplitude information in BOLD signal.  

4.10.3 Inter-subject Analysis using Z-Scores 

Lastly, to look at the minimum scanner time within a subject, the z-score values were 

used. Again fitting the z-values at each run within a subject on to equation 4.2 and 

calculating the tau constant, identified the minimum resting-state scan time for each 

individual. The results from all the analysis are descried in the next chapter. 
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CHAPTER 5 

RESULTS 

5.1 Overview of Results 

This chapter summarizes all the results that were acquired after the pre-processing and 

post processing steps in SPM8, AFNI, REST, and FSL programs. The goal of this study 

was to figure out the minimum amount of time necessary to detect a stable resting state 

fALFF and mALFF values for the whole brain analysis or for the different ROIs. Thirty-

one runs were calculated from the pre-processed time series. The Pearson’s correlation 

coefficients (r-values) were calculated with each consecutive subsection’s spatial mALFF 

and fALFF map. For example, an r-value was calculated between time-points 32-64 (run 

1), time-points 64-96 (run 2)…etc. There were 30 r-values for each subject. In this 

manner, the scanner time started from 2.666 minutes and went up to 41.333 minutes. 

Once the correlation values were calculated for each run, the minimum time would then 

depend on whether the values drastically changed from run 1 or run 2. If the values did 

not change, from 32-64 to 64-96, then one can conclude that the minimum resting-state 

time point/ minutes correspond to the 64th time point. Last, Fisher’s z transforms from 

each subject’s r-value were calculated. Two forms of analysis were done, within subject 

and across subject. Using two models to model the system, the minimum resting state 

scan time was obtained. 

5.1.1 Group Level: Pearson’s Correlation Coefficient Analysis 

Prior to calculating fisher z-scores for every subject’s r-values, Pearson’s correlation 

coefficient r-values were plotted for the 22 subjects on one plot and the minimum resting 
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state scan time across the 22 subjects was then calculated. To calculate the minimum time 

across the 22 subjects, the time when most of the r-values stabilized to a steady r-value 

was examined. So choosing the resting state scan time above the desired time only states 

that the mALFF and fALFF values in the BOLD signal would not vary as much. Thus, 

the fALFF and mALFF values have stabilized to steady a number at the desired time. 

Figure 5.1 illustrates the Pearson’s correlation coefficient r-values across 22 subjects for 

gray matter. The x-axis represents the 30 different runs converted to minutes using TR = 

2.5 s. The y-values are the r-values at each run.  As is evident from the graph, the 

minimum r-value starts at 0.9 and goes to .99 and the lines stabilize very quickly as can 

be observed from the steep slope.  

Figure 5.1 Gray Matter fALFF Correlation Coefficient R values across 22 subjects  

According to Tables 5.1 and 5.2, mALFF signals take less time to detect at resting state 

for whole brain & gray matter and even significantly less time to detect the different IC 

networks at rest. A similar trend is shown for fALFF analysis. However, this is just by 

eyeing the correlation coefficients at rest and picking the length required. Thus, this is not 

the best way to look at the correlation values.  
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Table 5.1- Pearson’s Correlation Coefficient - mALFF analysis 

 

Table 5.2- Pearson’s Correlation Coefficient - fALFF analysis 

 

5.1.2 Group Level Analysis on Fisher’s Z Transformation 

To get a better visualization of the r-values, the Fisher’s z transformation was performed 

to get z-values for each r-value for each subject. When performing group level analysis, 

the mean was calculated across all the z-values from each subject’s run. The total mean 

values across 22 subjects were 30.  To understand what the values mean, two different 

fits were performed. Figure 5.2 shows the plot of the scattered mean values across 22 

subjects on the y-axis, and the x- axis represents the minutes associated with each run.  

The solid blue line was the exponential fit that was calculated using the curve fitting 

toolbox in MATLAB2011. The curve asymptotes after a certain time, and to represent 

what time, the exponential decay model was referenced. When the mean value reached 

63.2% of its final value represented by the exponential fit model, the time in this case 
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would represent the desirable scanner time for healthy subjects’ mALFF and fALFF 

values at rest. 

 

Figure 5.2 Gray Matter fALFF (r-values-> z-scores -> mean of z-scores across 22 

subjects-> curve fit) 

Tables 5.3 and 5.4 describe the minimum amount of rs-fMRI scanner time needed to 

reliably detect mALFF and fALFF signals for whole brain and different regions of 

interest. The results show that the correlation values stabilize around 13 minutes across 

22 healthy subjects. This may be due to the fact that the correlation coefficients are not 

directly related to pre-processed data to detect functional connectivity but on the 

amplitude of the BOLD signal at rest.  
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Table 5.3 mALFF Analyses:  
Equation to fit: 
        F (x) = a*exp (b*x) + c*exp (d*x)  
Coefficient Values for each variable: 

 

Table 5.4 fALFF Analyses:  
Equation to fit: 
        F (x) = a*exp (b*x) + c*exp (d*x)  
Coefficient Values for each variable: 

 

5.1.3 Inter-Subject Analysis 

Finally, within subject analysis was performed on the calculated z-values for each 

subject. Again the curve fitting toolbox was used to calculate the minimum resting state 

scan time within a subject. There were 30 z-values for each subject corresponding to their 

r-values. Figure 5.3 illustrates a bar plot of how the 14 selected subjects show variability 

in detecting their desirable scan time to reliably identify the fALFF and mALFF signals 

at rest. The rest 8 subjects were excluded from this analysis because their z-values did not 
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fit to the specified curve. The variability among 14 subjects should exist because no two 

people have the same brain structure or BOLD signals at rest.  

 

Figure 5.3 Bar plot of 14 subjects gray matter fALFF z-values 

From table 5.5 one can notice that looking at r-values (table 5.1 & 5.2) will give you a 

shorter scan time compared to z-values for each individual. The minimum scanner time 

ranged from 9 to 16 minutes for 14 individual subjects.  

Table 5.5 fALFF Analyses: 30 z-scores within a subject – gray matter 
Equation to fit the 30 z-scores:  
          F (x) = a*exp (b*x) + c*exp (d*x)  
Coefficient Values for each variable: 
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CHAPTER 6 

DISCUSSION 

The results derived from this study can be used for most fMRI resting-state scans because 

the TR of 2.5 seconds is very popular in this field. The results indicate the minimum 

resting state scan time across 22 healthy subjects to vary from 9 to 16 minutes. This 

variation in detecting the ideal mALFF and fALFF measurements show that most of the 

noise might not have been regressed out in the pre-processing steps to account for such 

high values for Pearson’s Correlation Coefficients. The ideal next step would be to re-

perform this analysis but with modified pre-processing steps. This could lower the range 

of minimum resting state scan time.  

A similar study on the resting state was performed by Van Dijk et al. [6], where 

they calculated the minimum time to detect functional connectivity in the brain at rest 

using incremental durations of scan time ranging from 2 to 12 minutes for six 

participants. They found that average correlation strengths between default, attention, and 

reference networks stabilized after using ~5 minutes of data. This suggested that multiple 

distinct correlation strengths could be obtained as little as 5 minutes. This property of 

correlating specific brain regions is another parameter that the rs-fMRI BOLD signal can 

be used to analyze.  

The results from this current study show that no matter what part of the brain one 

is trying to analyze the minimum scanner time is approximately the same. Even though 

these results only pertain to the study at hand, this could be used as a basis for future 

studies. The next step in this study would be to look at the other ICNs and calculate the 

minimum scanner time and see how much the minutes vary by. Once different networks 
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are calculated in healthy subjects, it may be appropriate to look into patients suffering 

from neurological disorders and describe the trend in that particular disorder. The 

hypothesis stated at the beginning was proven to be correct because it stated that there is 

a desired resting-state scan time when looking at BOLD signals from rs-fMRI studies to 

get acceptable values of fALFF and mALFF values in healthy brain. This suggests that 

the data acquired after this optimal time does not give one a huge change in their mALFF 

and fALFF values because the results indicates that these values indeed do level off after 

certain time to become asymptotic.  
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APPENDIX A 

SCRIPT FILE TO CONVERT RAW DATA INTO STANDARD MATRIX 

This matrix is used to convert all the maps into standard space. 

#!/usr/bin/perl 
@sublist=('LF1', 'LF2', 'LF3', 'LF4', 'LM1', 'LM2', 'LM3', 'LM4', 'LM5', 'LM8', 'RF1', 
'RF2', 'RF3', 'RF4', 'RF5', 'RF6','RM1', 'RM2', 'RM3', 'RM4', 'RM6', 'RM7'); 
 
for($i=0;$i<22;$i++) 
{ 
 $subname=@sublist[$i]; 
 
$path = "/home/paul/prerpro3_11/"."$subname"; 
chdir "$path"; 
print "$path\n"; 
 
`3drefit -deoblique cut_rREST_40min.nii`;  
`3drefit -deoblique MPRAGEskstrip.nii.gz`;  
# convert it to RPI 
`3dresample -orient RPI -prefix reor_cut_rREST_40min.nii -inset 
cut_rREST_40min.nii`;  
`3dresample -orient RPI -prefix reor_MPRAGEskstrip.nii.gz -inset 
MPRAGEskstrip.nii.gz`;  
# 1st transformaltion  
`flirt -in reor_MPRAGEskstrip.nii.gz -ref 
/usr/share/fsl/data/standard/MNI152_T1_3mm_brain.nii.gz -omat struct2standard.mat`; 
`flirt -in reor_MPRAGEskstrip.nii.gz -ref 
/usr/share/fsl/data/standard/MNI152_T1_3mm_brain.nii.gz -omat struct2standard.mat -o 
mprage_mni`; 
`flirt -in reor_MPRAGEskstrip.nii.gz -ref reor_cut_rREST_40min.nii -omat 
struct2func_13.mat`; 
# convert_xfm convert_xfm (Version 2.1) 
`convert_xfm -omat func2struct.mat -inverse struct2func_13.mat`;  
`convert_xfm -omat func2std.mat -concat struct2standard.mat func2struct.mat`;  
`flirt -in reor_cut_rREST_40min.nii -ref 
/usr/share/fsl/data/standard/MNI152_T1_3mm_brain.nii.gz -applyxfm -init func2std.mat 
-o reor_cut_rREST_40min_mni3.nii`;  
 
} 
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APPENDIX B 

SCRIPT USED TO CREATE GRAY MATTER SEGMENT 

The different segments are created to use as future masks. 
 
#!/usr/bin/perl 
 
@sublist=('LF1', 'LF2', 'LF3', 'LF4', 'LM1', 'LM2', 'LM3', 'LM4', 'LM5', 'LM8', 'RF1', 
'RF2', 'RF3', 'RF4', 'RF5', 'RF6','RM1', 'RM2', 'RM3', 'RM4', 'RM6', 'RM7'); 
 
for($i=0;$i<22;$i++) 
{ 
 $subname=@sublist[$i]; 
 
$path = "/home/paul/prerpro3_11/"."$subname"; 
chdir "$path"; 
print "$path\n"; 
 
# look at the cut rREST with 995 tr 2.5 
`3dTstat -prefix mean_rREST_40min.nii.gz  cut_rREST_40min.nii`; 
 
 `3dvolreg -base mean_rREST_40min.nii.gz -fourier -twopass -1Dfile motion.1D  
cut_rREST_40min.nii`; 
 
`bet2 MPRAGE.nii MPRAGEskstrip.nii.gz`; 
`3dAFNItoNIFTI -prefix volreg.nii.gz volreg+orig.`; 
`flirt -in MPRAGEskstrip.nii.gz -ref volreg.nii.gz -omat struct2func.mat -interp trilinear`;  
`flirt -in MPRAGEskstrip.nii.gz -ref volreg.nii.gz -o mprage2func.nii.gz -applyxfm -init 
struct2func.mat -interp trilinear`; 
# creates 3 segments 
`fast -g -p -o seg MPRAGEskstrip.nii.gz`; 
# gray matter--create just this,detrends the time series 
`flirt -in seg_prob_1.nii.gz -ref volreg.nii.gz -o mprage2func_seg1.nii.gz -applyxfm -init 
struct2func.mat -interp trilinear`; 
  
$cmd="3dcalc -a mprage2func_seg1.nii.gz -expr "."'"."astep(a,0.70)"."'"." -prefix 
mask_seg1_311.nii.gz"; 
system($cmd); 
`3dmaskdump -noijk -mask mask_seg1_311.nii.gz volreg.nii.gz > GM_time_311.1D`; 
 
`3dDetrend -DAFNI_1D_TRANOUT=YES -prefix GM_detrend_311 -polort 3 
GM_time_311.1D`; 
`gunzip  "$path"/mask_seg1_311.nii.gz`; 
 
} 
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APPENDIX C 

SCRIPT TO CONVERT SPATIAL MAPS TO STANDARD SPACE 

Raw space images are converted to standard space for further analysis. 
 
#!/usr/bin/perl 
 
@sublist=( 'LF1', 'LF2', 'LF3', 'LF4', 'LM1', 'LM2', 'LM3', 'LM4', 'LM5', 'LM8', 'RF1', 
'RF2', 'RF3', 'RF4', 'RF5', 'RF6','RM1', 'RM2', 'RM3', 'RM4','RM6','RM7'); 
 
@sublist2=('run_032', 'run_064', 'run_096', 'run_128','run_160', 
'run_192','run_224','run_256','run_288','run_320','run_352','run_384', 
'run_416','run_448','run_480','run_512','run_544','run_576','run_608','run_640', 
'run_672','run_704','run_736','run_768','run_800','run_832','run_864','run_896','run_928','
run_960','run_992'); 
 
foreach($i=0;$i<22;$i++) 
{ 
$subname=@sublist[$i]; 
$path = "/media/DATAPART1/dp-umd/prepro2/"."$subname"; 
chdir "$path"; 
print "$path\n"; 
foreach($j=0;$j<31;$j++) 
{ 
$subname2=@sublist2[$j]; 
$path2 = "/media/DATAPART1/dp-umd/prepro2/"."$subname".'/'."$subname2"; 
 chdir "$path2"; 
print "$path2\n"; 
#all the maps in RPI convert from hdr to .nii (raw space). 
 
#`3dcopy mALFF_MAP.hdr mALFF_13.nii`; 
#`flirt -in mALFF_13.nii -ref /usr/share/fsl/data/standard/MNI152_T1_3mm_brain.nii.gz 
-applyxfm -init $path/func2std_13.mat -o mALFF_13_mni3.nii`; 
#`gunzip mALFF_13_mni3.nii.gz`; 
#} 
#} 
 
#all the maps in RPI convert from hdr to .nii (raw space). 
`3dcopy FALFF_MAP.hdr FALFF_13.nii`;    
`flirt -in FALFF_13.nii -ref /usr/share/fsl/data/standard/MNI152_T1_3mm_brain.nii.gz -
applyxfm -init $path/func2std_13.mat -o FALFF_13_mni3.nii`; 
`gunzip FALFF_13_mni3.nii.gz`; 
} 
} 
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APPENDIX D 

CODE TO CREATE THE DIFFERENT ROI MASKS 

The ROI masks are used to look at the time variability across brain. 
 
close all 
clear all 
 
sfolder='/media/DATAPART1/dp-umd/prepro2/';  
   S = dir([sfolder]);      
   S=S(9:end); 
   
for i=1:length(S)             
     subdir=([sfolder, S(i).name]);    %goes in subject directory 
     cd(subdir);             
     D=dir([subdir]);     
     D=D(16:end);            
  
 for j=1:length(D) 
    subdir2=([sfolder  S(i).name '/' D(j).name]);  
    cd(subdir2); % directory where my alff maps are... 
    RunTmp1=load_untouch_nii('mALFF_13_mni3.nii');  %  (3D) standard space maps 
    RunTmpImg1=RunTmp1.img;              
    RunTmp2=load_nii('maskseg1_13_mni3.nii'); % (3D) gm segment in standard space 
    RunTmpImg2=RunTmp2.img; 
   
% calc mask 
 gm13ALFF=(RunTmpImg1.*RunTmpImg2); % multiplied both to get 3D mask of gm  
  
varname='gm13ALFF';                         
 save (varname, 'gm13ALFF')  
 
  end           
  end 
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APPENDIX E 

CODE TO CALCULATE PEARSON’S CORRELATION COEFFECIENT 

Code to create correlation between runs. 
 
close all 
clear newdata newdata2 
 
sfolder='/media/DATAPART1/dp-umd/prepro2/';  
S = dir([sfolder]);      
S=S(10);        % goes through all the subjects however right now its just set at one subject 
Subjectcorr=[];   %This will become a columnar vector of each subjects COOR2 values  
  
 for i=1:length(S) 
    subdir=([sfolder, S(i).name]);      %goes in subject directory 
    cd(subdir); 
    D=dir([subdir]);     
    D=D(16:end);          % goes in all the runs directory  
   
for j=1:length(D)-1       % picks one run--consecutive 
    subdir2_run1=([sfolder  S(i).name '/' D(j).name]);  
    cd(subdir2_run1);  
 
% loads the mask      --picks the map to correlate  
  RunTmp=load ('gm13FALFF');      % could be either gmALFF/gmFALFF/ IC_FALFF 
    RunTmpImg1D=reshape(RunTmp.gm13FALFF,1,61*73*61);   %  61*73*61 
    ind=find(RunTmpImg1D); 
     
for k=1:43383 
        newdata(:,k)=RunTmpImg1D(:,ind(k)); 
    end 
 
%different directory/diff run to compare with the run already picked. 
 subdir2_run2=([sfolder  S(i).name '/' D(j+1).name]);       % consecutive run 
  cd(subdir2_run2);         % changes directory to the next consecutive run 
 
%loads the mask --picks the map to correlate with the other map 
   RunTmp2=load ('gm13FALFF');          % could be either gmALFF/gmFALFF 
   RunTmpImg1D_2=reshape(RunTmp2.gm13FALFF,1,61*73*61);       % reshapes the 
vector from 3D map to 1D map. 
   ind2=find(RunTmpImg1D_2); 
   
 for l=1:43383 
      newdata2(:,l)=RunTmpImg1D_2(:,ind2(l)); 
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   end 
 
 
%calculates CORR2 between 2 consecutive runs 
 SubCorrtmp=corr2( newdata,  newdata2);     % calculates corr2 two runs within a subject 
  
%Group Subject data - allocation controlled by first loop "j" 
      Subjectcorr(i,j)=SubCorrtmp;      % for every i and every j.  
%[Z,mu,sigma] = zscore(Subjectcorr);  % gets the mean and z-scores for Corr values.  
 
  end  
  end 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46 

REFERENCES 
 
 
1. Research. Neuroimaging 2008  April 30,2013]; Available from: 

http://flavor.monell.org/~jlundstrom/research neuroimaging.html. 

2. M.H. Lee, C.D.S., J.S. Shimony, Resting-State fMRI: A Review of Methods and 
Clinical Applications. American Journal of Neuroradiology, 2012.p. 1-7. 

3. De Luca M, B.C., De Stefano N, Matthews PM, Smith SM fMRI resting state 
networks define distincy modes of long-distance interactions in the human brain. 
NeuroImage, 2006. 29(4). 

4. Yeo BT, K.F., Sepulcre J, Buckner RL, Liu H, Sabuncu MR, Lashkari D, 
Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, The 
organization of the human cerebral cortex estimated by intrinsic functional 
connectivity. Journal of Neurophysiology, 2011. 106(3): p. 1125-65. 

5. Zhiqiang Zhang, W.L., Xi-Nian Zuo, Zhengge Wang, Bharat B. Biswal, et al., 
Resting-State Brain Organization Revealed by Functional Covariance Networks. 
PLoS ONE, 2011. 6(12). 

6. Koene R. A. Van Dijk, T.H., Archana Venkataraman, Karleyton C. Evans, Sara 
W. Lazar and Randy L. Buckner, Intrinsic Functional Connectivity As a Tool for 
Human Connectomics: Theory, Properties, and Optimization. Journal of 
Neurophysiology, 2010. 103: p. 297-321. 

7. Ellard, D. History of MRI. 2012 April 30,2013; Available from: 
http://www.isbe.man.ac.uk/personal/dellard/dje/history_mri/history of mri.htm. 

8. Joseph P. Hornak, P.D., The Basics of NMR. Vol. v. 1997-2011. 

9. Davison, J.E., Multimodal magnetic resonance investigation of childhood 
metabolic neurodegenrative disease, in School of Clinical and Experimental 
Medicine, College of Medical and Dental Sciences, University of 
Birmingham2012. 

10. Suetens, P., Fundamentals of Medical Imaging, in Fundamentals of Medical 
Imaging. 2009, Cambridge University Press: New York, NY USA. 

11. Scott A. Huetttel, A.W.S., Gregory McCarthy, Functional Magnetic Resonance 
Imaging. Vol. 1. 2004, Sunderland, Massachusetts, U.S.A.: Sinauer Associates, 
Inc. 

12. Cristina Rosazza, L.M., Resting-state brain networks: literature review and 
clinical applications. Neurological Sciences, 2011. 

13. Ogawa S, L.T.M., Kay A.R, Tank D.W, Brain magnetic resonance imaging with 
contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990. 87: p. 
9868-9872. 

14. Xiaoping Hu, E.Y., The story of the initial dip in fMRI. NeuroImage, 2012. 62(2): 
p. 1103-1108. 

http://flavor.monell.org/~jlundstrom/research%20neuroimaging.html
http://www.isbe.man.ac.uk/personal/dellard/dje/history_mri/history%20of%20mri.htm


 47 

15. Bharat B. Biswal, S.S.K., Bart Rypma, Hemodynamic Scaling of fMRI-BOLD 
signal: Validation of low frequency spectral amplitude as a Scalability Factor. 
Magnetic Resonance Imaging, 2007. 25(10): p. 1358-1369. 

16. Bharat B. Biswal, J.S.H., F. Zerrin Yetkin, Victor M. Haughton, Functioanl 
Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar 
MRI. MRM, 1995. 34: p. 537-541. 

17. Brin RM, D.J., Smith MA, Bandettini PA, Separating respiratory-variation-related 
flunctuations from neuronal-activity- related fluctuations in fMRI. NeuroImage, 
2006. 31(4). 

18. Xi-Nian Zuo, A.D.M., Clare Kelly, Zarrar E. Shehzad, Dylan G. Gee, Donald F. 
Klein, F. Xavier Castellanos, Bharat B. Biswal, Michael P. Milham, The 
Oscillating Brain: Complex and Reliable. NeuroImage, 2010. 49(2): p. 1432-
1445. 

19. Lucina Q. Uddin, A.M.C.K., Bharat B. Biswal, F. Xavier Castellanos, Michael P. 
Milham Functional Connectivity of Default Mode Network Components: 
Correlation, Anticorrelation, and Causality. Human Brain Mapping, 2007. 30: p. 
627-637. 

20. Dietmar Cordes, V.M.H., et al., Mapping Functioanally Related Regions of Brain 
with Functional Connectivity MR Imaging. American Journal of Neuroradiology, 
2000. 21: p. 1636-1644. 

21. Wang Z, Y.C., Zhao C, Qi Z, Zhou W, Lu J, He Y, Li K, Spatial patterns of 
intrinsic brain activity in mild cognitive impairment and Alzheimer's disease: a 
resting-state functional MRI study. Human Brain Mapping, 2011. 32(10). 

22. Lizette Heine, A.S., Francisco Gomez, Resting state networks and consciousness: 
Alterations of multiple resting state networks connectivity in physiological, 
pharacological, and pathological consciousness states. Psychology, 2012. 3. 

23. David M. Cole, S.M.S.a.C.F.B., Adavances and pitfalls in the analysis and 
interpretation of resting-state FMRI data. frontiers in Systems Neuroscience, 
2010. 4(8). 

24. Greicius MD, K.B., Reiss AL, Menon V., Functioanl connectivity in the resting 
brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci 
USA, 2003. 100(1). 

25. Group, T.F.M., SPM8 Manul, 2012: Functional Imaging Laboratory Wellcome 
Trust Center for Neuroimaging Institute of Neurology, UCL. 

26. Friston, K.J., Introduction Experimental design and Statistical Parametric 
Mapping. The Wellcome Dept. of Cognitive Neurology, University College 
London. 

27. Jie Song, A.S.D., Timothy B. Meier, Dana L. Tudorascu, Svyatoslav Vergun, 
Veena A. Nair, Bharat B. Biswal, Age-Related Differences in Test-Retest 
Reability in Resting-State Brain Functional Connectivity. PLoS ONE, 2012. 
7(12). 



 48 

28. Qi-Hong Zou, C.-Z.Z., et al., An imporved approach to detection of amplitude of 
low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. 
Journal of Neuroscience Methods, 2008. 172: p. 137-141. 

29. Christian F. Beckmann, M.D.J.T.D.a.S.M.S., Investigations into resting-state 
connectivity using independent component analysis. Philosophical Transactions of 
The Royal Society B, 2005. 360: p. 1001-1013. 

30. Paul Taylor, S.G., Xin Di, Bharat Biswal, Functional covariance networks: 
obtaining resting state networks from intersubject variability. Brain Connectivity, 
2012. 2(4): p. 203-217. 

 

  


	Effect of scan time on resting state parameters
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Magnetic Resonance Imaging
	Chapter 3: Functional Magnetic Resonance Imaging (FMRI)
	Chapter 4: Methods
	Chapter 5: Results
	Chapter 6: Discussion
	Appendix A: Script File to Convert Raw Data into Standard Matrix
	Appendix B: Script Used to Create Gray Matter Segment
	Appendix C: Script Used to Create Gray Matter Segment
	Appendix D: Code to Create the Different ROI Masks
	Appendix E: Code to Calculate Pearson’s Correlation Coeffecient
	References

	List of Tables
	List of Figures
	Abbreviations

