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QSAR MODELING OF CHEMICAL PENETRATION ENHANCERS USING 
NOVEL REPLACEMENT ALGORITHMS 

 
by 

Hui Qiu 

The applications of transdermal delivery are limited because of the resistance of the skin 

to drug diffusion. Only potent drugs, with molecular weight less than 500 Da, are suitable 

to cross the skin barrier. Chemical Penetration Enhancers (CPEs) are used to promote the 

absorption of solutes across the dermal layers. In this investigation, a Quantitative 

Structure-Activity Relationship (QSAR) model is applied to relate chemical penetration 

enhancer structures with the flux enhancement ratio through a statistical approach. 

A database, consisting of 61 non-polar CPEs, is selected for the study. Each 

compound is represented by 777 QSAR descriptors, which encode the physical 

characteristics of the CPE and its structure. Selection replacement techniques are used to 

choose the eight most important descriptors. The enhancement ratio, an evaluation of the 

effect of the CPE, correlates well with this subset of features. The QSAR model can be 

adopted to predict factors that need to be adjusted to improve permeation of the drug 

through the skin. 

Three QSAR models are developed using different algorithms: forward stepwise 

regression (FSR), replacement (RM) and enhanced replacement (ERM) techniques. The 

first two methods yield equations with poor predictive power. The enhanced replacement 

method gives the best results, which meet cross-validation criteria: q2 = 0.79, 0.63 and 

0.76 for the training set, test set and combined data, respectively. These results meet the 

predetermined criteria. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

Chemical penetration enhancers (CPEs) are useful because of their ability to overcome 

skin barrier resistance and to stimulate drug transport across the skin. However, the task 

of choosing CPEs, for a particular drug, can be challenging as it may involve expensive 

and time-consuming trial-and-error experiments. The objective of this thesis is to build a 

quantitative structure-activity relationship (QSAR) model from a set of skin penetration 

enhancers. Mathematical expressions are derived that relate the Enhancement Ratio (ER), 

a measure of the effectiveness of the CPEs, to the enhancers’ molecular descriptors. 

Replacement methods are applied to select a subset of structural features. One of the 

main advantages of the study is the creation of a platform to help connect the drug release 

rate to a few QSAR molecular descriptors. This procedure can be conducted to screen the 

best CPEs from a large database. 

 

1.2 Background Information 

Transdermal drug-delivery systems (TDDS) are developed to transport drugs through the 

skin to the systemic circulation. The most common preparation is a medicated adhesive 

patch that is placed on the skin to administer a specific dose of medication. Traditional 

TDDS have a porous membrane covering a reservoir of medication embedded in an 

adhesive. Figure 1.1 presents three different types of TDDS drug release mechanisms. 
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After traversing the dermal layers, the molecules enter the bloodstream through the 

capillary walls and reach an effective concentration at the target site. 

 

a. Reservoir system. 

 

b. Matrix system without a rate-controlling membrane. 

 

c. Matrix system with a rate-controlling membrane. 

 

Figure 1.1 TDDS different drug release mechanism. 

 Backing 

 Drug 

 Membrane 

 Adhesive 

 Liner 

 Drug-in-Adhesive 
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TDDS can be used as local therapies or to produce systemic effects. It is 

especially useful for chronic disease because the method is noninvasive, self-

administered and provides the patient with a controlled release of the medication. 

Because the skin prevents the entry of foreign substances and guards against nutrient and 

water loss, TDDS are also applied for topical skin disease. 

Apart from these benefits, TDDS have unique advantages when compared with 

other dosage forms. They can prevent metabolism of the active pharmaceutical ingredient 

(API) and avoid first-pass effect of the liver when the medication is taken orally. Risks, 

such as cross-infections through reuse of needles, posed by hypodermic injections are 

averted. In addition, the patches are not painful and especially safe for low-income and 

developing countries [1,2]. 

The first transdermal patch approved by the FDA as a prescription drug can be 

traced back to December 1979. Scopolamine was the API used to treat motion sickness 

[3-5]. Because of the slow delivery rate and the fact that only a small amount of the agent 

can be delivered through the skin, side effects, such as dry mouth, dizziness and 

hallucination, associated with potent scopolamine were decreased [6,7]. During the mid-

1980’s, a nicotine patch was studied and a patent issued. This new dosage form attracted 

the public attention because of its efficacy in reducing craving for cigarettes [8-10]. 

Today, there are more than twenty different types of transdermal delivery systems, such 

as nitroglycerin, estradiol and lidocaine, which are approved by the FDA [11]. The 

research environment spurs the emergence of combination patches, containing multiple 

drugs, iontophoretic and ultrasonic delivery systems [1]. 
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The transdermal route is only appropriate for a few drugs because of the presence 

of the stratum corneum, mainly composed of dead cells. A rational selection is based on 

key factors: physico-chemical properties of the drug (such as solubility, crystallinity, 

molecular weight, polarity, melting point), pharmacokinetic parameters (such as half-life, 

volume of distribution, total body clearance, therapeutic plasma concentration, 

bioavailable factor) and biological factors (skin toxicity, site of application, allergic 

reactions, skin metabolism, skin permeability) [12]. All available drugs formulated in a 

patch have three fundamental characteristics, which allow them to cross the skin 

effectively: low molecular mass (<500 Da), high lipophilicity (oil soluble) and small 

required dose (up to milligrams) [13]. These properties are found in first-generation 

delivery systems. The emergence of second-generation (e.g., devices with CPEs and 

iontophoresis) and third-generation delivery systems (e.g., microneedles) make a 

significant contribution to medicine [1]. Physical or chemical enhancement techniques 

are very effective delivery systems that are used to overcome the resistance of the stratum 

corneum. One of the popular methods is the use of CPEs. CPEs are chemical compounds 

added to the formulation in TDDS to increase skin permeability [14]. 

In the past, less attention was paid to hydrophilic solutes in academic settings 

because of the lipid bilayer structure of skin. The situation has changed with the 

introduction of CPEs. More investigations on mathematical modeling of transdermal 

transport of hydrophilic drugs are conducted [15,16]. Passive transport these solutes also 

allow diffusion through the epidermis [13]. 

Penetration enhancers should be nontoxic, nonirritating, and deprived of any 

pharmacological activity. In addition, compatibility among the CPEs, the drug and other 
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materials present in the system is desirable. The skin can recover its barrier function 

quickly after removal of the CPE. Although it is difficult to find a CPE with all the 

desired properties, many compounds show most of these features.  

CPEs are classified as terpenes, terpenoids and essential oils, pyrrolidones and 

their derivatives (such as N-methyl-2-pyrrolidone), fatty acids and esters, sulfoxide and 

similar compounds (e.g., dimethyl sulfoxide (DMSO), alcohols, glycols and glycerides, 

(e.g., ethanol, propylene glycol); azones (e.g., laurocapram) and other miscellaneous 

enhancers (such as phospholipids, lipid synthesis inhibitors, cyclodextrin complexes, 

amino acid derivatives, clofibric acid, dodecyl-N,N-dimethylamino acetate and enzymes) 

[17]. Given a particular active pharmaceutical ingredient, it would be a massive project to 

conduct experiments using compounds in each group to select the most effective CPE. 

Therefore, modern computational techniques are applied to assist in the process and 

suggest CPEs that can be tested in the laboratory. 

Quantitative structure–activity relationships (QSAR) are empirical linear models 

that have been widely used in the pharmaceutical, chemical sciences, environment 

protection policy and health research. These models map a set of physico-chemical 

properties or theoretical molecular descriptors of compounds (X) to a response variable 

(Y) where Y represents a biological activity. Examples of response variables are the 

molar concentration of a compound that inhibits 50% growth of bacteria (IC50) [18], the 

octanol-water partition coefficient [19] and the cytotoxic activity [20]. Therefore, QSAR 

models are only one kind of regression models. In addition, such an approach can also be 

used for classification purposes where the predictor variable is assigned a categorical 

value. Regardless of the specific application of the QSAR model, the number of 
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descriptors can be very large (i.e., 1000). As a result, it is important to choose particular 

descriptors that best explain the response variable. 

The goal of this project is to derive a QSAR model to relate structures of a set of 

nonpolar CPEs to the flux enhancement ratio using hydrocortisone as a control.  

Hydrocortisone, also known as Cortisol, is a steroid hormone. Its structure is 

shown in Figure 1.2. The main glucocorticoid is secreted by the zona fasciculata of the 

adrenal cortex [21]. It has multiple effects and is used to treat inflammation, allergy, 

collagen diseases, asthma, adrenocortical deficiency, shock and some neoplastic 

conditions [22]. The main function is to increase blood sugar, stimulate gluconeogenesis, 

suppress the immune system and aid in fat, protein and carbohydrate metabolism [23]. 

 

Figure 1.2 2D structure of hydrocortisone. 

Source: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5754 Retrieved on March 30, 2013. 
 

Several dosage forms of hydrocortisone are ready for use: lotion, cream, gel, 

ointment and enema. It is available both as an over-the-counter (low-strength, 0.5% or 

1%) or prescription drug (high-strength). Ghafourian et al. investigated the enhancing 

activities of terpenes towards hydrocortisone [24,25]. Simon et al. studied the influence 

of 61 non-polar CPEs on the transdermal delivery rate of hydrocortisone [14]. 

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5754
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The descriptors are usually produced by software packages such as Molecular 

Modeling Pro™ Plus (MMP+). Three different methods for deciding an optimal subset of 

descriptors were studied by Simon and Abdelmalek [14]: the replacement method (RM), 

the enhanced replacement method (ERM) and the traditional forward stepwise regression 

(FSR). The hydrogen bond acceptor, polar surface area, moment of inertia, glass 

transition temperature (Tg), molar volume, radius of gyration (RG), dipole moment and 

polarity correlates well with the ER [14]. However, these eight properties were selected 

from thirty-one descriptors previously used in CPE studies. The present study will use a 

larger database to build the QSAR model. The applicability domain, which was not 

determined in the previous study, will be defined. 
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CHAPTER 2 

CHEMICAL PENETRATION ENHANCERS AND MOLECULAR 

DESCRIPTORS 

 

2.1 Overview 

Chemical penetration enhancers are widely used in dermal related products, such as 

transdermal drug-delivery systems and cosmetics. Common CPEs are classified as 

terpenes, terpenoids and essential oils; pyrrolidones and their derivatives; fatty acids and 

esters; sulfoxide and similar compounds; alcohols, glycols and glycerides; azones and 

other miscellaneous enhancers [17]. Each group has specific advantages and 

disadvantages. For example, DMSO, a common chemical penetration enhancer, is a 

sulfoxide. It increases penetration because of its interaction with the stratum corneum and 

solubilization with the drug itself. However, DMSO might cause skin irritation, or may 

be fatal to a human when exposed to high concentrations [26]. 

Azone, also named laurocapram, is a clear and colorless liquid that dissolves 

poorly in water but mixes well with most organics. It affects the absorption of 

hydrophilic drugs more significantly than lipophilic agents. Laurocapram has an effective 

concentration in the range of 1-6%. Although the CPE’s action on the skin is slow, about 

two to ten hours, its impact could last several days because azone accumulates gradually 

in the stratum corneum [27]. 

Except for the amino-acid derivatives, most CPEs would provoke skin irritation 

after traversing the epidemic cells. These derivatives are absorbed into the stratum 

corneum lipid barrier, increase the mobility of the barrier lipids and improve drug 
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permeation, as a result. Janůšová et al. studied the proline derivative L-Pro2 and found 

that it could increase ER by up to 40% and yielded better results than azone. Contrary to 

single-chain lipid-like substances, double-chain lipid-like compounds did not increase the 

flux, as noted in [28]. 

A higher permeation can be achieved when different CPEs are combined [5]. 

Propylene glycol (PG) is a good example. When used alone, PG mildly improves the 

transport of estradiol and 5-fluorouracil [29]. It exhibits a synergistic action when 

combined with other CPEs, such as ethanol and oleic acid. Janůšová et. al found that a 

mixture of proline derivative L-Pro2 and PG increased the theophylline flux 40 times 

higher than that of PG acting alone and 2.5 times greater than that of L-Pro2 in water [28]. 

 

2.2 Chemical Penetration Enhancers in This Study 

Codes representing the molecular structures of the sixty-one CPEs used in the study are 

listed in Appendix A. 

 

2.3 Molecular Descriptors 

Computational applications in chemoinformatics and toxicoinformatics are becoming 

popular in drug research and discovery phases. Many predictive models are based on the 

compound structure or activity. Since the structure alone cannot be represented by the 

model, it is necessary to extract structural information and convert it into numerical or 

digital representations. “The molecular descriptor is the final result of a logical and 

mathematical procedure which transforms chemical information encoded within a 

symbolic representation of a molecule into a useful number or the result of some 
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standardized experiment” [30]. Therefore, molecular descriptors can be experimental or 

theoretical. Examples of experimental measurements are log P, dipole moment, any 

physico-chemical properties or biological activities. Theoretical descriptors are symbolic 

representations of the molecules and can be further classified as: 

• Zero-dimensional (0D) descriptors, obtained from the chemical formula and 
independent of the molecular structure (i.e. atom type counts, the molecular mass, 
atomic charge) 
 

• 1D-descriptors, which represent a list of structural fragments (i.e. list of structural 
fragments, functional group count) 
 

• 2D-descriptors, which are topological indices that are derived by converting 
molecular structures into graphs (i.e. graph invariants)  
 

• 3D-descriptors, calculated from a geometrical or 3D representation of a molecule 
(i.e. 3D-MoRSE descriptors, WHIM descriptors, GETAWAY descriptors, 
quantum-chemical descriptors, size, steric, surface and volume descriptors) 
 

• 4D-descriptors, which come from a stereo-electronic or lattice representation (i.e. 
those stemmed from GRID or CoMFA methods, Volsurf) [31,32]. 

 
 

Molecular descriptors help interpret properties of existing CPEs as well as guide 

the design of new molecules. With the emergence of these new metrics, a descriptor may 

fail to describe important characteristics of a compound while providing a wealth of 

information on the structure of another molecule. Descriptors are instrumental in 

assessing the importance of theoretically established models [30]. When they are the 

result of an optimization strategy, these numbers are expected to correlate well with at 

least one property and be sensitive to gradual change in molecular structures [33]. 

In this study, SMILES, a linear notation system is used. Such notations are two-

dimensional representation alternatives to the molecular graph [30]. 
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2.4 Screening of Molecular Descriptors 

The software Molecular 2D Descriptors (Mold2) Generator Software, version 2 (center 

for bioinformatics, NCTR, FDA, USA) is used to transform a CPE’s structure into 777 

descriptors. Part of them listed in Appendix B. MATLAB® (The Mathworks Inc., MA, 

USA) is later used. Only the eight most relevant descriptors, a number much less than the 

supplied data, are selected to represent the CPEs. The output of the QSAR model is the 

ER. 
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CHAPTER 3 

ENHANCEMENT RATIO 

 

3.1 Enhancement Ratio 

Skin penetration enhancement techniques were developed to improve bioavailability and 

increase the range of drugs that can be administered topically and transdermally [31]. An 

enhancement ratio (ER) is usually calculated to give an accurate measure of the 

effectiveness of the accelerant. This number is defined as the ratio of the flux in the 

presence of a fixed concentration of the CPE to the delivery rate when the CPE is not 

added to the formulation [14, 34]: 

Enhancement Ratio (ER)= 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 𝑎𝑓𝑡𝑒𝑟 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

 (3.1) 

 

3.2 Enhancement Ratio Test Method 

Two methods are available for the evaluation of skin permeation in vitro: the static and 

flow-through cell experiments [35-37]. The static Franz diffusion cell test is widely used 

for calculating ER values. This apparatus contains two compartments: a receptor cell (a 

static receptor solution reservoir with a side-arm sampling port) and a donor cell [38] 

(Figure 3.2). In flow-type Franz cells, the receptor medium is continuously circulated 

through the receptor compartment.  

In the original work, data were obtained using static Franz diffusion cells [38]. 

These systems are also recommended by the FDA [39]. CPEs were first applied to the 

membranes for 24 hours and placed between the two compartments. Samples were 

removed from the receptor cell and replaced with the same volume of fresh solution at 
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pre-set time intervals. Drug concentration was determined by spectrophotometry and the 

diffusion coefficient was estimated after applying to Higuchi equation [40,41]. The early-

time release data (less than 60%) can be modeled by the following equation [42]:  

𝑄
𝐴

= 2𝐶0 ∙ �
𝐷𝑡
𝜋
�
1
2�

 
(3.2) 

 

where Q is the cumulative amount of drug collected in the receiver chamber (mg), A is 

the area available for diffusion (cm2), D is the diffusion coefficient (cm2/h), C0 is the 

initial concentration (mg/cm3) and t is the time. 

 

 

Figure 3.2 Scheme of the static Franz diffusion cell. 
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CHAPTER 4 

DESIGN OF SKIN PENETRATION ENHANCERS USING REPLACEMENT 
METHODS FOR THE SELECTION OF MOLECULAR DESCRIPTORS 

 

In Section 1.2, three feature-selection methods in QSAR studies were briefly discussed: 

RM, ERM and FSR. Another option is to implement these algorithms first to extract the 

best descriptors. The second phase would consist of building nonlinear input-output 

mappings, such as an artificial neural network (ANN), to represent the data [14]. 

Although this approach produced superior results, when compared to a traditional QSAR, 

this study is mainly focused on the use of Mold2 with advanced replacement techniques 

to produce linear relationships between descriptors and the ER. 

 

4.1 Multiple Linear Regression 

Multiple linear regressions are commonly used in QSAR studies to develop the 

relationship between descriptors (independent variable) and the dependent variable 

(biological activity). Patel et al. (2002) derived a correlation between skin permeability 

and the compound’s hydrophobicity, molecular size and hydrogen bonding ability [43]. 

Mercader et al. (2010) credited changes in 50% inhibitory concentration (IC50) to the 

mean topological charge index of order 1, the average molecular weight, 3D – MoRSE – 

signal 30 weighted by atomic masses and the first component symmetry directional 

WHIM index weighted by atomic polarizabilities [44]. 

The generic form of a multiple linear regression model, given p observations, is: 

𝑦 = 𝛼 + 𝛽1𝑋𝑖 + 𝛽2𝑋2 + ⋯+ 𝛽𝑝𝑋𝑝 (4.1) 
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where α is the intercept, Xi is a feature, also called a descriptor (e.g., hydrophobicity, 

molecular weight) and β is the partial regression coefficient. 

 

4.2 Replacement Method 

Techniques, such as FSR and Genetic Algorithm (GA), can be used to conduct the multi-

parameter, non-linear inverse analysis [45]. The latter strategy is inspired by the process 

of Darwinian evolution because the mechanism selects the fittest individuals over several 

generations. Mercader et al. proposed the replacement method (RM) which yields 

systems with better statistical parameters than the GA and the FSR. The GA replaces the 

descriptors randomly and does not calculate the error in the regression coefficient as in 

the case of RM. In addition, tuning of the mutation probability, crossover probability and 

generation gap complicates the process [46]. 

The response (y) may be related to a host of molecular descriptors (X). The 

challenge is to decide on a subset of relevant input variables d={X1, X2,…, Xp} from a 

large pool of dimension N. An effective algorithm should be applicable to problems with 

the size of d in the range of 0 to 10 and N > 1000. The RM procedure, based on the 

minimum standard deviation (SD), can select a subset of the population. First, descriptors 

are chosen randomly and replaced one at a time by the remaining elements. The set that 

produces the smallest SD is kept. Second, the input variable with the coefficient showing 

the largest relative deviation is replaced. The procedure continues until there is no need to 

make additional substitutions. In the end, the best variables of the first path are obtained. 

The process is repeated for all possible paths and the predictor variables with the smallest 

SD are kept [46, 47]. 
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4.3 Enhanced Replacement Method 

The enhanced replacement method (ERM), an improved version of RM, was developed 

later by Mercader et al. It yields even better statistical parameters than the RM. The 

technique is similar to that of the RM because it uses the minimum standard deviation for 

identifying the descriptors [48]. The main difference is that the ERM combines two 

algorithms in the sequence: RM and MRM (modified replacement method). The latter 

technique is similar to the RM except that, in this case, the descriptor with the largest 

error is replaced in each step regardless of the standard deviation value [46]. 

 

4.4 Stepwise Regression Method 

Stepwise regression creates a mathematical representation by adding or removing 

variables continuously until a subset based on the F-ratio statistic is selected. There are 

three main approaches: forward selection, backward elimination and bidirectional 

elimination. In the forward selection, variables are added to an “empty” model. The 

regression terms, that are not used, are examined one by one to see whether they could 

improve the model. The procedure continues until further improvement is no longer 

viable. Backward elimination starts from all candidate predictors and removes the input 

variable with the smallest F-ratio [49,50]. Bidirectional elimination is a combination of 

the above two schemes. 

 

4.5 Classification of Training and Testing Data 

QSARs make it possible to interpret molecular properties and/or to predict other 

unknown compounds. Ideally, the tool should be able to predict chemical properties or 
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biological activities of those compounds that are not included in the model development 

[51]. The most common method of achieving this goal is to divide compounds into 

training and test samples. While the learning phase relies on the training data, validation 

uses the test set. Selection of data belonging to these two categories is not arbitrary. The 

training data should cover the whole descriptor space and the test set could be within the 

range of (or close to) points in the training set. Therefore, the training examples should be 

diverse and representative of the compounds studied. 

 

4.6 Applicability Domain 

QSAR modeling assumes that all compounds share similar properties and influence the 

dependent variable using analogous mechanisms. The model is expected to perform well 

on samples that are within a domain fixed by the training data. This “applicability domain” 

(AD) is an important concept in building a QSAR and is based on the compound’s 

characteristics or biological activities (e.g., physical, chemical and biological features). 

The QSAR prediction cannot be considered reliable if the data falls outside of this 

domain. Eriksson et al. introduced several techniques of defining AD to assess the 

predictive power of the model [52]. In this study, the determination of leverage values 

(the William’s plot) is adopted. Leverage h is a scale of the influence of each compound 

on the formula. The leverage of a compound in the original variable space is defined as: 

ℎ𝑖  =  𝑥𝑖𝑇(𝑋𝑇 𝑋)−1𝑥𝑖          (i=1,2,…n) (4.2) 

where xi is the feature vector of the considered compound and X is the descriptor matrix 

constructed from the training set [53]. The warning leverage (h*) is defined as: 
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ℎ∗  =  
3𝑃
𝑛

 
(4.3) 

where n is the number of training compounds, P is the number of explanatory variables 

plus one [54]. 

William’s plot is the graph of standardized residual versus leverage values. Other 

than the influence of a point, the plot can also show the Euclidean distances of all 

compounds to the model through standardized residuals for both training and test data. 

The plot can be analyzed as follows: If h is greater than h*, the compound has a 

large influence on the model. If the cross-validated standardized residual is larger than 

three standard deviations, the compound is outside of the range and is considered a 

response outlier [54]. Therefore, h is less than h* for a point in the domain and the 

standardized residual is within three standard deviations. 

 

4.7 Evaluation of QSAR Results 

It is important to have a method to validate QSARs. The leave-one-out (LOO) or leave-

some-out (LSO) cross-validation procedures are the common assessment tools. In this 

study, LSO is chosen. The coefficient of determination q2 is used to evaluate the accuracy 

of the model, which is calculated according to the formula: 

𝑞2  =  1 −
𝑆𝑆𝑒𝑟𝑟
𝑆𝑆𝑡𝑜𝑡

 
(4.4) 

where SSerr is the sum of squares of residuals and SStot is the total sum of squares, which 

is proportional to the sample variance: 

𝑆𝑆𝑒𝑟𝑟  =  �(𝑦𝑖 − 𝑦𝚤�)2 (4.5) 
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𝑆𝑆𝑡𝑜𝑡  =  �(𝑦𝑖 − 𝑦�)2 (4.6) 

with  

𝑦�  =
1
𝑛

 �𝑦𝑖

𝑛

𝑖=1

 
(4.7) 

where 𝑦𝑖, 𝑦𝚤�  and 𝑦� are the experimental, predicted and averaged activities, respectively. 

According to Golbraihk et al., a QSAR is predictive if the following conditions 

are satisfied for the test set [51]: 

𝑅2  > 0.6 (4.8) 

𝑞2  > 0.5 (4.9) 

𝑅2 − 𝑅02

𝑅2
 < 0.1 𝑜𝑟 

𝑅2 − 𝑅0′
2

𝑅2
< 0.1 

(4.10) 

0.85 ≪ 𝑘 ≪ 1.15 𝑜𝑟 0.85 ≪ 𝑘′ ≪ 1.15 (4.11) 

where R is the correlation coefficient between 𝑦𝚤�  and 𝑦𝑖 ; R0
2 is the coefficient of 

determination between 𝑦𝚤�  and 𝑦𝑖.and R0’2 is the coefficient of determination of 𝑦𝑖 versus 

𝑦𝚤� ; k and k’ are the slopes of the regression lines (i.e., between 𝑦𝚤�  and 𝑦𝑖 and 𝑦𝑖 versus 𝑦𝚤� , 

respectively) through the origin. 
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CHAPTER 5 

IMPLEMENTATION 

 

In previous contributions, QSAR models were developed to predict the effects of sixty-

one (61) nonpolar enhancers on the transdermal delivery of hydrocortisone [14, 55]. In 

[14, 34], the software MOLECULAR MODELING PRO™ Plus (MMP+) was used to 

calculate the CPEs. In [14], it estimated nearly 114 descriptors of the molecular structures. 

However, this number was later reduced to 31 features commonly used in studies of skin 

penetration enhancers. A linear model based on eight input variables could predict the ER 

because of the pretreatment with the accelerants. R2 values of 0.683, 0.683 and 0.671, 

corresponding to ERM, RM and FSR algorithms, respectively, were computed. In this 

study, the QSAR was based on 777 variables calculated using the Mold2 software. This 

large and diverse set of descriptors encodes 1D and 2D chemical structure information 

[56]. 

 

5.1 Software and the Flow Diagram 

The following tools are applied in this study: 

• Online SMILES Code Translator 

• PUBCHEM 

• Molecular 2D Descriptors (Mold2) Generator Software, version 2 (center for 
bioinformatics, NCTR, FDA, USA) 
 

• CHEMBENCH 

• MATLAB® (The Mathworks Inc., MA, USA) 
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Some of the websites relevant to this work are provided in [57–59]. A flow diagram, 

describing how these tools are implemented in sequence, is given in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Flow diagram of software. 
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5.2 SMILES Code 

Simplified Molecular Input Line Entry System (SMILES) (http://www.daylight.com, 

2006; http://www.epa.gov, 2006) is a chemical language that helps explain the structure 

of a compound. The system encodes information in a way that the molecular data can be 

integrated for QSAR applications [60]. A SMILES string, though produced by a 

canonicalization algorithm, is unique for each structure.  

There are five basic syntax rules for SMILES:  

1 atoms and bonds 

2 simple chains 

3 branches 

4 rings 

5 charged atoms 

The U.S. Environmental Protection Agency provides more details on these five 

rules on its website [61]. 

 
5.2.1 SMILES Code Acquisition 

The PUBCHEM website [57] provides the SMILES code. Figure 5.2 is the screenshot of 

a “PUBCHEM structure search." Once a compound name is entered, a search is launched 

and a code is created. 
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Figure 5.2 Screenshot of “PUBCHEM structure search”. 

 
5.2.2 SMILES Code Translation 

Given a specific compound, the following steps are carried out to translate SMILES 

strings to an SDF file: 

1 From the PUBCHEM website, enter the specific compound name to generate the 
SMILES code. 
 

2 From the online code translator [58], enter the string in “Input Format”. 

3 Choose SDF, kekule and 2D, and click “Translate”.  

4 The SDF file is shown after selecting the “Result” option. 

 

For a batch of compounds, a TXT file containing the SMILES strings should be 

created. 

Figure 5.3 is the screenshot of “Online SMILES Translator”, where “A” is the 

field to copy the string for the compound and “B” is the location for a batch of 

compounds. 
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Figure 5.3 Screenshot of “online SMILES translator”. 

 

5.3 Molecular Descriptor 

As discussed in Chapter 2, compound structures are difficult to interpret. For the QSAR 

analysis, it is necessary to identify a series of predictors that describe the molecule in an 

accurate and comprehensive way. 2D chemical structures for molecular descriptors are 

presented in this study. Such representations are simpler and, sometimes lead to better 

predictions than 3D designs [62-64]. Ceriums, Dragon, and Molconn-Z are common 

options for forming 2D-based descriptors. However, Mold2 was selected in this work 

because of the low computing cost. In addition, compared to the other tools, Mold2 is 

applicable to smaller datasets and provides similar information [65]. The software is also 

freely available to the public and can generate 777 descriptors. 
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The procedure followed to produce the predictor variables consists of these steps: 

1 Double-click “Mold2.bat”, then enter SDF file in “Input SDF file” to obtain an 
output file and a report file. 
 

2 The “descriptors.txt” is created and lists the descriptors in the output file, while 
“report.txt” contains an error report. 

 

5.4 Random Selection of Training and Testing Sets 

The sixty-one data are randomly divided into training and testing set in order to validate 

the QSAR created. The testing set consists of 20% of the data, i.e., 12 CPEs; the 

remaining patterns were selected for training. A reliable QSAR model depends on the 

quality of the data points in the training phase. It may be necessary to randomize the data 

several times to make sure that the examples provided are representative of the total 

population. A number of alternative techniques, such as the sphere exclusion method, are 

implemented in the literature [51, 66]. In this work, the randomization step was repeated 

several times.  

This procedure was pursued in CHEMBECH: 

1 The ACT, SDF and X files were uploaded at the “Modeling with Descriptor” 
under the “Dataset” Tab. 
 

2 The “continuous” option and the “standardized structures” boxes were selected. 
At the “New Type” option, Mold2 was entered. 
 

3 In “Random split”, “Use activity binning” was chosen and twenty percent was 
entered for the set size. 
 

4 The name of the dataset was added. 
 

5 The result was shown in “My bench” Tab. A zip file, which contained the results, 
was available in the Datasets section. 
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5.5 MATLAB® 

MATLAB®, developed by MATHWORKS, is widely accepted in industry and academia. 

More than a million engineers and scientists use it for numerical computation, 

visualization and programming. It allows users to manipulate a matrix, analyze and plot 

functions and data, develop algorithms and create models. It can be further extended after 

interfacing with programs, including C, C++, Java and Fortran [67]. 

 
5.5.1 Removal of Redundant “0” and Test Set from Data 

A program was written in Matlab to remove unnecessary variables. Columns of zeroes 

were deleted from the data.  

 
5.5.2 Application of Replacement Method, Enhanced Replacement Method and 

Forward Stepwise Regression 
 
Three Matlab functions, “rmt.m”, “erm.m” and “stepwise.m”, written by Mercader et al. 

[48], were applied to perform the RM, the ERM and the FSR, respectively. Eight features 

were extracted using these techniques. 

 
5.5.3 Calculation of the Regression Coefficients  

A Matlab function, “ls.m” written by Mercader et al. (2007) [48], estimated the statistical 

parameters of a model, including the regression coefficients for the eight descriptors. This 

function yields the correlation coefficient (R), standard deviation (S), F-statistic, average 

of the squared residuals, Akaike Information Criterion (AIC), a fit index (FIT) for the 

model and the errors in the coefficients [48]. 
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CHAPTER 6 

RESULTS AND VALIDATION OF QSAR MODELS 

 

SMILES codes for the 61 CPEs are listed in Appendix A. Part of the descriptors are 

presented in Appendix B. The full database is provided in [65]. 

 

6.1 Selection Result of Training and Test Sets 

The test set, randomly selected in CHEMBENCH, was determined by the lowest MAE 

(mean absolute error) value (9.625) and was composed of the following 12 compounds: 

enhancers 8, 11, 12, 17, 29, 30, 35, 37, 43, 45, 46 and 50. The remaining data formed the 

training set (see Appendix A). 

 

6.2 Applicability Domain Plot 

Figure 6.1 shows the applicability domain (AD) of the model. The dots and triangles 

represent the training and test sets, respectively. All points fall within three standard 

deviation units while two dots are outside of the AD (i.e., greater than the warning 

leverage h*). The CPEs are within the response range; there is no response outlier. Two 

training samples have great influence on the model: compound 58 (leverage: 0.83069) 

and compound 60 (leverage: 0.556). The test set is within the AD. Therefore, its 

prediction is reliable. 
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Figure 6.1 Applicability domain plot. 

 

6.3 RM Result 

Eight relevant descriptors are identified using the RM algorithm: 

D712: number of group donor atoms for H-bonds (with N and O) 

D223: average valence vertex connectivity order-5 Index 

D498: Moran topological structure autocorrelation length-4 weighted by atomic 
Sanderson electronegativities 
 
D139: topological distance count order-3 

D361: ratio of convention bonds with total path counts 

D563: lowest eigenvalue from Burden matrix weighted by polarizabilities order-8 

D468: Geary topological structure autocorrelation length-6 weighted by atomic 
Sanderson electronegativities 
 
D144: mean atomic van der Waals Carbon-scale 
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The standard deviation of the resulting model is 8.9870. The enhancement ratio (ER) 

equation can be written as: 

Enhancement Ratio (ER) = -492.3785709 - 8.334892401 × 

(number of group donor atoms for H-bonds (with N and O)) - 

971.1163824 × (average valence vertex connectivity order-5 

Index) - 178.7675311 × (Moran topological structure 

autocorrelation length-4 weighted by atomic Sanderson 

electronegativities) - 0.529379308 × (Topological distance count 

order-3) - 39.18517223 × (ratio of convention bonds with total 

path counts) - 78.08649465 × (Lowest eigenvalue from Burden 

matrix weighted by polarizabilities order-8) + 83.89527801 × 

(Geary topological structure autocorrelation length-6 weighted 

by atomic Sanderson electronegativities) + 1110.128698 × (mean 

atomic van der Waals Carbon-scale) 

(6.1) 

The q2 value is 0.76. 

 

6.4 ERM Result 

Application of the ERM methodology yields the following descriptors: 

D595: highest eigenvalue from Burden matrix weighted by polarizabilities order-8 

D583: highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-4 
 
D148: mean atomic electronegativity Sanderson-scaled on Carbon 

D719: number of group CH2RX” 
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D487: Moran topological structure autocorrelation length-1 weighted by atomic van der 
Waals volumes 
 
D252: structure centric index 

D202: vertex connectivity order-2 index 

D146: mean atomic electronegativities Pauling-scaled on Carbon  

The standard deviation is 8.2596. As a result, the ER equation is given by: 

Enhancement Ratio (ER) = 3475.644081 - 32.3125901 × (Highest 

eigenvalue from Burden matrix weighted by polarizabilities 

order-8) + 135.7830714 × (Highest eigenvalue from Burden 

matrix weighted by electronegativities Sanderson-Scale order-4) 

+ 10260.89116 × (mean atomic electronegativity Sanderson-

scaled on Carbon) + 10.88119291 × (number of group CH2RX) + 

80.43358564 × (Moran topological structure autocorrelation 

length-1 weighted by atomic van der Waals volumes) + 

1.3463313 × (structure centric index) - 8.755968019 × (vertex 

connectivity order-2 index) - 14528.47706 × (mean atomic 

electronegativities Pauling-scaled on Carbon) 

(6.2) 

The q2 value is 0.79. 

 

6.5 FSR Result 

The descriptors obtained after using the traditional FSR method are: 

D252: structure centric index 

D026: number of Oxygen 

D563: lowest eigenvalue from Burden matrix weighted by polarizabilities order-8 
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D253: structure lopping centric group index 

D492: Moran topological structure autocorrelation length-6 weighted by atomic van der 
Waals volumes 
 
D621: number of group esters (aliphatic) 

D494: Moran topological structure autocorrelation length-8 weighted by atomic van der 
Waals volumes 
 
D503: Moran topological structure autocorrelation length-1 weighted by atomic 
polarizabilities 
 
The standard deviation for the model is 9.4732. The ER equation becomes:  

Enhancement Ratio (ER) = 18.57872893-3.67957 × (structure 

centric index) + 13.39025 × (number of Oxygen) - 108.095 × 

(Lowest eigenvalue from Burden matrix weighted by 

polarizabilities order-8) + 29.18622 × (structure lopping centric 

group index) - 94.0105 × (Moran topological structure 

autocorrelation length-6 weighted by atomic van der Waals 

volumes) - 24.3658 × (number of group esters (aliphatic)) + 

25.98054 × (Moran topological structure autocorrelation length-

8 weighted by atomic van der Waals volumes) - 11.544 × (Moran 

topological structure autocorrelation length-1 weighted by 

atomic polarizabilities) 

(6.3) 

The q2 value is 0.73.  
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6.6 Validation of Test Set Result 

6.6.1 Validation of the RM Result 

Using the results from the RM algorithm, the following statistics are obtained for the 

testing set: ȳ = 14.4267, SStot = 3563.0367, SSerr = 4288.7209, q2 = -0.2037. Table 6.1 

lists the test set and the corresponding descriptors. 

 
6.6.2 Validation of the ERM Result 

The following statistics are achieved for the test set using the ERM results: ȳ = 14.4267, 

SStot = 3563.0367, SSerr = 1331.6290, q2 = 0.6263. Table 6.2 lists the test set and the 

corresponding descriptors. 

 
6.6.3 Validation of the FSR Result 

Application of the Forward step wise method gives: ȳ = 14.4267, SStot = 3563.0367, SSerr 

= 3796.6429, q2 = -0.0656. Table 6.3 lists the test set data and the corresponding 

descriptors. 
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Table 6.1 Predicted ER Values for the Test Set. The RM Algorithm was Applied 

 

D712 D223 D498 D139 D361 D563 D468 D144 Experimental Predicted 

compound8 0 0.067 0.461 24 1.186 -0.025 0.947 0.589 25.78 36.23288 

compound11 0 0.058 0.559 23 1.2 -0.025 0.797 0.592 12.67 18.18059 

compound12 0 0.061 0.531 24 1.193 -0.025 0.816 0.591 36.44 20.50153 

compound17 0 0.068 0.459 31 1.165 -0.025 0.786 0.587 1.96 17.00913 

compound29 0 0.065 0.565 22 1.216 -0.023 0.915 0.591 8.6 18.84592 

compound30 0 0.066 0.49 19 1.233 -0.023 0.899 0.593 12.8 33.0823 

compound35 1 0.06 0.359 34 1.056 -0.016 1 0.589 5 56.47404 

compound37 0 0.087 0.255 18 1.13 -0.025 0.948 0.578 60.1 46.87978 

compound43 0 0.073 0.282 13 1 0.601 0.9 0.575 2.17 7.150154 

compound45 0 0.069 0.403 12 1 0.599 0.839 0.576 1.03 -13.9182 

compound46 0 0.076 0.334 14 1 0.599 0.887 0.575 2.4 -6.52295 

compound50 0 0.073 0.285 18 1 0.599 0.915 0.574 4.17 4.271429 

D stands for descriptor; the number represents the number of the descriptor. For example, D712 is the descriptor 712, “number 

of group donor atoms for H-bonds (with N and O)”. 

  



 
 

  

34 

Table 6.2  Predicted ER Values for the Test Set. The ERM Algorithm was Applied 

 

D595 D583 D148 D719 D487 D252 D202 D146 Experimental Predicted 

compound8 2.126 4.322 0.962 3 0.221 20 9.04 0.953 25.78 17.33268 

compound11 1.922 4.232 0.968 3 0.256 16 7.98 0.957 12.67 21.86659 

compound12 1.96 4.26 0.966 3 0.243 17 8.333 0.955 36.44 30.18565 

compound17 2.229 4.323 0.959 3 0.202 20 9.748 0.95 1.96 19.21556 

compound29 1.74 4.138 0.96 1 0.152 14 7.166 0.951 8.6 -5.62518 

compound30 1.617 4.135 0.962 1 0.161 14 6.813 0.952 12.8 7.749986 

compound35 2.28 4.268 0.946 1 0.149 16 10.505 0.938 5 13.01073 

compound37 1.642 4.138 0.947 2 0.16 15 6.992 0.94 60.1 38.35765 

compound43 1.077 3.954 0.955 1 0.239 11 5.694 0.948 2.17 -1.05753 

compound45 1.064 3.876 0.959 2 0.341 9 5.182 0.951 1.03 7.105402 

compound46 1.224 3.876 0.955 2 0.296 11 5.889 0.948 2.4 -2.64006 

compound50 1.517 4.028 0.951 1 0.247 14 7.237 0.944 4.17 3.015228 
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Table 6.3  Predicted ER Values for the Test Set. The FSR Algorithm was Applied 

 

D252 D026 D563 D253 D492 D621 D494 D503 Experimental Predicted 

compound8 20 3 -0.025 3.821 0.348 1 0.391 1.636 25.78 33.57198 

compound11 16 3 -0.025 3.347 0.554 1 0.489 1.803 12.67 15.70806 

compound12 17 3 -0.025 3.446 0.519 1 0.451 1.744 36.44 17.90213 

compound17 20 3 -0.025 3.616 0.505 1 0.345 1.54 1.96 12.74228 

compound29 14 2 -0.023 3.13 0.385 0 0.455 1.948 8.6 40.82374 

compound30 14 2 -0.023 3.243 0.419 0 0.503 2.019 12.8 41.35286 

compound35 16 1 -0.016 2.972 0.188 0 0.21 0.91 5 38.84379 

compound37 15 1 -0.025 3.354 0.228 0 0.27 1.592 60.1 44.57074 

compound43 11 2 0.601 2.865 0.319 0 0.41 0.324 2.17 0.459715 

compound45 9 2 0.599 2.562 0.444 0 0.828 0.377 1.03 -2.31167 

compound46 11 2 0.599 2.865 0.346 0 0.445 0.324 2.4 -0.95306 

compound50 14 2 0.599 3.243 0.28 0 0.336 0.269 4.17 3.04837 
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CHAPTER 7 

DISCUSSION 

 

7.1 Model Analysis of the Replacement Methods 

The RM, ERM and FSR methods extracted different descriptors from the database and 

resulted in distinct QSAR models. 

 
7.1.1 The Replacement Method Algorithm 

The q2 values for the RM-generated model are: 0.76 (for training data), -0.20 (for test 

vector) and 0.55 (for all 61 CPEs). Based on Eqs 4.8 – 4.11, the following results are 

calculated for the test data (Figure 7.1): R2 = 0.28, R0
2 = 0.24, 𝑅

2−𝑅02

𝑅2
  = 0.17 and k = 0.59. 

The prediction fails to meet the requirements specified in Section 4.7. The results for the 

61 CPEs are shown in Figure 7.2. 

 
7.1.2 The Enhanced Replacement Method Algorithm 

The q2 values for the ERM-based model are: 0.79 (for training data), 0.63 (for test set) 

and 0.76 (for the full dataset). Additional statistics are (Figure 7.3): R2 = 0.64, R0
2 = 0.64, 

𝑅2−𝑅02

𝑅2
  = 4.36×10-3 and k = 1.11. The prediction meets the conditions outlined in Section 

4.7. Figure 7.4 shows a correlation plot with the 61 CPEs. 
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Figure 7.1 Correlation between the experimental and predicted flux ratios for the test 

set. The RM algorithm was applied. 

 

 

Figure 7.2 Correlation between the experimental and predicted flux ratios for the full 

dataset. The RM algorithm was applied. 
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Figure 7.3 Correlation between the experimental and predicted flux ratios for the test 

set. The ERM algorithm was applied. 

 

 

Figure 7.4 Correlation between the experimental and predicted flux ratios for the full 

dataset. The ERM algorithm was applied. 
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7.1.3 The Forward Stepwise Regression Algorithm 

The q2 values calculated when the FSR algorithm is applied are: 0.73 (for training set), -

0.066 (for test set) and 0.56 (for the 61 CPEs). Other test statistics are (Figure 7.5): R2 = 

0.29, R0
2 = 0.27, 𝑅

2−𝑅02

𝑅2
  = 0.064 and k = 0.63. The prediction is poor. The correlation 

plot is shown for the 61 CPEs (Figure 7.6). 

 

 

Figure 7.5 Correlation between the experimental and predicted flux ratios for the test 

set. The FSR algorithm was applied. 
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Figure 7.6 Correlation between the experimental and predicted flux ratios for the full 

dataset. The FSR algorithm was applied. 

 

7.2 Evaluation of Models 

The RM and FSR approaches yield negative q2 values. Based on Equation 4.4, the mean 

of the data outperforms the QSAR models. Therefore, the predictor variables selected by 

both methods cannot predict ER when a linear trend is assumed. The ERM algorithm 

produces the best result, in accordance with previous observations. Simon and 

Abdelmalek (2012) analyzed the same 61 non-polar CPEs by extracting eight different 

descriptors using MMP+. Multiple linear regression models were also derived. After 

applying the ERM technique, the q2 values were 0.683 and 0.74 for the full dataset and 

training data, respectively. The q2 values for the 61 CPEs were 0.683 and 0.671 with the 

RM and FSR algorithms, respectively. Those findings show that the ERM performed 

more effectively when the test results were considered and could serve as a viable 
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modeling tool for the selection for molecular structures [14]. This observation is 

consistent with the three cases studied in this work. In addition, the ERM results in 

Section 7.1.2 outperformed those recorded in [14]. The main reason is the application of 

the public domain software Mold2 which can create more descriptors at a low 

computational cost while conveying sufficient structural information. In summary, the 

combination of ERM and Mold2 predictors is a promising approach for designing CPEs. 

 

7.3 Interpretation of Eight Enhanced Replacement Method Descriptors 

D595 and D583 belong to the burden eigenvalues, a subclass of eigenvalues-based 

descriptors [30]. Polarizability, applied in D595, is a fundamental property and is defined 

as the ability of particles to be polarized. It controls the dynamical response of a bound 

system to an external field and can shed light on a molecule's internal structure [69]. As a 

chemical property, electronegativity (in D583) is related to the tendency of an atom, or a 

functional group, to pull electrons towards itself. Sanderson electronegativity’s model can 

compute parameters, such as bond energies, molecular geometry and NMR spin-spin 

constants [70]. 

D148 and D146 belong to electronegativity scales, a subclass of quantum-

chemical descriptors. The Sanderson scales χs are based on covalent radii. Sanderson 

group electronegativity (ESG) is calculated by the equation [30]: 

𝐸𝑆𝐺𝑖 = (χ𝑆,1, χ𝑆,2, … , χ𝑆,𝑚)1/𝑚 (7.1) 

where χs is the Sanderson electronegativity and m the number of atoms of the ith 

molecular group. 
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Pauling defined electronegativity as “the power of an atom in a molecule to attract 

electrons to itself”. Pauling-scale χPA is estimated using the ionization potential (IP) and 

the electronic affinity of valence state (EA) [30]: 

𝜒𝑃𝐴 = 0.303 ×
𝐼𝑃 + 𝐸𝐴

2
 

(7.2) 

D719 belongs to the subclass of structural features while D487 is a Moran 

topological structure autocorrelation descriptor, which is expressed as Id (w) with 

d=1,2,..,10).  The function Id  (w) is defined as [30, 71]: 

𝐼𝑑(𝑤) =
1
∆∑ ∑ 𝛿𝑖𝑗(𝑤𝑖 − 𝑤�)(𝑤𝑗 − 𝑤�)𝑁

𝑗=1
𝑁
𝑖=1

1
𝑁∑ (𝑤𝑖 − 𝑤�)2𝑁

𝑖=1

 
(7.3) 

where the weight w is any atomic property and 𝑤�  is its average value; N is the number of 

atoms; d is the considered topological distance and 𝛿𝑖𝑗 is the Kronecker delta. The sum of 

the Kronecker deltas is given by ∆ . 

D252 is a centric index and is calculated using a partition of graph vertices based 

on its position relative to the center. Details can be found in [30]. D202 is a connectivity 

index that can be calculated from the vertex degree δ of the atoms in a molecular graph 

where all the hydrogen atoms are excluded. The vertex degree represents the count of its 

σ electrons in the plot and can be estimated by the following equation: 

𝛿𝑖 = �𝑎𝑖𝑗 = 𝑓𝑖 =1
𝐴

𝑗=1

[𝐀2]𝑖𝑖 
(7.5) 

where δi stands for the vertex degree of the ith atom, aij marks the ith row of the 

adjacency matrix A and 1fi  is the i th row of the distance matrix D [30]. 
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7.4 Correlation of the Enhanced Replacement Method-based Descriptors 

A correlation study was conducted to detect possible relationships among ERM-based 

properties (Table 7.1).  If the correlation coefficient is greater than 0.8 (or less than -0.8), 

the two variables are strongly correlated and the label “s” is used. Values between 0.3 

and 0.8 (or -0.8 and -0.3) describe weak correlation and the symbol “w” is assigned. If 

the value is smaller than 0.3 (or greater than -0.3), there is no correlation, a case that is 

described by “n." Such analyses help to identify which variables can be omitted in future 

modeling efforts.  

Table 7.1  Correlation between the Eight Descriptors 

 
D595 D583 D148 D719 D487 D252 D202 D146 

D595   0.9067 0.1961 0.5775 -0.2103 0.3042 0.9329 0.1465 
D583 s   0.3578 0.6497 -0.2101 0.4372 0.8954 0.3183 
D148 n w   0.6827 0.6708 0.5722 0.3416 0.9968 
D719 w w w   0.4301 0.6652 0.6560 0.6712 
D487 n n w w   0.4798 -0.0436 0.6920 
D252 w w w w w   0.4602 0.5752 
D202 s s w w n w   0.2987 
D146 n w s w w w n   
 

7.5 Application of the Enhanced Replacement Method Model 

Although The ERM algorithm is effective at selecting the best CPEs, compounds to be 

tested should be within the AD of the model (Figure 6.1). The leverage is expected to be 

smaller than a warning value and the ER response not to exceed the three-standard 

deviation threshold. This is especially important for the design of new CPEs for a certain 

drug. 

The sign of the regression coefficients of the QSAR is instructive for designing 

CPEs. To increase the transdermal flux, variables with positive coefficients should have 
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large values. An opposite effect is observed when the coefficient is negative. For the 

ERM-based selections, D595, D202 and D146 need to be as small as possible while the 

other five variables should take on large values.  The magnitudes of coefficients can help 

evaluate the contribution of each feature: the larger the coefficient absolute value, the 

more dominant the variable. The influence level is expressed as: 

D252 < D202 < D719 < D595 < D487 < D583 < D146 < D148 (7.1) 

Reversible decoding (or inverse QSAR) is a process for re-constructing the 

structure, or fragment, by using calculated molecular descriptors. Without performing 

experiments, the response of a new molecule can be predicted using Equation 6.2. The 

influence level is an important consideration in screening for the best CPEs. The difficult 

task in reversible decoding is the ability to transform these descriptors into structures, a 

step necessary for guiding the design or synthesis of new molecules. In fact, this could be 

a limiting factor in choosing software that produces structural descriptors. Reversible 

decoding is an important research area that deserves increased attention [72]. 
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CHAPTER 8 

CONCLUSIONS 

 

In this study, three selection algorithms, RM, ERM and FSR, were applied to a database 

composed of 61 nonpolar CPEs. Eight features, which affected the enhancement ratio the 

most, were chosen from 777 molecular descriptors created by Mold2. QSAR models were 

developed using hydrocortisone as a control. Although the RM and FSR method yielded 

high q2 values during training (0.73 and 0.76, respectively), the test set results were 

unsatisfactory. 

The ERM produced the best QSAR model, with high predictive power. The q2 

values were: 0.79 (training), 0.63 (testing) and 0.76 (full database). These statistics 

suggest that the approach can be used to explain the relationship between ER and 

molecular descriptors. Another potential application is in the area of reverse decoding to 

promote the design of new CPEs. For the technique to be effective, the compound needs 

to belong to the model’s AD. 

This work focused on a method to fabricate CPEs that would improve the 

permeation of hydrocortisone through the skin. A strategy that is also applicable to other 

drugs. Research on CPEs to aid the transdermal transport of insulin is continuing in our 

laboratory. The response variable is the permeability instead of the ER [73]. 
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APPENDIX A 

SMILES CODES FOR THE SIXTY-ONE CPES 

 

SMILES codes representing the molecular structures of the sixty-one CPEs are 

listed. 

compound1 C1CCCC(=O)N(CCCCCCCCCCCC)C1 

compound2 C1CCC(=O)N1CC(=O)OCCCCCCCC 

compound3 C1CCC(=O)N1CC(=O)OCCCCCCCCC 

compound4 C1CCC(=O)N1CC(=O)OCCCCCCCCCC 

compound5 C1CCC(=O)N1CC(=O)OCCCCCCCCCCC 

compound6 C1CCC(=O)N1CC(=O)OCCCCCCCCCCCC 

compound7 C1CCC(=O)N1CC(=O)OCCCCCCCCCCCCC 

compound8 C1CCC(=O)N1CC(=O)OCCCCCCCCCCCCCC 

compound9 C1CCC(=O)N(CC(=O)OCCCCCCCC)C1 

compound10 C1CCC(=O)N(CC(=O)OCCCCCCCCC)C1 

compound11 C1CCC(=O)N(CC(=O)OCCCCCCCCCC)C1 

compound12 C1CCC(=O)N(CC(=O)OCCCCCCCCCCC)C1 

compound13 C1CCC(=O)N(CC(=O)OCCCCCCCCCCCC)C1 

compound14 C1CCC(=O)N(CC(=O)OCCCCCCCCCCCCC)C1 

compound15 C1CCC(=O)N(CC(=O)OCCCCCCCCCCCCCC)C1 

compound16 C1CCCC(=O)N(CC(=O)OCCCCCCCCCCCC)C1 

compound17 C1CCCC(=O)N(CC(=O)OCCCCCCCCCCCCCC)C1 

compound18 C1CCC(N2CCCC2=O)C(=O)N(CCCCCCCCCC)C1 

compound19 C1CCC(N2CCCC2=O)C(=O)N(CCCCCCCCCCCC)C1 

compound20 C1CCC(N2CCCC2=O)C(=O)N(CCCCCCCCCCCCCC)C1 

compound21 C1CCC(N2CCCC2=O)C(=O)N(CCCCCCCCCCCCCCCC)C1 

compound22 C1CCC(N2CCCC2=O)C(=O)N(CC(=O)OCCCCCC)C1 
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compound23 C1CCC(N2CCCC2=O)C(=O)N(CC(=O)OCCCCCCCC)C1 

compound24 C1CCC(N2CCCC2=O)C(=O)N(CC(=O)OCCCCCCCCCC)C1 

compound25 C1CCC(N2CCCC2=O)C(=O)N(CC(=O)OCCCCCCCCCCCC)C
1 

compound26 C1CCC(N2CCCC2=O)C(=O)N(CC(=O)OCCCCCCCCCCCCCC
)C1 

compound27 C1CCN(C(CCCCCCCCCC)=O)CC1 

compound28 C1CN(C(CCCCCCCCCC)=O)CC1 

compound29 C1CC(=O)N(C(CCCCCCCCCC)=O)CC1 

compound30 C1C(=O)N(C(CCCCCCCCCC)=O)CC1 

compound31 C1CCC(=O)C(CCCCCCCCCC)C1 

compound32 C1C(=O)C(CCCCCCCCCC)CC1 

compound33 C1N(C(CCCCCCCCCC)=O)CCSC1 

compound34 CC(N(CCCCCCCCCCCC)CCCCCCCCCCCC)=O 

compound35 C1C(CC(C(=O)NCCCCCCCCCCCC)(C2)C3)CC2CC13 

compound36 C1N(C(CCCCCCCCCCC)=O)CCOC1 

compound37 C1C(=O)N(CCCCCCCCCCCCC)CC1 

compound38 C1CCC(=O)N(CCCCCCCCCCCCC)C1 

compound39 O1C(CCCCCCC)OCC1 

compound40 O1C(CCCCCCCCC)OCC1 

compound41 O1C(CCCCCCCCCCC)OCC1 

compound42 O1C(CCCCCCC)OC(C)C1 

compound43 O1C(CCCCCCCCC)OC(C)C1 

compound44 O1C(CCCCCCCCCCC)OC(C)C1 

compound45 O1C(C)(CCCCCCC)OCC1 

compound46 O1C(C)(CCCCCCCCC)OCC1 

compound47 O1C(C)(CCCCCCCCCCC)OCC1 

compound48 O1C(C)(CCCCCCC)OC(C)C1 

compound49 O1C(C)(CCCCCCCCC)OC(C)C1 

compound50 O1C(C)(CCCCCCCCCCC)OC(C)C1 
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compound51 O=C(NCCCCCCCCCCCC)N 

compound52 O=C(NCCCCCCCCCCCC)NC 

compound53 S=C(NCCCCCCCCCCCC)NC 

compound54 O=C(NCCCCCCCCCCCC)NCCCCCCCCCCCC 

compound55 S=C(NCCCCCCCCCCCC)NCCCCCCCCCCCC 

compound56 O=C(NCCCCCCCCCCCC)Nc1=cc=cc=c1 

compound57 S=C(NCCCCCCCCCCCC)Nc1=cc=cc=c1 

compound58 C(C(=CCO)C)CC=C(C)C 

compound59 N(CCCCCCCCCCCC)CCCCCCCCCCCC 

compound60 NCCCCCCCCCCCC 

compound61 NCCCCCCCCCCCCCCCCCC 
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APPENDIX B 

A DATABASE OF 777 DESCRIPTORS 

 

The molecular structures of the sixty-one CPEs are transformed into 777 molecular 

descriptors. Part of the molecular descriptor names with descriptor codes is listed. 

For the full database, consult Mold2_SoftwareIntroduction_12012008.doc at 

http://www.fda.gov/downloads/ScienceResearch/BioinformaticsTools/Mold2/UCM1619

40.pdf [68]. 

Description Code Descriptor Name 
D001 Number of 6-membered aromatic rings only carbon atoms 
D002 Number of 03-membered rings 
D003 Number of 04-membered rings 
D004 Number of 05-membered rings 
D005 Number of 06-membered rings 
D006 Number of 07-membered rings 
D007 Number of 08-membered rings 
D008 Number of 09-membered rings 
D009 Number of 10-membered rings 
D010 Number of 11-membered rings 
D011 Number of 12-membered rings 
D012 Number of multiple bonds  
D013 Number of circuits structure  
D014 Number of rotatable bonds 
D015 Rotatable bond fraction 
D016 Number of double bonds  
D017 Number of aromatic bonds  
D018 Sum of conventional bond orders (h-depleted)  
D019 Number of hydrogen  
D020 Number of helium  
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