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ABSTRACT 

DISSOLUTION OF DIFFERENT COMMERCIAL ASPIRIN TABLETS USING A 

NOVEL OFF-CENTER PADDLE IMPELLER (OPI) DISSOLUTION TESTING 

SYSTEM 

by 

Yang Qu 

Dissolution testing is routinely conducted in the pharmaceutical industry to provide in 

vitro drug release information for quality control purposes. The most common dissolution 

testing system for solid dosage forms is the United States Pharmacopeia (USP) 

Dissolution Testing Apparatus 2.  In this work, a modified Apparatus 2, termed ―OPI‖ 

System for ―off-center paddle impeller,‖ in which the impeller is placed 8 mm off center 

in the vessel is tested to determine its sensitivity to differentiate between the dissolution 

profiles of differently formulated and manufactured tablets.  Dissolution tests are 

conducted with both the OPI System and the Standard System using three different 

brands of aspirin at nine different tablet positions.  The OPI system produces dissolution 

profiles that are highly dependent on the different brands of aspirin used, similarly to 

those generates in the Standard System.  However, the dissolution profiles obtained with 

the OPI apparatus are found to be largely independent of the tablet location at the vessel 

bottom, whereas those obtained in the Standard System generates statistically different 

profiles depending on tablet location.  It can be concluded that the newly proposed OPI 

system can effectively eliminate artifacts generated by random settling of the tablet at the 

vessel bottom, thus making the test more robust, while at the same time being just as 

sensitive as the Standard System to actual differences in differently manufactured tablets 

having intrinsically different dissolution profiles.  
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CHAPTER 1  

INTRODUCTION 

1.1  Background 

The dissolution of a drug substance contained in a solid dosage form is the process by 

which the drug substance is released from its original formulation into a suitable solution 

under controlled conditions. Although dissolution appears to be a simple process, 

developing a suitable dissolution test for the drug content of solid dosage forms is not a 

trivial task, especially considering that dissolution testing is a critical step in quality 

control for manufactured final products and it is one of the standard methods for 

assessing batch-to-batch consistency of solid oral drug delivery systems such as tablets 

and capsules. Therefore, careful consideration should be given in the selection of 

equipment to be used for such test and the specifications of the test operating variables. 

Currently there are seven dissolution testing apparatuses specified by USP [1]. Different 

types of drug dosage forms have specific dissolution apparatuses and operation 

conditions for dissolution testing, such as dissolution medium, medium volume, agitation 

speed, detecting UV wavelength, and others. 

        USP Apparatus 1, the rotating basket dissolution apparatus was developed in 1960s. 

This system consists of a 1 L cylindrical, hemispherical bottom, unbaffled vessel and a 

meshed basket. This device is appropriate for dosage forms such as capsules, beads and 

suppositories. The design of the basket can prevent light drugs from floating around 

during the dissolution tests. 
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        The rotating paddle apparatus, USP Apparatus 2, was developed shortly after 

Apparatus 1. It consists of a paddle agitator and the same vessel as USP Apparatus 1. 

This system is helpful for heavier drugs such as tablets, which can rapidly sink when 

dropped in the dissolution medium. For light drugs, a sinker would be used to help 

sinking the tablet. USP Apparatus 2 is used for both immediate release and modified 

release drug delivery systems. In general, three dissolution volumes are used, i.e., 500 

mL, 900 mL and 1000 mL. This system is routinely used to test oral dosage tablets and 

capsules. 

        In 1995, USP introduced the reciprocating cylinder apparatus as an alternative to the 

basket and paddle apparatuses for drug release testing. The reciprocating cylinder 

apparatus has six inner tubes moving vertically. There is a screen at each end, containing 

the drug delivery system. This apparatus has been successfully used for tablets, capsules 

and some extended-release dosage. When small testing volumes (200-300 mL) are 

required, reciprocating cylinder is a good choice. 

        The flow-through cell was originally developed to simulate gastrointestinal 

conditions by exposing extended-release and poorly soluble dosage forms to media of 

varying pH. It was designed for non-disintegrating drugs. This apparatus consists of six 

cells, which can be of various sizes depending on the drug delivery system. The apparatus 

has been used for capsules, powders, tablets, implants, and suppositories and has been 

used with a wide range of media volume. 

        USP Apparatuses 5 and 6 are employed for testing transdermal patches, and the 

official vessels are the same as in Apparatuses 1 and 2, i.e., a 1 L unbaffled 

hemispherical-bottom glass vessel. Apparatuses 5 and 6 were originally introduced as 
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supplements to USP Apparatus 1 and 2. USP Apparatus 5 is also called paddle over disk. 

This device is simply a modified version of USP Apparatus 2. The vessel and agitator are 

the same as in USP Apparatus 2. The only difference is there is the presence of horizontal 

disk whose purpose of the disk is to act as a sinker to hold the transdermal patch during 

dissolution tests. USP Apparatus 6 is usually referred to as rotating cylinder. The device 

uses the same vessel of Apparatus 1 where the basket is replaced with a hollow stainless 

steel cylinder. The transdermal patch is pasted on the cylinder with the drug release side 

placed outwards. 

        Apparatus 7, incorporating a reciprocating holder was originally introduced as a 

small volume option for small transdermal patches. Currently, Apparatus 7 can 

accommodate a dissolution environment as low as 5 mL. 

        The USP Apparatus 2 and the test associated with it are routinely used in the 

pharmaceutical industry to help formulate solid drug dosage forms, develop quality 

control specifications for its manufacturing process, provide critical in vitro drug release 

information for quality control purposes, and especially to assess batch-to-batch 

consistency of solid oral dosage forms, such as tablets, for both immediate-release and 

modified-release drug delivery systems. Despite its apparent simplicity, there are a 

number of issues associated with USP Apparatus 2 and its use.  Although most solid oral 

dosage forms are tested in USP Apparatus 2, it is not uncommon to have a drug recall due 

to a failed dissolution test. Failed dissolution tests resulted in 47 product recalls in 2000–

2002, representing 16% of nonmanufacturing recalls for oral solid dosage forms. A 

review of the weekly published US Food and Drug Administration (FDA) Enforcement 

Reports shows that failed dissolution testing routinely account for a significant fraction of 
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the recalls. Failed dissolution tests can result not only in product recalls, but also in costly 

investigations and potential production delays, all of them having substantial financial 

impact to the pharmaceutical industry. These inconsistencies present even greater 

challenges when trying to implement Quality by Design, which defines the future state of 

dissolution, its value, method design, and links to the design space. In addition, 

dissolution testing is sensitive to a number of parameters. The challenges generally are 

divided into two classes, i.e., variability and bio-relevancy [2]. Variability in dissolution 

testing is an area that has received a great deal of attention. Many studies demonstrated 

the source and extent of test variability [3, 4, 5, 6]. Even to this day, dissolution testing 

remains susceptible to significant error and test failures. 

        The hydrodynamics of USP Apparatus 2 vessel has been reported to play a major 

role in the poor reproducibility of dissolution testing data and the inconsistency of 

dissolution results [7, 8, 9]. Previous studies have pointed out that the hydrodynamics of 

this apparatus is actually quite complex [10-14] and it is strongly affected by even small 

variations in the geometry of the apparatus [15-17]. These studies have shown that even 

when the impeller is exactly centered in an ideal, perfectly cylindrical vessel with a 

hemispherical bottom, the velocity distribution inside USP Apparatus 2 is highly 

nonhomogeneous [12, 14-17]. The flow is dominated by a strong tangential component 

across the entire liquid volume (swirling motion) with weak axial and radial velocities, 

resulting in a poor top-to bottom recirculation and the possible formation of a loosely 

aggregated pile of solid tablet fragments (―coning‖ effect) below the impeller.  

        In addition, just under the impeller, a central inner core region can be found where 

both axial and radial velocities are extremely low regardless of the impeller agitation 
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speed. This is the region where the tablet is often located during a test. Outside this inner 

core region, the velocities are appreciably higher. As a result, the distribution of shear 

strain rate along USP Apparatus 2 vessel’s bottom is highly non-uniform, and a zone 

always exists just below the shaft where the strain rate remains very low even when the 

impeller agitation speed is increased [17-22]. The non-uniformity of the shear and strain 

rate distributions can have a significant impact on the mass transfer rate and, hence, the 

dissolution rate of a tablet, depending on where the tablet is located during the dissolution 

testing [17].  

        The possibility that a tablet is not always centered during a test is a real one because 

the tablet is dropped from above the liquid before the test begins and can land anywhere 

at the vessel bottom. If the tablet finds itself at an off-center location, it may remain there 

for the rest of the test or a significant portion of it. This is especially the case for capsules 

and dosage forms with a gelatinous shell. Tablets located outside the inner core region 

have been shown to dissolve much more rapidly than those located within this zone, 

resulting in possible test failures because their dissolution curves are statistically different 

from those obtained with centered tablets [17, 22].  

        Another source of variability during dissolution testing is associated with small 

changes in the geometry of the system. For example, small alterations in the vessel 

geometry resulting in a slightly irregular inner shape of a glass vessel28 can produce very 

different dissolution profiles that result in test failures [29–30]. Also, placing the paddle 

just 2mm off center within the vessel (i.e., within the alignment tolerances specified in 

the USP) results in a flow pattern near the vessel’s bottom that is appreciably different 

from that of a centered impeller [16]. This can be expected to impact the shear stress 
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experienced by a tablet sitting at the vessel’s bottom and hence the dissolution profile. 

Even slightly tilting the vessel has been shown to change the rate of dissolution 

significantly [31]. External vibrations have also been shown to introduce significant 

variability in the dissolution profiles [16-19]. Similarly, even inserting a permanently 

placed sampling probe rather than sampling intermittently has enough of an impact on the 

hydrodynamics to result in an increase in the dissolution rate [29]. 

        The reason for this extreme sensitivity of USP Apparatus 2 dissolution test to 

different types of small geometric changes can be attributed to the fact that USP 

Apparatus 2 consists of a symmetrical vessel with no baffles. Therefore, any small 

perturbations in the system’s symmetry, such as those mentioned above, can result in a 

nonsymmetrical flow, especially around the dissolving tablets (which typically finds 

itself in an extremely weak flow field anyway), and can produce significantly different 

dissolution profiles as a result. 

        In the past, two approaches have been used to address such dissolution testing 

variability issues. The first consisted in developing a modified dissolution testing system. 

Examples include crescent shaped spindle [28-31] or the PEAK vessel (originally 

available from Varian, Inc. Palo Alto, CA, and currently available from Agilent 

Technologies Santa Clara, CA) [18-22]. In general, these systems still try to maintain 

symmetry and do not alter significantly the overall, strongly tangential flow pattern 

observed in the standard USP Apparatus 2.  

        Actually, because of its construction, the support arm of the crescent shaped spindle 

may unintentionally introduce some asymmetry in the system, which can be one of the 

reasons for the improved performance of this system. As for the PEAK vessel, its central 
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peak serves the function of preventing the tablet from being located in the center of the 

vessel, thus partially avoiding the above-mentioned, poorly agitated zone below the 

impeller. However, the advantages offered by both systems are limited and neither 

system has found wide acceptance in the industry. 

        The second and most common approach that practitioners and equipment vendors 

have used to minimize test variability is to reduce as much as possible all sources of 

asymmetry. This has resulted in a number of mechanical calibration tests, test devices, 

and tools designed to maximize the achievement of a symmetric system and remove 

imperfections as much as possible. For example, centering gauges, wobble meters, and 

other devices can be used to check for geometric irregularities and misalignments in the 

central placement of the impeller in the vessel. Similarly, glass vessels with very precise 

geometry can be purchased for a premium price [29–30]. For the same reason, sampling 

cannulas are not typically permanently inserted inside the dissolution vessel, although 

automation may eventually require the use of permanent sampling systems and this issue 

may be revisited in the future. 

1.2 Objective of This Work 

This overview shows that there are still a number of issues currently associated with 

dissolution testing in USP Apparatus 2, which are directly traceable to the system 

geometry and the resulting hydrodynamics. Therefore, recently this research group 

developed a slightly modified variation of USP Apparatus 2, called ―OPI‖ (Off-Center 

Paddle Impeller) System which retains the key features of Apparatus 2, while reducing its 

shortcomings. Accordingly, the paddle impeller in USP Apparatus 2 was deliberately 

moved from its central location and placed in an off-center, asymmetric position as 
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shown in Figure 1.1 in order to take advantage of the nonsymmetrical but more 

homogeneous flow that asymmetric impellers generate, especially near the vessel’s 

bottom. It has been shown by this group that this simple modification of the standard 

USP Apparatus 2 can result in a much more robust dissolution testing system, thus 

making this test insensitive not only to tablet location, but, most likely, also to other small 

geometric differences between the test systems [9].  

Even though the OPI System can reduce some of the shortcomings of the current 

Apparatus 2, it is important to determine whether it can also discriminate between 

different tablets that have different dissolution profiles.  Therefore, the objective of the 

work described here was to test whether the OPI System is sensitive enough to determine 

differences in tablet dissolution profiles caused by different formulations of the same 

drug product. This approach was tested here by experimentally by obtaining the 

dissolution profiles for three different brands of aspirin and statistically comparing these 

results with the dissolution results obtained in the current Standard System. In this work 

the dissolution characteristics of both the Standard Apparatus 2 and the OPI System were 

studied in detail. From this work it can be concluded that the OPI System is just as 

capable of differentiate the dissolution characteristics of different formulations while, at 

the same time, eliminating the sensitivity of the current Apparatus 2 system to minor 

changes in experimental and geometric variables. 
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Figure 1.1  Illustration of the basic approach used to design OPI Dissolution Testing 

System. 
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CHAPTER 2  

EXPERIMENTAL APPARATUSES, MATERIALS, AND METHODS 

2.1  Dissolution Tests 

2.1.1 Dissolution Apparatus 

Two dissolution testing apparatus systems were used in this work, that is, a standard USP 

Dissolution Testing Apparatus 2 (hereafter called the ―Standard System‖) and a modified 

system, which, in this work, is referred to as ―OPI system‖ for ―off-center paddle 

impeller‖ system. The Standard System consisted of a Distek 5100 bathless dissolution 

apparatus shown in Figure 2.1 (Distek Inc., North Brunswick, New Jersey), capable of 

operating seven dissolution vessels at a time. Each USP Apparatus 2 vessel used as the 

dissolution vessel consisted of an unbaffled, cylindrical, transparent glass tank with a 

hemispherical bottom. The internal diameter, T, is 100.16 mm and the overall capacity is 

1L. The agitation system includes a standard USP Apparatus 2 two-blade paddle impeller 

mounted on a shaft and connected to the motor in the Distek system (Distek Inc.). The 

exact geometry of each component of the impeller was obtained by measuring the actual 

dimensions with a caliper: shaft diameter, 9.53 mm; length of the top edge of the blade, 

74.10 mm; length of the bottom edge of the blade, 42.00 mm; height of the blade, 19.00 

mm; thickness of the blade, 5.00 mm. The distance between the lower edge of the 

impeller blade and the vessel’s inside bottom was 25mm, as specified in the USP. After 

the vessel was filled with 900 ml of dissolution media, the liquid height, H, which is 

measured from the bottom of the vessel, was 128.8 mm, whereas it was 78.2 mm when 

filled with 500 mL of the medium. Figure 2.2a shows the standard USP Dissolution 
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Testing Apparatus 2.  

The OPI system was similar to the Standard System except for the location of the 

impeller, which was placed 8 mm off center with respect to the vessel centerline (Figure 

2.2a). This was accomplished by removing one of the three retaining plastic spring inserts 

which mounted on the metal plate of the Distek dissolution equipment to keep a vessel 

centered in each cavity in the plate (Figure 2.3). This resulted in an off-center alignment 

of the vessel centerline with respect to the impeller centerline. The distance between 

these centerlines was made to be exactly 8 mm by inserting a proper spacer, thus 

resulting in an off-centered impeller with respect to the vessel. The distance between the 

lower edge of the impeller blade and the vessel’s inside bottom in the OPI system was 25 

mm, that is, the same as in the Standard System. Figure 2.2b shows the OPI dissolution 

testing system. 
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Figure 2.1  Distek Premiere 5100 dissolution system used in this work. 

 

Figure 2.2  (a) Schematic of the standard USP Dissolution Testing Apparatus 2 and (b) 

schematic of OPI dissolution testing apparatus. Air-liquid interface refers to the 500-mL 

liquid volume. 
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Figure 2.3  Modification of the Standard System to obtain the OPI system: (a) vessel in 

the Standard System, (b) plastic spring inserts exposed after removing the vessel in the 

Standard System, (c) system after one of the plastic spring inserts has been removed, and 

(d) system after the vessel was repositioned to obtain the OPI system. 
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2.1.2 Materials 

Dissolution studies were carried out with three commercial types of aspirin tablets, that is: 

 325 mg uncoated Aspirin tablets, CVS Pharmacy 

 325 mg coated Aspirin tablets, BAYER 

 325 mg coated Aspirin tablets, CVS Pharmacy 

Information about each tablet formulation is given below. 

325 mg Uncoated Aspirin Tablets, CVS Pharmacy  

 

UNCOATED ASPIRIN   

aspirin tablet 

Product Information 

Product Type 
HUMAN OTC 

DRUG 
Item Code (Source) 

NDC:59779-

249 

Route of Administration ORAL DEA Schedule      
 

Active Ingredient/Active Moiety 

Ingredient Name Basis of Strength Strength 

ASPIRIN (ASPIRIN) ASPIRIN 325 mg 
 

Inactive Ingredients 

Ingredient Name Strength 

STARCH, CORN   
 

Product Characteristics 

Color WHITE Score no score 

Shape ROUND Size 11mm 

Flavor  Imprint Code 44;249 

Contains        
 

Packaging 

# Item Code Package Description  

1 NDC:59779-249-16 1000 in 1 BOTTLE, PLASTIC  
 

 

Marketing Information 

Marketing Category 
Application Number or 

Monograph Citation 

Marketing Start 

Date 

Marketing End 

Date 

OTC MONOGRAPH 

NOT FINAL 
part343 08/04/1993  
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325 mg Coated Aspirin tablets, BAYER  

BAYER   ADVANCED ASPIRIN REGULAR STRENGTH  

aspirin   tablet 

Product Information 

Product Type 
HUMAN OTC 

DRUG 

NDC Product Code 

(Source) 

0280-

2605 

Route of Administration ORAL DEA Schedule      
 

Active Ingredient/Active Moiety 

Ingredient Name Basis of Strength Strength 

Aspirin (Aspirin) Aspirin 325 mg 
 

Inactive Ingredients 

Ingredient Name Strength 

Carnauba Wax 5.00 mg 

Silicon Dioxide 8.50 mg 

Hypromelloses 16.00 mg 

Sodium carbonate 25.00 mg 

Zinc stearate 4.61 mg 
 

Product Characteristics 

Color WHITE Score no score 

Shape ROUND Size 24mm 

Flavor  Imprint Code  

Contains        
 

Packaging 

# NDC Package Description Multilevel Packaging  

1 0280-2605-01 876000 TABLET In 1 DRUM None  
 

 

Marketing Information 

Marketing Category 
Application Number or 

Monograph Citation 

Marketing Start 

Date 

Marketing End 

Date 

OTC MONOGRAPH 

FINAL 
part343 

12/01/2010 
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325 mg Coated Aspirin tablets, CVS pharmacy  

 

Product Information 

Product Type HUMAN OTC DRUG Item Code (Source) NDC:59779-416 

Route of Administration ORAL DEA Schedule      
 

Active Ingredient/Active Moiety 

Ingredient Name Basis of Strength Strength 

ASPIRIN (ASPIRIN) ASPIRIN 325 mg 
 

Inactive Ingredients 

Ingredient Name Strength 

DIBASIC CALCIUM PHOSPHATE DIHYDRATE   

TRIACETIN   

HYPROMELLOSES   

TALC   

STARCH, CORN   
 

Product Characteristics 

Color WHITE Score no score 

Shape ROUND Size 14mm 

Flavor  Imprint Code Aspirin;L 

Contains        
 

Packaging 

# Item Code Package Description  

1 NDC:59779-416-78 1 BOTTLE (BOTTLE) in 1 CARTON  

1  100 TABLET (TABLET) in 1 BOTTLE  

2 NDC:59779-416-87 1 BOTTLE (BOTTLE) in 1 CARTON  

2  300 TABLET (TABLET) in 1 BOTTLE  

3 NDC:59779-416-90 500 TABLET (TABLET) in 1 BOTTLE  
 

 

Marketing Information 

 

Marketing  

Category 

Application Number or  

Monograph Citation 

Marketing  

Start Date 

Marketing End  

Date 
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OTC monograph not final part343 06/15/1991  
 

 

The dissolution medium for aspirin was prepared by mixing 2.99 g of sodium acetate 

trihydrate and 1.66 ml of glacial acetic acid with water to obtain 1000 mL of solution 

having a pH of 4.50 ± 0.05. The temperature of the dissolution medium was raised to 

37±0.5 °C; 500ml prior to its use in the experiments.   

2.1.3 Experimental Method 

The medium was de-aerated before using, according to the method developed by Moore 

(1996) following the USP requirement [1] (Figure 2.4). Accordingly, the medium was 

placed in carboy tank, which was then connected to a vacuum pump. Vacuum was 

applied for 30 minutes while all other valves in the system were closed. This stock 

solution was used as needed (typically in 500 mL aliquots per test).  

Two testing methods were used here to conduct dissolution tests, as follows.   

 Testing Method #1: the tablet was dropped in the dissolution medium at the 

beginning of the experiment (USP Method); 

 Testing Method #2: the tablet was fixed in place at one of nine different tablet 

positions at the bottom the vessel (i.e., 0°, 10°, 20°) prior to the addition of the 

dissolution medium as specified below. 

When Testing Method #1 was used, a prescribed volume (500 mL) of the appropriately 

deaerated dissolution medium, previously preheated at 37.5
◦
C, was gently poured into the 

vessel in order to minimize the introduction of gas.  Because of the thermal inertia of the 

vessel, the resulting temperature of the liquid was 37
◦
C. This temperature was maintained 

throughout the dissolution experiment by the system’s temperature controller.  Then a 
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tablet was dropped in the Standard System vessel and another in the OPI System vessel, 

agitation was started, and a first set of samples was manually removed as described 

below.  The agitation speed was 50 rpm for the aspirin dissolution tests in Standard 

System, and 36 rpm in the OPI System, as specified in previous work by this group.  This 

agitation value had been previous identified as the agitation speed at which the OPI 

system would generate the same dissolution profile as a standard system stirred at 50 rpm 

when a tablet was located at the central position (as better described below). 

The time interval between samples was 5 min for the first 30 min, and every 15 

min from 30 min to 60 min. Each experiment lasted 60 min, and a total of 8 samples were 

taken for each experiment. All experiments were performed in triplicates. 

 

Figure 2.4  Setup of de-aeration process for dissolution medium.  

 

When Testing Method #2 was used, the tablet was glued in place prior to the 

addition of the dissolution medium at the beginning of the experiment in order to 

determine the sensitivity of the dissolution system to tablet location during a typical 

dissolution experiment. Accordingly, a tablet was attached at one of several predefined 
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locations at the vessel’s bottom with a very small bead of a commercial acrylic glue prior 

to each experiment.  Three tablet positions were studied in the Standard System, that is, 

the tablet was centered in the vessel, placed 10
o
 off center, or placed 20

o
 off center 

(Figure 2.5). This angle originated from the center of the sphere comprising the 

hemispherical vessel bottom and was measured starting from the vertical centerline to the 

point of interest, (e.g., the angle would be zero for the central point below the impeller). 

As for the OPI system, nine positions at the vessel’s bottom were selected, as 

shown in Figure 2.6. Position O in this figure represents the center of the vessel’s bottom. 

Positions A1–D1 were all 10º off center from the vessel’s vertical centerline (Figure 2.6). 

Positions A1–D1 were all on the same inner circle and were spaced 90º apart from each 

other. Positions A2–D2 were 20º off center from the vessel’s vertical centerline (Figure 

2.6). The vertical centerline through the impeller intersected the vessel’s bottom between 

Position 1 and Position 3, some 8mm away from the vessel’s bottom. 

The vessel with the attached tablet was placed in the Distek apparatus, and then 

the appropriate medium volume (500 mL based on USP dissolution test for aspirin) of 

deaerated dissolution medium, previously preheated at 37.5
◦
C, was gently poured into the 

vessel in order to minimize the introduction of gas and prevent rapid initial dissolution of 

the tablet.  Again, because of the thermal inertia of the vessel, the resulting temperature 

of the liquid was 37
◦
C. This temperature was maintained throughout the dissolution 

experiment by the system’s temperature controller. Because of the potential sensitivity of 

the process to the initial tablet dissolution caused by liquid addition, extreme care was 

taken to ensure that this procedure was consistent and reproducible and that it did not 

result in any liquid splashing. The agitation was started immediately after the addition of 
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the dissolution medium.  Sampling was conducted with the same time frequency as 

specified above 

Sampling consisted of removing a 10 mL medium aliquot with a 10-mL syringe 

connected to a cannula (2 mm internal diameter). The volume of medium removed by 

sampling was not replaced, in accordance with the USP procedure (USP, 2012). The 

sampling point was horizontally located midway between the impeller shaft and the 

vessel wall, and midway between the top edge of the impeller and the surface of the 

dissolution medium, that is, within the sampling zone prescribed by USP. After the 

sample withdrawal, about 2 mL of the sample was discarded, the cannula was removed, 

and a polyvinylidene fluoride (PVDF) 0.45 µm filter was mounted on the syringe. The 

remaining sample volume (about 8 mL) was transferred to a vial until analyzed. 

Analysis of samples was carried out using 1-cm quartz cells placed in an 

ultraviolet (UV)–visible spectrophotometer (Varian Cary 50 Bio, Varian, Inc., Palo Alto, 

CA) measuring absorbance at specified wavelengths, that is, 265nm for aspirin.  Before 

putting the quartz cell into the UV spectrometer, the cell was rinsed three times with the 

same solution sample. 

Calibration curves were obtained separately by preparing reference standard 

solutions of each aspirin formulation and by diluting them with aspirin dissolution 

medium to obtain solutions of different known concentrations. The absorbance of these 

solutions was obtained in order to generate absorbance-vs.-concentration standard curves.  

The calibration data and calibration curves for the CVS uncoated aspirin, Bayer coated 

aspirin, and CVS coated aspirin, are reported in Tables 2.1, 2.2, 2.3 and in Figures 2.7, 

2.8, 2.9, respectively.  The calibration curves were linear in the concentration ranges of 
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interest here (R
2
=0.9999 for the CVS uncoated aspirin, R

2
=0.9998 for Bayer coated 

aspirin, and R
2
=0.9992 for CVS coated aspirin). 

 

 

Figure 2.5  Front schematic of the dissolution vessel with three different tablet positions 

(0◦, 10◦, and 20◦) in the Standard System. 
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Figure 2.6  Expanded view of the bottom of the dissolution vessel, with letters 

identifying the nine different tablet positions. 
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Table 2.1  Calibration Data for CVS Uncoated Aspirin Tablets 

Concentration (mg/ml) Absorbance 1 Absorbance 2 Average Absorbance 

0.131 0.398 0.396 0.397 

0.177 0.534 0.538 0.536 

0.208 0.625 0.631 0.628 

0.246 0.735 0.741 0.738 

0.301 0.896 0.891 0.894 

0.306 0.912 0.895 0.904 

0.329 0.978 0.971 0.975 

 

 

Figure 2.7  Calibration curve and regression for CVS uncoated aspirin tablets. 
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Table 2.2  Calibration Data for BAYER Coated Aspirin Tablets 

Concentration (mg/ml) Absorbance 1 Absorbance 2 Average Absorbance 

0.115 0.389 0.392 0.391 

0.199 0.657 0.651 0.654 

0.273 0.893 0.899 0.896 

0.377 1.224 1.229 0.1.227 

0.460 1.489 1.481 1.485 

0.695 2.235 2.231 2.233 

0.900 2.891 2.897 2.894 

 

 

Figure 2.8  Calibration curve and regression for BAYER coated aspirin tablets. 
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Table 2.3  Calibration Data for CVS Coated Aspirin Tablets 

Concentration (mg/ml) Absorbance 1 Absorbance 2 Average Absorbance 

0.127 0.391 0.392 0.391 

0.255 0.768 0.761 0.765 

0.324 0.973 0.975 0.974 

0.450 1.342 1.349 1.345 

0.526 1.567 1.561 1.564 

0.770 2.287 2.281 2.284 

0.865 2.567 2.561 2.564 

 

 

Figure 2.9  Calibration curve and regression for CVS coated aspirin tablets. 
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2.1.4 Data Analysis 

The dissolution profiles are presented in terms of drug release fraction (mD/mT), 

that is, the mass of released drug in the dissolution medium at any time t out of the total 

mass of drug initially in the tablet, as a function of time. The absorbance data obtained 

from the UV spectrophotometer was first converted to aspirin concentration at given 

time, (Cj, in mg/mL), and then transformed into drug mass release fraction (mD/mT) using 

the following equations, in order to account for the drug mass removed with each sample:   
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where j is an index identifying the number of sampling (j=1, 2, … 10), mD(tj) is the mass 

of released salicylic acid at time tj, mT is the total mass of salicylic acid initially in the 

tablet, Cj is the dissolved aspirin concentration in the j
th

 sampling at time tj, C* is the 

concentration of aspirin when the tablet is fully dissolved in 500 mL dissolution medium, 

ΔV is each sampling volume (10 mL) and V is the initial volume of dissolution medium 

(500 mL). At the beginning of the experiment (t=t1=0 minutes) the first sample was taken 

immediately (j=1) resulting in an initial concentration C1, and the 18
th

 sample was taken 

at t8=60 minutes (j=8).  

The dissolution profiles obtained with tablets at each position in the testing 

system were compared to those from its paired standard system in order to determine 

whether these dissolution curves were statistically similar or not.  Two approaches were 

used.  The first approach was that recommended by the FDA to quantify the 
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similarity/difference of two dissolution profiles. This approach consists of a model-

independent method based on the difference factor (f1) and similarity factor (f2) [32]:  
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where Rt is the reference assay at time t (i.e., the results from the standard system), Τt is 

the test assay at the same time (i.e., the paired results from the testing system), and n is 

the number of time points. The difference factor (f1) calculates the percent (%) difference 

between the two curves at each time point and measures the relative error between two 

curves. The higher the f1 (which can be in the range of 0 to 100), the higher the average 

difference between reference and test curves is (Moore and Flanner, 1996). The similarity 

factor (f2) is a logarithmic reciprocal square root transformation of the sum-squared error 

of differences between the reference and test profiles over all time points (which can be 

in the range -α to 100).  The higher the f2, the lower the average difference between 

reference and test curves is (Costa and Lobo, 2001). Public standards have been set by 

FDA for f1 and f2 factors. Accordingly, statistical similarity between the two curves being 

compared requires that 0<f1<15 or 50<f2<100 (FDA, 1997). 
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CHAPTER 3  

RESULTS AND DISCUSSION 

3.1 Results 

3.1.1 Results for Dissolution Tests Conducted Using Testing Method #1 (Tablet 

Dropped in Dissolution Medium) 

The dissolution profiles for three different brands of aspirin tablets are presented in 

Figure 3.1 for the Standard System and in Figure 3.2 for the OPI System. The results are 

reported in terms of mD/mT, that is, the ratio of the amount of drug in solution at any time 

t, relative to total initial amount of drug in the tablet, obtained when the entire 325mg 

tablet is completely dissolved. The reproducibility of the experimental results was always 

within 1%, as quantified by the value of the average coefficient of variation for each 

experiment, which was always about or below 1% in all cases, irrespective of the system 

used.  

        In the standard system, three curves started at the same initial mass, but they 

diverged with time depending on the tablet brand. The dissolution curve for the CVS 

coated aspirin tablet began at mD/mT = 0, and then increased somewhat linearly, reaching 

mD/mT = 58% over the next 15 min. From 15min to 25min, CVS coated aspirin was 

released at a lower release rate. In the last 35min, the release rate of CVS coated aspirin 

almost kept constant. For CVS uncoated and BAYER coated aspirin tablets, during the 

initial 15min, the dissolution curves showed that a faster dissolution process (mD/mT 

=68%, mD/mT =63%) was taking place as compared with CVS coated aspirin tablet 

(mD/mT = 58%). From t = 15min to t = 20 min, the dissolution curves were found to be 



 

 

29 

 

parallel to the curves obtained for CVS coated aspirin tablet. From t = 25 min to t = 30 

min, the dissolution rates decreased slightly and showed the same dissolution rates as the 

CVS coated aspirin tablet in the last 30 min. In general, the main difference between the 

dissolution curves occurred during the initial 15 min time period. In addition, the 

difference between the dissolution profiles for three brands of aspirin tablets in the standard 

system could be easily recognized. The f1 and f2 values, quantifying the significance of 

similarity/difference of dissolution profiles of BAYER coated aspirin and CVS coated 

aspirin with respect to the dissolution profile for CVS uncoated aspirin in the standard 

system at 50 rpm, were found all within the required FDA range except for the f2 value of 

CVS coated aspirin tablet. Although f1 and f2 values of BAYER coated aspirin tablet with 

respect to CVS uncoated aspirin tablet is within FDA range, the difference still existed but 

not large enough to out of FDA range. The f2 value of CVS coated aspirin tablet with respect 

to CVS uncoated aspirin tablet is 49.1, which is out of FDA range. Obviously, the difference 

is significant.  

        The dissolution profiles for three bands of aspirin tablets studied here in the OPI 

system are presented in Figure 3.2. The dissolution profiles are almost as similar to those 

in the standard system.  The f1 and f2 values for the dissolution profiles of BAYER coated 

aspirin and CVS coated aspirin with respect to the dissolution profile for CVS uncoated 

aspirin in the OPI System at 36 rpm are presented in Table 3.2. Based on the values 

presented in Table 3.2, the difference of dissolution profiles between three brands of 

aspirin tablets is clearly showed.  

        In addition, the dissolution profiles for CVS uncoated aspirin tablets, BAYER coated 

aspirin tablets and CVS coated aspirin tablets were obtained using both OPI system and the 

standard system. The results of each brand of aspirin tablet from these two systems are 
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reported here in terms of drug release ratio mD/mT  over time, and presented in Figure 3.3, 3.4, 

3.5. The values of the f1 and f2 values were calculated and are presented in Table 3.3, 3.4, 

3.5.  

        The similarity between the dissolution profiles for the OPI system and the standard 

system could be easily recognized from Figure 3.3, 3.4, 3.5. On the other hand, the f1 and f2 

values, quantifying the significance of similarity/difference of the dissolution profile of the 

OPI system with respect to the corresponding standard system, were found all within the 

required FDA range. The f1 and f, values presented in Table3.3, 3.4, 3.5 were in the FDA 

range (0<f1<15, 50<f2<100). Therefore, it shows the dissolution profiles were similar.   

        In general, although the three brands of aspirin tablets were tested in a different 

system, OPI system, the release profiles were similar to the profile for the three bands of 

aspirin tablets in standard system, indicating that the OPI system has same sensitivity to 

different tablet formulations with standard one.  
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Table 3.1  f1 and f2 Values for the Dissolution Profiles of BAYER Coated Aspirin and 

CVS Coated Aspirin with Respect to the Dissolution Profile for CVS Uncoated Aspirin 

in the Standard System at 50 rpm 

 

Tablet  Difference Factor f1 Similarity Factor f2 

CVS uncoated ­ ­ 

BAYER coated 4.49 72.64 

CVS coated 14.38 49.10 

 

 

Figure 3.1  Results for Tablets Dropped in the Standard USP Apparatus 2. 
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Table 3.2  f1 and f2 Values for the Dissolution Profiles of BAYER Coated Aspirin and 

CVS Coated Aspirin with Respect to the Dissolution Profile for CVS Uncoated Aspirin 

in the OPI System at 36 rpm 

 

Tablet  Difference Factor f1 Similarity Factor f2 

CVS uncoated ­ ­ 

BAYER coated 3.41 74.53 

CVS coated 12.65 49.81 

 

 
Figure 3.2  Results for Tablets dropped in the OPI System. 
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Table 3.3  f1 and f2 Values for the Dissolution Profiles of CVS Aspirin Uncoated in OPI 

system with Respect to the Dissolution Profile for CVS uncoated Aspirin Tablets in the 

Standard System 

System Difference Factor f1 Similarity Factor f2 

Standard ­ ­ 

OPI 6.75 66.25 

 

 
Figure 3.3  Results for CVS uncoated aspirin tablet in the Standard and OPI system. 
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Table 3.4  f1 and f2 Values for the Dissolution Profiles of BAYER Coated Aspirin in OPI 

system with Respect to the Dissolution Profile for BAYER Coated Aspirin in the 

Standard System 

System Difference Factor f1 Similarity Factor f2 

Standard ­ ­ 

OPI 7.96 63.82 

 

 

Figure 3.4  Results for BAYER coated aspirin tablet in the Standard and OPI system. 

 

 



 

 

35 

 

 

Table 3.5  f1 and f2 Values for the Dissolution Profiles of CVS Coated Aspirin in OPI 

system with Respect to the Dissolution Profile for CVS Coated Aspirin in the Standard 

System 

System Difference Factor f1 Similarity Factor f2 

Standard ­ ­ 

OPI 8.91 63.46 

 

 

Figure 3.5  Results for CVS coated aspirin tablet in the Standard and OPI system. 
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3.1.2 Results for Dissolution Tests Conducted with CVS Uncoated Aspirin Tablets 

Using Testing Method #2 (Tablet Fixed in Place at Different Tablet Positions) 

The dissolution profiles for 325 mg CVS uncoated aspirin tablets are presented in Figure 

3.6 for the Standard System and in Figure 3.7(a) and 3.7(b) for the OPI system. The 

results are reported in terms of mD/mT, that is, the ratio of the aspirin mass in the 

dissolving medium, mD, at a given time, t, relative to the final mass, mT, obtained when 

the entire 325 mg tablet is completely dissolved. The reproducibility of the experimental 

results was always within 1%, as quantified by the value of the average coefficient of 

variation for each experiment, which was always about or below 1% in all cases, 

irrespective of the system used.  

        The dissolution curve for tablets fixed in the central position in the Standard System 

began at mD/mT = 0. After addition of the medium to the vessel containing the fixed 

tablet, the dissolution profile increased linearly, reaching mD/mT = 34% over the next 10 

min. From 10min to 30min, CVS uncoated aspirin was released at a lower release rate. 

The last 30min, the dissolution rate is pretty low, the mass ratio is 64% when t=60min. 

For the 10° and 20° off-center tablets, the dissolution curves started at the same mD/mT as 

those at reference center position. During the initial 5min, the dissolution curves showed 

that a faster dissolution process (mD/mT = 45% for 10° off-center tablets, mD/mT=  51% 

for 20° off-center tablets) was taking place as compared with the reference position. From 

t =5min to t = 30 min, it showed that two faster dissolution curves were found to be more 

slant to the curves obtained at the reference position. From t = 30 min to t = 60 min, the 

dissolution rates decreased slightly and showed the same dissolution rates as the 

reference position. In general, the main difference between the dissolution curves 
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occurred the initial 5min. The corresponding f1 and f2 values of the dissolution profiles at 

off-center tablet locations with respect to that for the central position tablets are presented 

in the Table 3.6. Both f1 and f2 were found to be outside the required range to insure 

statistical similarity, implying that the tablets at the 10° and 20° locations would fail the 

dissolution test. In this case, even f2 was found to be outside the 50–100 range, which 

means that a significant difference between the dissolution profiles between the 

dissolution profiles for the centrally located tablets and those in the off-center position 

existed in the Standard System. These results confirmed that the dissolution profiles of 

the chosen CVS uncoated aspirin tablet depended strongly on the tablet location in the 

dissolution vessel for the Standard System. These results are in agreement with 

previously reported work [7] [17]. 

        The curves for CVS uncoated aspirin tablets at nine different tablet locations studied 

here in the OPI system are presented in Figure 3.7a for the tablets on the inner 10º circle 

and in Figure 3.7b for the tablets on the outer 20º circle. In general, although the tablets 

were located at very different locations, the release profiles were similar to each other 

and to the profile for the centrally located tablets, indicating that OPI system is strongly 

independently on tablet position. In the first 10 min, the plot shows that the dissolution 

rate was typically very fast (mD/mT = 61%). From t = 10 min to t = 30 min, the 

dissolution rate went to a transition period. The release rate was smooth when compared 

with the initial 10 min. The relative mass ratio changed from 61% to 88% gradually. In 

the last 30 min, the release rate was lower and the relative mass ratio varied from 88% to 

95%. The fastest release rate of CVS uncoated aspirin tablets occurred in the first 10min. 
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        In the OPI system, a quantitative comparison of each profile with the corresponding 

profile for the central position tablets in the same system could be obtained using f1 and f2, 

presented in Table 3.7.  f1 and f2 was found to be in the range 1.7–4.6, indicating a very 

small difference between the release profiles at different tablet location and the reference 

release profile for tablets in the central position. The f2 values were found to be in the 

range 71.1-88.1, which are all within the FDA range, indicating that the release curves 

were statistically similar to the reference release profile. Both f1 and f2 ensured the 

similarity of all release profiles in the OPI system. Thus, it can be concluded that the OPI 

system generated release data that were very consistent and reproducible. 

 

Table 3.6  f1 and f2 Values for the Dissolution Profiles of CVS Uncoated Aspirin at 

Different Tablet Location with Respect to the Dissolution Profile for a Centrally Located 

Tablet in the Standard System at 50 rpm 

Tablet Location Difference Factor f1 Similarity Factor f2 

0° (Centered tablet) ­ ­ 

10° Off-Center tablet 56.95 31.21 

20° Off-Center tablet 67.78 27.38 
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Figure 3.6  Dissolution test results for CVS uncoated aspirin tablets in the Standard 

System. 

 

 

Table 3.7  f1 and f2 Values for the Dissolution Profiles of CVS Uncoated Aspirin at 

Different Tablet Locations with Respect to the Dissolution Profile for a Centrally Located 

Tablet in the OPI System at 36 rpm 

Tablet Location Difference Factor f1 Similarity Factor f2 

PositionO (centered tablet)   

Position A1 (10° off-center tablet) 3.9 71.6 

Position B1 (10° off-center tablet) 2.9 76.7 

Position C1 (10° off-center tablet) 4.2 72.5 

Position D1 (10° off-center tablet) 4.6 71.1 

Position A2 (20° off-center tablet) 1.8 88.1 

Position B2 (20° off-center tablet) 1.7 85.9 

Position C2 (20° off-center tablet) 3.6 77.7 

Position D2 (20° off-center tablet) 2.1 85.7 
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(a) 

 
 

                                                     (b)  

Figure 3.7  Dissolution test results for CVS Uncoated Aspirin tablets in the OPI system: 

(a) results for tablets in the inner 10° circle and (b) results for tablets in the outer 20° 

circle. 
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3.1.3 Results for Dissolution Tests Conducted with BAYER Coated Aspirin Tablets 

Using Testing Method #2 (Tablet Fixed in Place at Different Tablet Positions) 

Dissolution profiles at different tablet locations were also obtained for 325 mg BAYER 

coated aspirin tablets. The results are presented in Figure 3.8 for the Standard System and 

in Figure 3.9 for the OPI system. The reproducibility of the experimental results was 

always within 1%, as quantified by the value of the average coefficient of variation for 

each experiment, which was always about or below 1% in all cases. 

        The dissolution profiles diverged with time depending on the tablet location even 

though they started at the same initial mass ratio. The greater the distance from the 

central location, the higher the dissolution rate. The f1 and f2 values for the BAYER 

coated tablets in the Standard System are reported in Table 3.8. Both f1 and f2 were found 

to be outside the required range to insure statistical similarity, implying that the tablets at 

the 10° and 20° locations would fail the dissolution test. In this case, even f2 was found to 

be outside the 50–100 range, which means that a significant difference between the 

dissolution profiles between the curve for the centrally located tablets and those in the 

off-center position existed in the Standard System. These results confirm that the 

dissolution profiles for the selected BAYER coated aspirin tablets strongly depended on 

the tablet location in the dissolution vessel for the Standard System. These results are in 

agreement with previously reported work [8]. 

        Figure 3.9 presents the dissolution curves obtained in the OPI system. Although the 

tablets were located at nine different locations, the release profiles almost overlapped, 

indicating that the initial position of the tablet did not affect the dissolution results. A 

comparison of the release profiles obtained in the OPI system at different tablet locations 
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with the corresponding profile for the centrally located tablets in the same system could 

be made using the f1 and f2 factors reported in Table 3.9, which shows that f1 was in the 

range 1.3–4.4 and f2 in the range 74.2–90.0. These results indicate that the release profiles 

for BAYER coated tablets were also statistically similar to the corresponding reference 

release profile. Therefore, it can be concluded that the OPI system generated release data 

that were more consistent and not strongly dependent on the tablet location. 

Table 3.8  f1 and f2 Values for the Dissolution Profiles of BAYER Coated Aspirin at 

Different Tablet Location with Respect to the Dissolution Profile for a Centrally Located 

Tablet in the Standard System at 50 rpm 

Tablet Location Difference Factor f1 Similarity Factor f2 

0° (Centered tablet) ­ ­ 

10° Off-Center tablet 56.8 31.6 

20° Off-Center tablet 72.2 26.4 

 

 

Figure 3.8  Dissolution test results for BAYER Coated Aspirin Tablets in the Standard 

System. 
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Table 3.9  f1 and f2 Values for the Dissolution Profiles of BAYER Coated Aspirin at 

Different Tablet Locations with Respect to the Dissolution Profile for a Centrally Located 

Tablet in the OPI System at 36 rpm 

Tablet Location Difference Factor f1 Similarity Factor f2 

PositionO (centered tablet)   

Position A1 (10° off-center tablet) 1.8 89.4 

Position B1 (10° off-center tablet) 4.4 74.2 

Position C1 (10° off-center tablet) 1.8 88.4 

Position D1 (10° off-center tablet) 1.6 89.0 

Position A2 (20° off-center tablet) 2.4 83.8 

Position B2 (20° off-center tablet) 2.0 86.6 

Position C2 (20° off-center tablet) 3.4 78.9 

Position D2 (20° off-center tablet) 1.3 90.0 
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(a) 

  

(b) 

Figure 3.9  Dissolution Test Results for BAYER Coated Aspirin in the OPI system: (a) 

results for tablets in the inner 10° circle and (b) results for tablets in the outer 20° circle. 
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3.1.4 Results for Dissolution Tests Conducted with CVS Coated Aspirin Tablets 

Using Testing Method #2 (Tablet Fixed in Place at Different Tablet Positions) 

The dissolution profiles for 325mg CVS coated aspirin tablets are presented in Figure 

3.10 for the Standard System and in Figure 3.11 for the OPI system. The results are 

reported in terms of mD/mT, that is, the ratio of the amount of drug in solution at any time 

t, relative to total initial amount of drug in the tablet, obtained when the entire 325mg 

tablet is completely dissolved. The reproducibility of the experimental results was always 

within 1%, as quantified by the value of the average coefficient of variation for each 

experiment, which was always about or below 1% in all cases, irrespective of the system 

used.  

        In the standard system, three curves started at the same initial mass ratio, but they 

diverged with time depending on the tablet location. The greater the distance from the 

central location, the higher the dissolution rate. The dissolution profile for the central 

tablet began at mD/mT = 0, and then increased linearly, reaching mD/mT = 55% over the 

next 20 min. During the following 25min, the dissolution rate decreased slightly and the 

mass ratio at 45min is 63%. In the last 15min, aspirin tablet was released at a little higher 

release rate. The mass ratio at t = 60 min was mD/mT = 69%.  For the 10◦ and 20° off-

center tablets, the dissolution curves started at the same mD/mT as those at reference 0° 

position. During the initial 20min, the dissolution curves showed that a faster dissolution 

process (mD/mT = 80% for 10° off-center tablets, mD/mT =84% for 20° off-center tablets) 

was taking place as compared with the reference position (mD/mT = 55%).  From t = 

20min to t = 45 min, the dissolution curves were found to be parallel to the curves 

obtained at the reference position. From t = 45 min to t = 60 min, the dissolution rates of 
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10° off-center tablets increased slightly and showed the same dissolution rates as the 

reference position in the last 15 min, but the dissolution rate of 20° off-center tablets keep 

constant. In general, the main difference between the dissolution curves occurred during 

the initial 20min time period.  The f1 and f2 values for the CVS coated tablets in the 

Standard System are reported in Table 3.10. Although f2 was within the 50–100 range, 

the f1 values were found to be out of the required range to insure statistical similarity, 

implying that tablets at the 10° and 20° locations would fail the dissolution test. As 

already pointed out above, the f2 value for the dissolution profiles of CVS coated aspirin 

at 10° off-center tablet location in the Standard System at 50 rpm  was often found to be 

in the prescribed range (50< f2 <100), even when the dissolution profiles were 

appreciably dissimilar. Therefore, it is not surprising that in Table 3.11 the values of the 

f1 factor were found to be outside the permissible range, whereas those for the f2 factor 

were not. Furthermore, Table 3.11 shows that the f2 values, although in range in this case, 

were close to the lower limit of the range (50). These results confirm that the dissolution 

profiles for the selected CVS coated aspirin solid dosage form depended strongly on the 

tablet location in the dissolution vessel for the Standard System. These results are in 

agreement with previously reported work [7].  

       The dissolution profiles obtained in the OPI system presents in Figure 3.11. 

Although the tablets were located at nine different locations, the release profiles almost 

superimposed, indicating that the initial position of the tablet did not affect the 

dissolution results. A comparison of the dissolution profiles obtained in the OPI system at 

different tablet locations with the corresponding profile for the centrally located tablets in 

the same system could be made using the f1 and f2 factors reported in Table 3.11, which 
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shows that f1 was in the range 0.6–2.0 and f2 in the range 86.7–97.8. These results 

indicate that the dissolution profiles for CVS coated aspirin tablets at off-center position 

were also statistically similar to the corresponding reference release profile. Therefore, it 

can be concluded that the OPI system generated release data that were more consistent 

and not strongly dependent on the tablet location. 
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Table 3.10  f1 and f2 Values for the Dissolution Profiles of CVS Coated Aspirin at 

Different Tablet Location with Respect to the Dissolution Profile for a Centrally Located 

Tablet in the Standard System at 50 rpm 

Tablet Location Difference Factor f1 Similarity Factor f2 

0° (Centered tablet) ­ ­ 

10° Off-Center tablet 49.4 60.8 

20° Off-Center tablet 31.6 27.1 

 

 

 

 

Figure 3.10  Dissolution Test Results for CVS Coated Aspirin Tablets in the Standard 

System.
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Table 3.11  f1 and f2 Values for the Dissolution Profiles of CVS Coated Aspirin at 

Different Tablet Locations with Respect to the Dissolution Profile for a Centrally Located 

Tablet in the OPI System at 36 rpm 

Tablet Location Difference Factor f1 Similarity Factor f2 

PositionO (centered tablet)   

Position A1 (10° off-center tablet) 0.8 93.4 

Position B1 (10° off-center tablet) 0.6 97.8 

Position C1 (10° off-center tablet) 0.7 96.2 

Position D1 (10° off-center tablet) 1.2 86.7 

Position A2 (20° off-center tablet) 0.8 96.9 

Position B2 (20° off-center tablet) 0.9 95.1 

Position C2 (20° off-center tablet) 2.0 91.0 

Position D2 (20° off-center tablet) 1.9 90.4 
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(a) 

 

(b) 

Figure 3.11  Dissolution Test Results for CVS Coated Aspirin in the OPI system: (a) 

results for tablets in the inner 10° circle and (b) results for tablets in the outer 20° circle. 
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3.2 Discussion 

The results of this work confirm that the dissolution rate for three different bands of 

aspirin tablets in standard system is strongly affected by the position of the tablet, as also 

described in previous work [7] [8]. In addition, this work also shows that a small and 

simple modification of the standard USP Apparatus 2 can obviate to this problem and 

result in a much more robust dissolution testing system, thus making this test insensitive 

to tablet location. In addition, the OPI system appears to have has same sensitivity to 

different tablet formulations as the standard apparatus based on the results of this work, 

        The reason for this improvement was accomplished by removing the symmetry, 

obtained by positioning the impeller off center with respect to the vessel centerline, the 

OPI system. In the Standard System, the symmetric position of the impeller generates a 

poorly mixed region just below the impeller, precisely where the tablet is usually located 

[7] [8] [9]. The hydrodynamics in this region of the vessel is such that a centrally located 

tablet experiences only a weak flow around it during dissolution, resulting in low shear 

rates and mass transfer coefficients [8]. However, whenever the tablet is off-center 

located, as it often happens during actual dissolution tests due to the erratic path of the 

tablet trajectory as it is dropped in the vessel, the hydrodynamic regime around the tablet 

is different, even though the tablet is only slightly displaced from the central location. 

This point was clearly shown by previous work utilizing both experimental methods such 

as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV)) and 

computational approaches such as Computational Fluid Dynamics (CFD)) [7] [8] [9]. The 

poorly mixing zone under the impeller persists even when the impeller speed is increased 

from 50 to 75 rpm and even 100 rpm [9]. In addition, a symmetrical agitation system 
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lacking baffles, such as the Standard USP Apparatus 2 System, produces a highly 

tangential flow with very limited velocity components in the vertical and radial directions 

[7] [9], thus promoting ―coning‖ effects, as often observed during dissolution testing. By 

contrast, in a ―fully baffled‖ mixing system (i.e., a system typically provided with vertical 

baffles near the wall), the axial velocities, especially near the vessel’s bottom, are overall 

higher and the poorly mixed zone below the impeller is largely removed. In other words, 

baffled mixing systems are ―better mixers‖ than the corresponding unbaffled systems, 

resulting in better solid suspension, shorter blend times, increased turbulence, and other 

improved mixing effects [30][31].  

        It is well known from the fluid mixing literature that placing an impeller in an 

asymmetric position in an unbaffled vessel results in a ―partial baffling‖ effect in which 

the hydrodynamics of the system resembles, to a partial but significant extent, that of a 

baffled system [33]. If baffles cannot be introduced in a mixing system for whatever 

reason, impellers are often placed off center in stirred tanks. An additional advantage of 

asymmetric placement of the impeller is that the flow that the impeller generates sweeps 

the vessel bottom, and especially the central region at the bottom of the vessel, thus 

significantly removing the poorly mixed zone below the impeller. Due to the 

misalignment between the impeller axis and the vessel’s lowest point in the center, this 

can be expected to be true especially for vessels with a hemispherical bottom. In order to 

eliminate the poorly mixing zone below the impeller, the OPI system proposed here takes 

advantage of this effect. Therefore, the location of the tablet at the vessel’s bottom is no 

longer as critical a factor as it is in the Standard System as far as dissolution is concerned 

because the flow near the vessel’s bottom can be expected to be significantly more 
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uniform than in the Standard System. In other terms, the center of the vessel’s bottom is 

no longer a ―special‖ location with poor mixing characteristics. 

        This analysis and a review of previous literature on partially baffled systems show 

that off-center impellers are more effective mixers than the same impellers in 

corresponding unbaffled mixers. Therefore, due to the improved hydrodynamics near the 

vessel’s bottom, one should expect that the dissolution rates in the OPI system will be 

faster, resulting in higher flows sweeping the vessel’s bottom, including the center vessel 

location, and higher mass transfer rates. The dissolution profiles obtained in the OPI 

system show that the dissolution process is faster than that for centrally located tablets in 

the symmetrical Standard System (Figure 3.6 vs. Figure 3.7 for CVS uncoated aspirin, 

Figure 3.8 vs. Figure 3.9 for BAYER coated aspirin and Figure 3.10 vs. Figure 3.11 for 

CVS coated aspirin). More efficient mixing is not necessarily the point of dissolution 

testing. Although the dissolution profiles obtained with the OPI system show that 

dissolution process is still slow enough to be observed with the proposed apparatus, it is 

obvious that if an even slower dissolution process is desired, the agitation speed in the 

OPI system should be reduced in order to obtain dissolution profiles that resemble those 

currently obtained with the Standard System, at least when the tablet is centrally located 

(it should be remarked that the dissolution process is appreciably faster even in the 

Standard System when the tablet is off center, as shown in Figure 3.6, 3.8 and 3.10). 

        Another disadvantage of the central placement of the impeller in USP Apparatus 2 is 

that this system can be expected to be extremely sensitive to any small factors that may 

introduce slight asymmetries in the otherwise symmetric flow in the USP Apparatus 2 

vessel. A review of the literature shows that small imperfections in the geometry of the 
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vessel (such as those introduced during the fabrication of the glass vessel), small 

variations in the off-center placement of the impeller (even though within the USP 

specifications), deviations from the verticality of the vessel placement, the introduction of 

permanent sampling devices (acting as small baffles), and others have an effect on the 

rate of dissolution and the outcome of the dissolution test, including possible failure of 

the test [6][7][24]. For this reason, equipment manufacturers typically go to a significant 

extent to minimize these potentially test-altering effects by trying to remove the 

imperfections in the vessels (better cylindrically shaped vessels can be purchased for a 

higher price) or by providing the user with calibration tools such as centering gauges, 

wobble meters, precision levels, and other devices to check for geometric irregularities 

and misalignments [24]. 

        In order to avoid contact between the rotating impeller blade and the vessel wall, the 

horizontal distance between the shaft centerline and vessel centerline has to be larger than 

0mm, but smaller than about 13mm if the impeller is to be placed off center. In this work, 

the off-center position of the impeller with respect to the impeller centerline was set at 

8mm. This distance was selected so that the impeller would be appreciably off center 

while avoiding the blade passing too close to the vessel wall. Although no other off-

center impeller positions were tested in this work, one can postulate that any significant, 

but not excessive, off-center distance of the impeller from the vessel centerline would 

produce results similar to those obtained here. What is critical in the proposed novel 

design is the departure from the current symmetrical design of the dissolution apparatus 

rather than the exact extent of the off-center impeller placement. 

        Switching to the USP dissolution system now, one can similarly postulate that the 
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critical aspect of the design proposed here is the significant departure from the central 

impeller location rather than the actual extent of such departure. 

        In order to address the poorly mixing issue in the USP Apparatus 2, the OPI system 

was developed by positioning the impeller off center with respect to the vessel centerline. 

As a result, the OPI system is less sensitive to the tablet position. The dissolution profiles 

for different aspirin tablet formulations are different in the standard system, as one would 

expect (Figure 3.1, Table 3.1). In the OPI system, the release curves of different aspirin 

tablet formulations are also different from each other (Figure 3.2, Table 3.2). Based on 

Figure 3.3, 3.4, 3.5, the release profiles of each aspirin tablet formulation in the two 

systems are very similar, indicating that the OPI system has same sensitivity to different 

tablet formulations as the standard system. 

        Finally, any newly proposed apparatus needs to be evaluated not only for the 

advantages that it offers, but also in terms of how easily (or not) the new technology can 

be implemented in the industrial practice. In fact, the pharmaceutical industry already 

makes extensive use of the standard USP Dissolution Testing Apparatus 2 and it has 

made significant investments in terms of both equipment and personnel training. 

Therefore, it will be difficult to justify a radical departure for the current, well-established 

practice. This is even more so in a highly regulated industry such as the pharmaceutical 

industry, where both the regulator agency (FDA) and the repository of current practice 

(USP) have codified the use of the Standard System and are used to it despite its well 

documented shortcomings. 

        For this reason, the OPI system proposed here is based on a very simple and 

potentially readily implementable modification of the current apparatus. In our laboratory, 
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using a commercially available dissolution testing apparatus, switching from the Standard 

System to the OPI system required only minutes, as described above. Clearly, the same 

ad hoc modifications that we used here to test the concept would not be acceptable in the 

industrial practice as such because mechanical calibration based on the USP/FDA 

requirements would be needed (the development of a procedure to validate the OPI 

system was clearly outside the scope of this work, although it could be easily generated). 

However, there could be a number of readily implementable and easy-to-validate 

modifications that could be made to existing commercial apparatuses (both new and old), 

which would enable the operator to switch very rapidly from the Standard System to the 

OPI system. A recently filed patent by this group describes a number of such approaches. 

For example, in many commercial apparatuses, including the one used in this work, each 

dissolution vessel is inserted in the circular hole in the supporting metal plate where it is 

secured and centered by plastic spring inserts (Figure 2.3). Therefore, each hole is larger 

than the outer diameter of the dissolution vessel. It would be easy to remove these inserts 

and replace them with a circular plastic ring insert fitting inside the hole.  

        In summary, the proposed OPI system is capable of discriminating between different 

tablet formulations while, at the same time, being less sensitive to small geometric 

variations, such as tablet location, which instead have a significant impact on the 

dissolution profiles obtained in the standard system. The OPI system is expected to 

require very low capital investment for its commercial implementation and minimal 

retraining of personnel, while providing a much more robust test that is insensitive to 

tablet location and, most likely, to other small geometric imperfections in the equipment 

and to small operator-dependent variations in the test procedure.  
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CHAPTER 4  

CONCLUSIONS  

Dissolution tests conducted using three different brands of aspirin tablets in a novel OPI 

Dissolution Testing Apparatus, in which the impeller was placed 8mm off center, resulted 

in dissolution curves for the same type of tablets that were statistically similar (using both 

f1 and f2) irrespective of where the tablets were located at the vessel’s bottom. By contrast, 

similar tests conducted using the standard USP Dissolution Testing Apparatus 2 resulted 

in dissolution curves that were not statistically similar. 

On the other hand, the release profiles of three different brands of aspirin tablet in 

OPI system were similar to those in the standard system, indicating that the OPI 

apparatus is just as sensitive as the standard system to actual differences in differently 

manufactured tablets having intrinsically different dissolution profiles. 

These results can be attributed to the different flow patterns associated with the 

Standard System and the OPI system. In the standard system, a small but poorly mixing 

zone exists below the impeller (where the tablet usually resides), resulting in slow 

dissolution rates. However, when the tablet finds itself outside this zone, due to the 

erratic path of the tablet trajectory after it is dropped in the vessel, a common occurrence 

during dissolution testing the hydrodynamic regime around the tablet is very different, 

resulting in higher dissolution rates. By contrast, the flow pattern near the tank’s bottom 

for the case in which the impeller is placed off center can be expected to be stronger and 

more uniform, especially at the center of the vessel’s bottom, thus resulting in more rapid 

dissolution and dissolution curves that are nearly independent of the initial tablet location 

as found here. 
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        The OPI system is a very simple modification of the current dissolution testing USP 

Apparatus 2 system. A number of inexpensive and easily achievable modifications to the 

Standard System can be resulting in off-center placement of the impeller within the USP 

Apparatus 2 vessel. Such OPI system can be operated identical to the current system, thus 

making the transition to the OPI system very simple from the operator’s standpoint. 
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                                    APPENDIX A 

FIGURES OF DISSOLUTION TESTING RESULTS 

 

Figure B.1  Dissolution profiles with Position O tablets in OPI System. 
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Figure B.2  Dissolution profiles with Position A1 tablets in OPI System. 

 

Figure B.3  Dissolution profiles with Position B1 tablets in OPI System. 
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Figure B.4  Dissolution profiles with Position C1 tablets in OPI System. 

 

Figure B.5  Dissolution profiles with Position D1 tablets in OPI System. 
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Figure B.6  Dissolution profiles with Position A2 tablets in OPI System. 

 

Figure B.7  Dissolution profiles with Position B2 tablets in OPI System. 
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Figure B.8  Dissolution profiles with Position C2 tablets in OPI System. 

 

Figure B.9  Dissolution profiles with Position D2 tablets in OPI System. 
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