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Figure 4.6 The Raman spectra at room temperature in sample S3 measured at the 

indicated excitation wavelengths of visible light showing (a) the relative intensities of the 

major Si-Si, Si-Ge, and Ge-Ge Raman peaks and (b) three Si-Si vibration modes within 

the range of 480 – 530 cm
-1

. 
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The intensity of non-resonant Raman scattering is proportional to the scattering 

volume associated with the light penetration depth from the sample surface, and the light 

penetration depth in our samples strongly depends on excitation wavelength. In S3, 

Raman spectra using various excitation wavelengths are measured and significant 

changes in the relative intensities of Raman peaks associated with the major Si-Si, Si-Ge, 

and Ge-Ge vibration modes are found [Figure 4.6 (a)]. Figure 4.6 (b) shows a closer look 

at the three Si-Si vibration modes within the range of 480-530 cm
-1 

for three different 

(indicated) laser excitation wavelengths also measured in S3. The Raman peak observed 

at ~510 cm
-1

 between the Si-Si phonon band of the SiGe alloy layer and the c-Si substrate 

peak is attributed to strained Si within the Si spacer layers [50, 99]. Using curve fitting, it 

is found that the peak frequency of strained Si shifts considerably from 507.5 to 515 cm
-1

 

when the laser excitation wavelength increases from 457.9 to 514.5 nm. This result 

confirms the existence of a vertical strain gradient within the sample layers and points out 

that, in S3, built-in tensile strain in the top Si layers separating SiGe clusters is greater 

compared to that in Si layers at the bottom of the Si/SiGe cluster multilayer structure.  

Similar results are obtained in S2, where with an increase of excitation wavelength from 

457.9 to 514.5 nm the strained Si Raman peak shifts from 506 to 517 cm
-1

. To the 

contrary, in S1 the strained Si Raman peak at ~ 505 cm
-1

 does not shift under varying the 

excitation wavelength (not shown).  
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Figure 4.7 The low-frequency Raman spectra of folded longitudinal-acoustic phonons 

measured using 457.9 nm in samples (a) S1 and (b) S2. Note the vertical logarithmic 

scale. 
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Figure 4.7 compares Raman spectra of S1 and S2 in the low frequency spectral 

region, where Raman scattering is associated with Brillioun zone folding of longitudinal 

acoustic (FLA) phonons due to the new periodicity in the growth direction of the Si/Si1-

xGex multilayer NS [114]. A simplified FLA phonon dispersion, including changes due to 

varying thicknesses and average composition will be discussed later. 

The baseline corrected Stokes and anti-Stokes Raman spectra in samples S1-S3 

are presented in Figures 4.8 (a) - 4.10 (a), respectively. Stokes and anti-Stokes Raman 

spectra represent processes involving phonon emission and phonon absorption, and the 

intensity ratio of the Stokes and anti-Stokes non-resonant Raman peaks (IS/IA) is 

proportional to the phonon population. Thus, sample temperature can be calculated using 

Boltzmann statistics:   

 

  

  
  

   

   , 
(4.1) 

 

where ђωp  is the phonon energy,  kB is the Boltzmann constant, and T is the absolute 

temperature. 
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Figure 4.8  (a) The Stokes and anti-Stokes components of the Raman spectrum of sample 

S1 excited at a wavelength of 457.9 nm and (b) normalized Stokes/anti-Stokes Raman 

peaks with respect to the Si-Si peak at 520 cm
-1

. 
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Figure 4.9 (a) The Stokes and anti-Stokes components of the Raman spectrum of sample 

S2 excited at a wavelength of 457.9 nm and (b) normalized Stokes/anti-Stokes Raman 

peaks with respect to the Si-Si peak at 520 cm
-1

. 
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Figure 4.10  (a) The Stokes and anti-Stokes components of the Raman spectrum of 

sample S3 using an excitation wavelength of 488 nm and (b) normalized Stokes/anti-

Stokes Raman peaks with respect to the Si-Ge peak at 293 cm
-1

. 
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Figures 4.8 (b) – 4.10 (b) show normalized and superimposed Stokes and anti-

Stokes Raman spectra (note that the horizontal axes are absolute values of the Raman 

shift). It is found that IS/IA is different for different vibration modes (Si-Si at 520 cm
-1

, Si-

Ge at ~ 400 cm
-1

, and Ge-Ge at ~300 cm
-1

). Assuming that non-resonant Raman 

scattering is measured, this difference could only be due to the fact that the temperature is 

different in different parts of the samples. Since Raman scattering is measured using an 

intense (1-10 kW/cm
2
), strongly absorbed laser radiation, and the thermal conductivity in 

SiGe NSs is ~10 times lower compared to that in c-Si [129], it is assumed that 

temperature of the SiGe NS is higher compared to the c-Si substrate temperature. The 

calculated temperatures associated with different vibration modes (and different parts of 

the samples) are shown in Table 4.1.  The explanation and details of the heat dissipation 

process during Raman scattering measurements in our samples are given below. 

 

Table 4.1  Calculated Temperatures in Different Parts of the Samples S1-S3 Based on 

Raman Scattering Thermometry 

 

Sample 

No. 
T

Si-Si
 

(K) 

T
Si-Ge

 

(K) 

T
Ge-Ge

 

(K) 

T
Si-Sub

 

(K) 

ΔT 

(K) 

Thermal 

Conductivity 
(W/m K) 

S1 ~ 350 ~ 340 ~ 315 ~ 325 ~ 25 ~ 12 

S2 ~ 425 ~ 423 ~ 395 ~ 375 ~ 50 ~ 6 

S3 ~ 411 ~ 407 ~ 351 ~ 304 ~ 100 ~ 4 
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4.1.2 Discussion  

4.1.2.1  Strain and Chemical Composition in Si/SiGe NSs. In our experimental 

results, a correlation between Si-Si, Si-Ge and Ge-Ge Raman peak positions, peak 

intensities, Ge content (x) and strain (ε) is observed. Our analysis has been started with 

estimating x using two different methods: the Raman peak integrated intensity and the 

peak position in wavenumbers. In Si/Si1-xGex NSs, the relative number of bonds 

comprising the Si-Si, Si-Ge, and Ge-Ge phonon modes are estimated as (1-x)
2
, 2x(1-x), 

and x
2
, respectively. The ratio of the integrated peak intensities related to the relative 

number of bonds of the corresponding phonon modes are as follows: 

 

IGeGe/ISiGe = Bx/2(1-x), (4.2) 

ISiSi/ISiGe    = A(1-x)/2x, (4.3) 

 

where coefficients A and B are related to the frequencies of the optical modes in the SiGe 

alloy. It is found experimentally that B = 3.2 and A = 1.85 for 457.9 nm excitation [97]. 

The intensity method for determining the value of x is independent of strain in the alloy 

layer and depends on the integrated intensity of the phonon bands. Thus, proper baseline 

correction is required to estimate the intensity with accuracy. In the Raman peak position 

(wavenumber) method, a set of equations is used where the Raman peak position of the 

three major vibrational modes in Si/Si1-xGex NSs is described as a function of x and ε. 

The major phonon bands have been curve fitted mostly using a Voigt profile to estimate 

the peak positions accurately. The frequency of phonon band can be expressed as: 
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  =    + bε, (4.4) 

 

where    is the x dependent phonon frequency of the unstrained alloy and b is the strain-

shift coefficient. In the case of a strained Si1-xGex (0 < x < 0.5) layer, the wavenumbers of 

the three different phonon modes are [99, 101]:  

 

     = 520.2 – 70.5x – 830ε, (4.5) 

     = 400.5 + 16.3x – 575ε, (4.6) 

     = 282.5 + 16x – 384ε. (4.7) 

 

The average value of x and ε in the alloy layer can be determined by solving, for 

example, equations 4.5 and 4.6, as follows: 

 

  = 
(           )        (           )

     
, (4.8) 

  = 
(           )      (           )

     
. (4.9) 

 

The calculated values of x and ε using the Raman data are summarized in Table 4.2, and 

they are compared with the EDX spectroscopy data. A reasonably good correlation is 

found between Raman and EDX data, while the observed increase of local sample 

temperature under intense laser radiation (1-10 kW/cm
2
) during Raman measurements 

and resonant Raman scattering might be responsible for the observed discrepancies. Also 
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according to our results, strain in S2 and S3 has a considerable gradient along the growth 

direction, and this also needs to be taken into account. 

 

Table 4.2  Estimated Values of Ge Content and Strain for the Si1-xGex Layers of Samples 

S1-S3 using Raman Scattering Data Collected under 457.9 nm Excitation (The 

Corresponding EDX Values of x are Given for Comparison Purposes) 

 

Sample 

Ge content, x Compressive 

strain ε (%) 

[Equation 

(4.9)]  

Equation 

(4.2) 

Equation 

(4.3) 

Equation 

(4.8) 

EDX 

data 

S1 0.32±0.01 0.41±0.01 0.42±0.02 0.35 1.85±0.1 

S2 0.33±0.02 0.33±0.01 0.36±0.02 0.4 1.5±0.25 

S3 0.4±0.02 0.55±0.02 0.49±0.01 0.5 0.75±0.05 

 

 

4.1.2.2  Relative Raman Signal Intensity in Si/SiGe NSs.      As it is already pointed 

out, the intensity of non-resonant Raman scattering depends mainly on the scattering 

volume (i.e., sample thicknesses and light penetration depth, and the later depends on the 

excitation wavelength). In S1 and S2 under 457.9 nm laser wavelength excitation, the 

light penetration depth is more than 0.5 µm
 
[130] and the entire sample thicknesses are 

less than 150 nm. Assuming the same Raman cross-section and only small changes in the 

Si absorption coefficient (α) due to strain, the anticipated ratio between the intensities of 

the Raman signals associated with the c-Si substrate at 520 cm
-1

 and strained Si layers at 

505-506 cm
-1

 is ~ 4:1, which is close to our experimental data [Figures 4.3 (a) and 4.4]. 
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In S3, the Raman intensities of the Si-Si, Si-Ge, and Ge-Ge phonon bands using 514.5, 

488, and 457.9 nm light excitation wavelengths are examined. The Raman peaks at ~ 

520, 488, 411, and 292 cm
-1

 are attributed to the c-Si substrate, Si-Si (Ge), Si-Ge, and 

Ge-Ge phonon modes in the SiGe alloy layer, respectively [Figure 4.6 (a)]. The Si-Si 

phonon band of the c-Si substrate (~ 520 cm
-1

) and top epitaxial SiGe alloy layer (~ 488 

cm
-1

) contribute together to the observed Raman spectra in the vicinity of 500 cm
-1

. The 

relative intensities of Raman scattering from the c-Si substrate and SiGe alloy layer vary 

with the excitation wavelength, as illustrated in Figure 4.6 (a). The relative intensities of 

Raman scattering associated with the c-Si substrate and Si-Si, Si-Ge, and Ge-Ge modes 

in the SiGe alloy layers have been calculated according to the following expressions, 

where the scattering-volume relation is taken into account [131]: 

 

Ialloy       ∫             
 

 
        

                    
 

       
(            ), 

 

(4.10) 

                                  Isubstrate             ∫                 
 

 
 

 

                                         
 

           
                        ,                                                                    

 

(4.11) 

 

                  

where t is the thickness of the alloy layer. Our calculations based on the scattering-

volume relation are in a good agreement with our experimental results, as shown in 

Figure 4.11. 
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Figure 4.11  Experimental results of relative Raman intensities (the c-Si substrate and Si-

Si, Si-Ge, and Ge-Ge vibration modes in a 50 nm thick, partially relaxed Si0.5Ge0.5 alloy 

layer) as a function of excitation wavelength compared with the theoretical calculations 

using the scattering-volume relation.  
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4.1.2.3  Folded Longitudinal Acoustic Phonons in Periodic and Quasi-Periodic Si/Si1-

xGex NSs. Figure 4.12 (a) shows a simplified version of the S1 phonon dispersion 

curve calculated using Rytov’s theory [113]. The sound velocity in a superlattice is:  

 

VSL = d *
  
 

  
   

  
 

  
   *   

 

 
+ 

    

    
+
  

 ⁄

, (4.12) 

 

                  

where R = 
    

    
, and the superlattice periodicity, d = d1 + d2. d1 and d2, V1 and V2,  ρ1 and 

ρ2 are the thicknesses, sound velocities, and densities of the Si spacer and Si1-xGex alloy 

layers, respectively. The frequency dispersion of the FLA phonons is calculated from  

 

ω =  (
   

 
   )   , (4.13) 

 

where m = 0, 1, 2,…. is the folding index and q is the wave vector of the superlattice. The 

parameters used in the calculation are listed in Table 4.3. The density ρ2 and the sound 

velocity V2 in the Si1-xGex layer are calculated using linear interpolation between these 

values for Si and Ge [114].  

 

Table 4.3  Parameters of Si and Ge used in the Calculation of Rytov Model 

 
Si Ge 

Sound velocity (cm/s) 8.44 10
5
 4.9 10

5
 

Density (g/cm
3
) 2.33 5.36 

Source: http://www.ioffe.ru/SVA/NSM/Semicond/index.html [24]. 
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For S1, a planar superlattice, the phonon dispersion curves shown in Figure 4.12 

(a) are readily calculated with equations 4.12 and 4.13. For S2, the thicknesses of the Si 

spacer and Si1-xGex alloy layers vary at the cluster peak and valley, as shown in Figure 

3.1 (b). The phonon dispersion curves have been calculated considering that the reduced 

wave vector is different at the cluster valley and at the cluster peak. This structural 

division results in two sets of phonon dispersion curves, as shown in Figure 4.12 (b). 

Also, the cluster composition is found to be strongly non-uniform due to interdiffusion 

during growth [132]. Therefore, the low-frequency FLA peaks become broader and 

merge together due to the diffuse interface and variation across the layers of the 

periodicity and thicknesses of the SiGe cluster layers. This simple model provides a good 

semi-quantitative explanation of the experimental results obtained [Figure 4.12 (b)].  
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Figure 4.12  The folded longitudinal-acoustic  phonon  dispersion curve calculated 

according to Rytov’s theory of samples (a) S1 and (S2). The FLA peak positions at the 

cluster peak and valley of sample S2 are marked with the crosses and filled circles, 

respectively. 
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4.1.2.4  Thermal Conductivity and Heat Dissipation in Si/Si1-xGex NSs.  During 

Raman scattering measurements in Si/Si1-xGex NSs exposed to intense laser light, the 

thermal conductivity (κ) can be evaluated via the temperature gradient (the observed 

temperature gradient between different parts of the sample is calculated using equation 

4.1). The thermal conductivity is calculated using the proposed model (see Figure 3.5) 

and equation 3.1, and the values obtained are ~12, 6, and 4 W/m-K in samples S1-S3, 

respectively. 

The reason for the lower thermal conductivity found in S2/S3 compared to S1 can 

be understood by analyzing a comparative volume fraction of SiGe (a lower thermal 

conductivity material) versus Si (a higher thermal conductivity material) and quality of 

the Si/SiGe heterointerfaces. The average volume fraction of SiGe has been calculated 

using the TEM images and EDX data (Figures 3.1 (a), (b), (c), and 3.2 (a), (b)). The 

volume fraction of SiGe in S1 is estimated to be ~ 25% while it is ~ 40-45% at the peak 

of the SiGe clusters and ~ 20-25% at the valley between two SiGe clusters in sample S2. 

Thus, the lower SiGe/Si ratio in S1 compared to that in S2 is, most likely, responsible for 

the higher thermal conductivity found in S1. Similarly, in S3 a slightly higher volume 

fraction of SiGe and a slightly lower thermal conductivity compared to that in S2 are 

found. In addition, inelastic scattering of phonons in Si/SiGe NSs with a diffuse interface 

also contributes to the reduction in thermal conductivity [66]. Our results on the thermal 

conductivity are in a good agreement with the results obtained by different methods [15, 

73, 133].  

Interestingly, the experimental results in Table 4.1 indicate that the local 

temperature calculated according to Boltzmann statistics under a non-resonant condition 
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of the Ge-Ge phonon mode is consistently lower than that found for the Si-Ge and Si-Si 

modes. This discrepancy can be explained assuming that for the laser excitation 

wavelengths used and the alloy composition (x). Raman scattering associated with Ge-Ge 

phonon mode might have a resonant component, as also pointed out in the references 

[116, 117, 134, 135].  

 

4.2 PL Measurements in Si/SiGe NSs 

Low temperature (17 K) PL measurements were performed in a high quality Si1-xGex NL 

with x ~ 8% grown on locally strained Si layers sandwiched between Si1-xGex clusters 

with x   40% using CW and pulsed laser excitation. The PL properties of SiGe cluster 

and SiGe NL have been investigated. For CW laser excitation, an Ar+ laser (514 nm, 488 

nm, 457.9 nm, and a multi-line), a HeCd laser (325 nm), and high-power light-emitting 

diode with a peak near 365 nm are used. PL dynamics using a Q-switched Nd:YAG pulse 

laser of 355 nm excitation wavelength were studied. The excitation energy density was 

varied from 1.5 to 50 mJ/cm
2
.  

Two different measurement techniques were used to investigate the significant 

peaks in multilayers Si/SiGe NSs under pulsed laser excitation; the measured time-

integrated PL spectrum using a lock-in amplifier shows the peak at 0.8 eV associated 

with SiGe cluster and the peak-intensity PL signal reveals the peak at 0.92 eV associate 

with SiGe NL. Longer PL rise time in SiGe cluster and non-exponential PL decays both 

in SiGe cluster and SiGe QW have been found. The spatial separation of electrons and 

holes, where electrons are localized in Si and holes are located in the SiGe cluster core 

area, explains the experimentally found long-lived PL in Si/SiGe clusters [9, 136-138]. 
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The recombination rate has been measured and a model has been proposed to explain the 

fast and slow recombination rates found in tailored multilayer Si/SiGe NSs.  

 

4.2.1 Results  

Figure 4.13 shows the normalized PL spectra of MBE grown multi-layers Si/SiGe NSs 

measured under three different excitation wavelengths (514, 365, and 355 nm). 

 

 

Figure 4.13  Normalized PL spectra at low temperature (T = 17 K) measured using 

different excitation wavelengths. 
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Figure 4.17 compares PL intensities as a function of pulsed laser energy density. 

It is found that the intensity of the PL peaked at 0.92 eV is linear versus excitation energy 

density with no saturation evident until ~50 mJ/cm
2
, while the PL peaked at 0.8 eV 

depends on excitation energy density as the square root.  

 

 
 

 

Figure 4.17  Low temperature (T = 17 K) PL intensity versus excitation energy density 

for two (indicated) photon detection energies. 

 

The PL signal peaked at 0.8 eV (SiGe cluster PL) presents delayed PL with a long 

rise time (~3 μs) found at low excitation intensity and low temperature, as shown in 

Figure 4.18. The extracted rise time as a function of temperature and energy density in 

SiGe clusters is shown in Figure 4.19 
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Figure 4.18  The normalized PL spectra peaked at 0.8 eV measured for different (a) 

excitation energy densities (E = 50 mJ/cm
2
) and (b) temperatures (T = 17 K). 
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Figure 4.19  The 0.8 eV PL rise time is shown as a function of excitation energy density 

and temperature. 

 

 

It is observed that the PL rise time decreases with the increasing excitation energy 

density and temperature. Note that the PL peaked at 0.8 eV has a rise time close to 2–3 μs 

while the 0.92 eV PL rises faster than 2.5 ns (the time resolution of the system). 

Figure 4.20 presents the PL dynamics measured using 355 nm wavelength and 6 

ns-long pulsed laser excitation with an energy density of ~50 mJ/cm
2
. In agreement with 

our expectations (also, in reference [138]), the PL peaked at 0.92 eV is found to be 

decaying much faster compared to the PL peaked at 0.8 eV.  
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Figure 4.20  Time-resolved PL decays under pulsed excitation energy density of 50 

mJ/cm
2
 recorded at indicated photon energies.  

 

Non-exponential decays are found for both PL bands of the Si/SiGe 

nanostructures. The observed non-exponential PL decays suggest that in both cases the 

carrier recombination processes are characterized by a time-dependent recombination 

rate, Ri. Thus, the carrier concentration n decay rate is given by: 

 

  

  
       

 

  ( )
, (4.14) 

 

where τi(t) is an instant lifetime. It can be directly extracted from the PL dynamics 

according to the equation:  
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⁄     (
  

  ( )
), (4.15) 

 

where 
   

  
⁄  is the normalized PL intensity. Figure 4.21 shows the instant carrier lifetime 

as a function of time fitted using equation: 

 

  ( )           , (4.16) 

 

where   ,   , and α are the constants.  

 

 

Figure 4.21  PL lifetime as a function of time extracted from the PL decay data for (a) 

SiGe cluster (~ 0.8 eV) and (b) SiGe NL (~ 0.92 eV). Circles show the fitting data.   
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Figure 4.22 presents the time-dependent recombination rate,   ( )   
 

  ( )
. The 

recombination rate for the PL band peaked at 0.8 eV is ~ 10
5
 - 10

4
 s

-1
, and it is in the 

range of 10
6
 – 10

7 
s

-1 
for the 0.92 eV peaked PL.  

 

 

Figure 4.22  Carrier recombination rate as a function of time calculated using the PL 

decay data for two indicated photon energies. 
 

4.2.2 Discussion  

In Si/SiGe nanostructures at low temperature, carrier diffusion is found to be negligible 

[124]. Thus, the observed difference in the PL spectra obtained using shorter (325 nm) 

and longer (365 nm) wavelength excitation [Figure 4.14] is expected to be due to the 

difference in photoexcitation penetration depth, which is ~ 10
-6

 cm for the shorter and ~ 
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10
-5

 cm for the longer wavelength excitation [10, 124]. Therefore, the PL peaked at ~0.9 

eV is mostly associated with the 4-5 nm thick Si1-xGex single NL where x ≈ 8%, while the 

PL with a maximum at ~ 0.8 eV is related to Si1-xGex cluster multilayers with x 

approaching 40%. Compared to bulk Si1-xGex alloys with similar composition x [23], the 

PL in Si1-xGex clusters is shifted toward lower photon energies, which is most likely due 

to strain and strain-induced Si/Si1-xGex interfacial mixing [139, 140]. 

Using pulsed laser excitation with 355 nm wavelength, a PL signal associated 

with both the SiGe NLs and SiGe clusters is obtained. The measured time-integrated PL 

signal (recorded using a lock-in amplifier and a millisecond accumulation time window) 

shows the PL peak at ~ 0.8 eV with a visible shoulder at ~ 0.9 eV [Figure 4.15]. An 

alternative approach to checking the PL dynamics is to use a storage oscilloscope with an 

adjustable time window and directly record the PL peak intensity at different 

wavelengths. Using this method and a shorter (~ 0.1 µs) accumulation time, the PL 

maximum intensity is found at ~ 0.92 eV [Figure 4.15]. This result indicates that under 

355 nm pulsed excitation, the PL at 0.92 eV decays faster compared to the 0.8 eV PL. 

This conclusion is in an agreement with the previously reported results in Si/SiGe 

nanostructures showing that the PL detected at longer wavelengths, in general, has a 

longer lifetime [138]. Note that in both experiments no PL associated with dislocations is 

found (i.e., there is no sharp D-line PL at 0.81 eV, 0.86 eV, 0.94 eV, and 1.0 eV [141]). 

Figure 4.17 shows that the 0.8 eV peaked PL is sub-linear while the 0.92 eV PL 

intensity is linear versus excitation energy density, and this explains why the 0.92 eV PL 

dominates at a higher excitation energy density. The linear dependence of the 0.92 eV 

peaked PL intensity versus excitation energy density indicates that the measured 
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recombination rate of 10
6
 – 10

7 
s

-1 
is mostly due to radiative recombination. Since 

radiative recombination competes with Auger recombination, the long-lived PL should 

saturate sooner compared to the short-lived PL. In agreement with this presumption, 

Figure 4.20 confirms that the 0.8 eV peaked PL decay is significantly slower compared to 

the 0.92 eV peaked PL decay. On the other hand, the 0.8 eV PL rise time as a function of 

excitation energy density shows different behavior at low and high excitation energy 

densities, as is shown in Figure 4.19. The observed PL rise time of ~ 2-3 µs is much 

longer than the laser pulse (~ 6 ns). This unusually long PL rise time could be associated 

with an Auger-assisted carrier spatial redistribution in Si/SiGe nanostructures known as 

the Auger fountain [142]. The temperature dependence of the PL rise time at high 

excitation density (~50 mJ/cm
2
) also confirms that the Auger fountain could be 

responsible for the unusual PL dynamics [143]. 

Non-exponential PL decays have been reported previously in Si/SiGe 

nanostructures, and they were fitted variously by a stretched exponential function

exp[( / ) ]t
 , a power function  1 / 1

m
t or multiple exponential decays [138, 141, 

144]; however, the underlying physical mechanism involved has not been identified. It 

has been pointed out that the stretched exponential PL decay is observed in a wide variety 

of systems, and it provides a good empirical fit but, most likely, has no fundamental 

significance [145]. As presented in this work, the direct extraction of instant carrier 

lifetimes from the PL decay is a simple procedure, and it is not bound to any particular 

model or assumption. The instant carrier lifetimes are well fitted following equation 4.16, 

shown in Figure 4.21.  It is found that τo   1.37 10
-7 

s and α   1.5 for the 0.92 eV PL 

band and τo   9 10
-6 

s and α   0.96 for the PL band peaked at 0.8 eV. Figure 4.22 shows 
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that initially both PL bands have almost time-independent recombination rates with 

corresponding single-exponential decays of ~ 3 10
7 
s

-1 
for the PL band peaked at 0.92 eV 

and ~ 9 10
4 

s
-1

 for the 0.8 eV PL band. As time increases, the recombination rate 

decreases, and   ( )      with α   0.82 for the PL band peaked at 0.92 eV and α   0.67 

for the 0.8 eV peaked PL band. 

Assuming a type II energy band alignment at a Si/SiGe hetero-interface with an 

energy barrier mostly in the valence energy band ( V
E ), holes are localized within SiGe 

and electrons are located in Si [123, 138]. In this model, two major factors contribute to 

the electron-hole recombination rate (i.e., speed of the PL decay). The first factor, 

similarly to that in donor-acceptor pair recombination model [146], it is assumes that the 

electron-hole time-dependent recombination rate depends on the average distance 

separating electrons and holes,     . The recombination-rate distance dependence is 

expressed by   

 

 ( )       ( 
    

   
), (4.17) 

 

where    and     are the maximum recombination rate [~ 7 10
7
 s

-1
, see Figure 4.22] and 

a minimal radius of the localized exciton at the Si/SiGe hetero-interface (~ 1.5 nm), 

respectively. It is assumed that the holes are localized within SiGe and the electrons are 

located in Si, which is due to the previously discussed type II energy band alignment at 

the Si/SiGe hetero-interface. In the Si1-xGex nano-layer with x   8%,       ≤ 5 nm (which 

is comparable to the thickness of the SiGe nano-layer) is found while in Si1-xGex clusters 
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with 0       , it is found 9 nm <      < 14 nm (Figure 4.23). These results are in a 

good agreement with the TEM and EDX data (Figures 3.1 (d) and 3.2 (c)).  

 

 
 

 

Figure 4.23  Carrier recombination rates (dots) extracted from the experimental data as a 

function of the distance between electrons and holes for photon detection energies 

associated with SiGe NL PL (~ 0.92 eV) and SiGe cluster PL (~ 0.8 eV). The solid line is 

the theoretically calculated electron-hole recombination rate (Equation 4.17). 

 

The second factor is the energy barrier for holes    , which is much greater 

compared to the energy barrier for electrons [10], and it can be estimated from   
   

        where   
   is the Si energy gap and     is the photon energy of the PL peak. 

The data show that for NLs of Si1-xGex with   ≈ 8% the hole energy barrier is    
   ≈ 

0.18 eV, and for CMs of Si0.6Ge0.4 it is    
   ≈ 0.3 eV. Both factors contribute to the 
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electron-hole recombination rate; it decreases exponentially as both      and     

increases [147]. Thus, in a low Ge content SiGe NL, electron-hole recombination should 

occur ~1000 times faster compared to that in Ge-rich SiGe CMs. An alternative 

explanation might involve different types of luminescence centers, most likely 

uncontrollable impurities localized at the Si/SiGe hetero-interface. However, the MBE 

growth  environment  was very clean, and there is  no  clear  experimental  evidence (e.g.,  

additional PL lines, etc.) pointing to the existence of such centers.
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CHAPTER 5 

CONCLUSION 

 

Over the last few decades, Si/Si1-xGex NSs are considering as promising candidates in the 

field of optoelectronic and thermoelectric devices.   The lattice-mismatch-induced strain 

in growth of Si1-xGex layers on Si can be used to tailor the physical properties of Si/Si1-

xGex NSs. This dissertation has described a complete study of structural, optical, and 

thermal properties of strain engineered multilayers Si/Si1-xGex NSs using Raman and PL 

spectroscopy. A comprehensive quantitative analysis of Raman scattering in Si/Si1-xGex 

NSs with known chemical composition, dimensions, and heterointerface abruptness is 

discussed in the first part of the dissertation. In the second part, detailed investigation of 

the PL signal in SiGe NL embedded in multilayers Si/SiGe clusters is presented and 

electron-hole time-dependent recombination rate is discussed using the donor-acceptor 

pair recombination model.  

Raman experiments have been set up with the aim of measuring Raman spectra of 

different geometries, thicknesses, and Ge compositions of Si/Si1-xGex NSs in a 

spectroscopic range of 0-1200 cm
-1

. The observed variations in the baseline of the Raman 

spectrum are attributed to the sample surface imperfection and notable instrumental 

response associated with stray light. The baseline correction is used for precise estimation 

of Raman peak’s position, intensity, and full width at half maximum.  

The PL measurements are performed using CW and pulse laser excitation of the 

MBE grown Si/SiGe NSs. A fast and intense PL signal has been found in a SiGe NL at 

0.92 eV embedded in multilayers Si/SiGe clusters. Electron-hole recombination in non-
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uniform multilayers Si/SiGe NSs has been discussed. A model has been proposed to 

explain the time-dependent carrier recombination found in SiGe QW and SiGe clusters. 

Using different excitation light wavelengths, the dependence of the Raman scattering 

intensity on the light penetration depth in Si/Si1-xGex NSs is demonstrated.  The Ge 

content x and strain are calculated using the Raman signal integrated intensity and 

frequency methods, and the results are in a good agreement with the EDX data. Details of 

low-frequency folded longitudinal acoustic phonon modes and second-order Raman 

scattering in these samples are explained. Using the measured Stokes/anti-Stokes Raman 

spectra and the developed model of heat dissipation in the samples exposed to an intense 

laser radiation during Raman measurements, the sample local temperatures and thermal 

conductivities are calculated.  It is observed that an increase in the SiGe/Si volume 

fraction ratio strongly contributes to the decrease in thermal conductivity of Si/Si1-xGex 

NSs. The results are important for the development of quantitative and non-destructive 

metrological procedures and for determining the thermal properties of a wide variety of 

SiGe based nanoscale electronic, photonic, and thermoelectric devices. 

Experimental results from PL measurements indicate that a 3-5 nm thick 

Si/Si0.92Ge0.08 layer with an abrupt (~ 1 nm) heterointerface incorporated into a Si0.6Ge0.4 

CMs shows no structural (TEM) or spectroscopic (PL) evidences of dislocations, and it 

produces a remarkably strong PL signal at 0.92 eV (SiGe NL) with characteristic decay 

time ~ 1000 times shorter compared to that in Si/SiGe clusters. This intense and short-

lived PL does not saturate as a function of excitation energy density up to 50 mJ/cm
2
. The 

experimentally observed non-exponential PL decay in Si/SiGe nanostructures is 

explained to be due to variations of the distances separating electrons and holes at the 
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Si/SiGe heterointerface. This novel design reduces the carrier radiative recombination 

lifetime, increases the PL quantum efficiency, and makes these SiGe nanostructures 

promising candidates for applications in light-emitting devices monolithically integrated 

into CMOS environment. 

In conclusion, Raman and PL spectroscopies are two powerful techniques used to 

characterize multilayer Si/Si1-xGex NSs. Raman spectroscopy is an effective method for 

precise measurements of the Ge content and strain in Si1-xGex alloy. It also allows 

predicting the thermal conductivity in low-dimensional Si/SiGe NSs and thus, makes 

possible to control the heat dissipation in thermoelectric devices. The performed PL 

studies are used to develop a model of electron-hole recombination in SiGe QW 

embedded in multilayers Si/SiGe clusters. This novel device with enhanced PL quantum 

efficiency will lead to the technological developments in Si photonics.
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