
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

Summer 8-31-2012 

GPU implementation of block transforms GPU implementation of block transforms 

Boyan Zhang 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Zhang, Boyan, "GPU implementation of block transforms" (2012). Theses. 149. 
https://digitalcommons.njit.edu/theses/149 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/149?utm_source=digitalcommons.njit.edu%2Ftheses%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

GPU IMPLEMENTATION OF BLOCK TRANSFORMS

by
Boyan Zhang

Traditionally, intensive floating-point computational ability of Graphics Processing Units

(GPUs) has been mainly limited for rendering and visualization application by architec-

ture and programming model. However, with increasing programmability and architecture

progress, GPUs inherent massively parallel computational ability have become an essential

part of today’s mainstream general purpose (non-graphical) high performance computing

system. It has been widely reported that adapted GPU-based algorithms outperform signif-

icantly their CPU counterpart.

The focus of the thesis is to utilize NVIDIA CUDA GPUs to implement orthogo-

nal transforms such as signal dependent Karhunen-Loeve Transform and signal indepen-

dent Discrete Cosine Transform. GPU architecture and programming model are examined.

Mathematical preliminaries of orthogonal transform, eigen-analysis and algorithms are re-

visited. Due to highly parallel structure, GPUs are well suited to such computation. Further,

the thesis examines multiple implementations schemes and configuration, measurement of

performance is provided. A real time processing display application frame is developed to

visually exhibit GPU compute capability.



GPU IMPLEMENTATION OF BLOCK TRANSFORMS

by
Boyan Zhang

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

June 2012



Copyright ©



APPROVAL PAGE

GPU IMPLEMENTATION OF BLOCK TRANSFORMS

Boyan Zhang

Dr. Ali N Akansu, Thesis Advisor Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Richard Haddad, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Edip Niver, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT



BIOGRAPHICAL SKETCH

Author: 	Boyan Zhang

Degree: 	Master of Science

Date: 	August 2012

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, New Jersey, 2012

• Bachelor of Science in Electrical Engineering and Underwater Acoustics,
Harbin Engineering University, Harbin, Heilongjiang, 2009

Major: 	Electrical Engineering

iv



To my family,

for their endless love and support

v



ACKNOWLEDGMENT

First and foremost, I would like to express my sincere gratitude to my advisor, Professor

Ali, Akansu, for the opportunity to work under his guidance and for all his support, encour-

agement throughout my study. Professor Akansu not only provided valuable resources but

also shares me with his countless ideas and vision.

I would also like to thank Dr. Richard Haddad. His great teaching in my coursework

really formed the basis for my efforts in this research area. Besides my advisors, I am

heartily grateful to Dr. Edip Niver for serving as members of my thesis committee.

I am also grateful to Mustafa Ugur Torun, Onur Yilmaz, Yanjia Sun and all other

members of laboratory of high performance digital signal processing for sharing their vast

knowledge and valuable life experience with me.

Last but certainly not the least, I would like to express my appreciation to my par-

ents who inspire me pursuing engineering for their constant loving support. My thanks also

go to my friends who provide me various perspectives.

vi



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 BLOCK ORTHOGONAL TRANSFORM . . . . . . . . . . . . . . . . . . . . . 3

2.1 Vector Spaces and Signal Representation . . . . . . . . . . . . . . . . . . . 3

2.2 Orthogonal Signal Space and Orthogonal Transform . . . . . . . . . . . . . 3

2.3 Why KLT is Optimal Transform . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Correlation and Covariance . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Two-Dimensional Orthogonal Transform . . . . . . . . . . . . . . . . . . . 9

3 CUDA PROGRAMMING MODEL . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Introduction to CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Hardware Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 CUDA Thread Organization . . . . . . . . . . . . . . . . . . . . . 13

3.4 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 CUDA Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Hardware Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.1 Dynamic Partitioning of SM Resources . . . . . . . . . . . . . . . 18

4 GPU IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Implementing DCT by Definition . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Implementation Scheme1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Device Data Memory Organization . . . . . . . . . . . . . . . . . . 20

vii



TABLE OF CONTENTS
(Continued)

Chapter Page

4.2.2 Scheme1 Kernel Parameter Configuration . . . . . . . . . . . . . . 23

4.3 Implementation Scheme 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Implementation Scheme 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Tuning Performance and Profiling . . . . . . . . . . . . . . . . . . . . . . 27

4.5.1 Memory Coalescing . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5.2 Context Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.3 Kernel Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.4 Testing Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Eigen Decomposition Implementation . . . . . . . . . . . . . . . . . . . . 33

4.6.1 Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6.2 Results and Further Discussion . . . . . . . . . . . . . . . . . . . . 36

4.6.3 Divide and Conquer . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6.4 MAGMA Testing Result . . . . . . . . . . . . . . . . . . . . . . . 38

5 REAL TIME DISPLAY APPLICATION FRAME . . . . . . . . . . . . . . . . 39

5.1 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 FFmpeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Test Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 44

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

APPENDIX A TESTING RESULT FOR IMPLEMENTATION SCHEME 3 . . . . 46

APPENDIX B GPU AND CPU SPECIFICATION . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



LIST OF TABLES

Table Page

4.1 Execution time for cyclic and naive parallel implementation . . . . . . . . . . 37

4.2 Execution time for LAPACK (CPU) and MAGMA (GPU) . . . . . . . . . . . 38

ix



LIST OF FIGURES

Figure Page

2.1 Scatter plot of adjacent pixel value pairs of "Lenna" . . . . . . . . . . . . . . . 7

2.2 Scatter plot of adjacent pixel value pairs of "Lenna" rotated by 45 degree . . . 8

3.1 Execution of CUDA warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 CUDA thread organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Heterogeneous Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Overview of the CUDA device memory model . . . . . . . . . . . . . . . . . 17

4.1 Lenna image split scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Device data memory organization . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Texture Processor Cluster (TPC) . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Code for texture coordinates conversion from linear memory to CUDA array
texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Left multiplication indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Three dimensional execution parameter configuration . . . . . . . . . . . . . . 24

4.7 Three dimensional thread hierarchy indexing . . . . . . . . . . . . . . . . . . 24

4.8 Code for texture coordinates conversion . . . . . . . . . . . . . . . . . . . . . 25

4.9 The Third Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.10 Tiling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.11 Loading sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.12 Tuned code after applying optimization techniques . . . . . . . . . . . . . . . 28

4.13 Instruction throughput of different implementation . . . . . . . . . . . . . . . 29

4.14 Instruction throughput of different implementation . . . . . . . . . . . . . . . 30

4.15 Uncoalesced memory accessing profiler output . . . . . . . . . . . . . . . . . 30

x



LIST OF FIGURES
(Continued)

Figure Page

4.16 Coalesced memory accessing profiler output . . . . . . . . . . . . . . . . . . . 31

4.17 Profiler output after removing warp serialize . . . . . . . . . . . . . . . . . . . 32

4.18 Summary table for kernel profiler output . . . . . . . . . . . . . . . . . . . . . 32

4.19 Occupancy analysis for kernel with lower efficiency . . . . . . . . . . . . . . . 32

4.20 Occupancy analysis for kernel with higher efficiency . . . . . . . . . . . . . . 32

5.1 OpenGL Display Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Display Routine Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Video Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Image grabbed from raw video input . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Image grabbed from video after one dimensional DCT transform . . . . . . . . 43

A.1 Execution Time Comparison with picture size 512 x 512 . . . . . . . . . . . . 46

A.2 GPU vs CPU speed up with picture size 512 x 512 . . . . . . . . . . . . . . . 47

A.3 Execution Time Comparison with picture size 2048 x 2048 . . . . . . . . . . . 47

A.4 GPU vs CPU speed up with picture size 2048 x 2048 . . . . . . . . . . . . . . 48

xi



CHAPTER 1

INTRODUCTION

1.1 Objective

Orthogonal transforms decorrelate the signal and repack their energy into less number of

coefficients, which is the purpose of transform coding (Akansu 2000). The thesis aims at

implementation Graphic Processing Unit GPU based block transform that would provide

dramatic increase in computational speed as compared to CPU-based implementation.

Historically, a GPU serves as co-processor to the central processing unit. When it

comes to hardware features. The GPU is designed with a mathematically-intensive, highly

parallel architecture for rendering graphics (Tee 2011).The increased programmability of

the GPUs has opened up the potential to execute non-graphics computation on the GPU or

general purpose computing on GPU (GPGPU) by utilizing the GPU’s massively parallel

architecture with high memory bandwidth.

Two well-known and important orthogonal transforms, Discrete Cosine Transform

or DCT and Karhunen-Loeve Transfrom or KLT are taken as example to be discussed and

implemented. KLT, the unique input-signal dependent with feature of perfect decorrelation

is optimal block transform (Akansu 2000).In essence, KLT is eigen-decomposition prob-

lem. Multiple algorithms, implementation and performance measurement are discussed in

the thesis. DCT is an approach of the KLT, as a reasonable balance of optimality of the

input decorrelation and the computational complexity.

In addition to demonstrating the efficient use of GPU hardware, various implemen-

tation schemes and configuration profiling are presented to show GPU based algorithm

1



2

development work flow of how to achieve high performance by carefully choosing strate-

gies. A real time display application frame is also developed to exhibit potential of utilizing

GPU interoperability in real time signal processing.

1.2 The Scope of Thesis

Chapter 2 introduces concepts of signal representation, theory of block orthogonal trans-

form and discusses KLT as perfect signal decorrelator. Chapter 3 talks about CUDA Pro-

gramming model in both hardware and software perspectives. Chapter 4 presents algo-

rithms design and configuration details of implementation of DCT and KLT. Performance

measurement and profiling result are also provided. Chapter 5 shows real time display

application frame with kernel developed from previous chapters.



CHAPTER 2

BLOCK ORTHOGONAL TRANSFORM

2.1 Vector Spaces and Signal Representation

In context of signal analysis, discrete signal can be represented as a vector xxx = [x1, . . . ,xn]
T ,

which will also be considered as a vector in vector space. For the convenience of future

discussion, a N dimensional vector (or signal vector xxx) will always be represented in col-

umn form or transpose of a row vector. A column vector xxx or a row vector xxxT can be written

as an n-tuple with n elements:

xxxT = [x1,x2, . . . ,xN ] xxx =



x1

x2

...

xN


. (2.1)

2.2 Orthogonal Signal Space and Orthogonal Transform

The signal xxx can be considered as a random process, of which each element can be treated

as a random variable with certain probability distribution. In the case of representing a

sequence (discrete-time or discrete variable signal), orthogonal functions, structured as

bases, are used in signal expansions (Akansu 2000). Applying linearly independence of

orthogonal basis, it can be shown that a discrete signal xxx = [x1,x2, . . . ,xN ] can be uniquely

represented as linear combination of orthogonal basis.Here we reference orthogonal matrix

as the object of discussion, for the reason that, through Gram-Schmidt Orthogonalization,

3



4

the corresponding orthonormal matrix of an orthogonal matrix can be obtained. Orthogonal

matrix retains all relevant properties of orthonormal matrix.

Based on discussion above, orthogonal transform can be developed. If an N by N

square matrix AAA is invertible, its inverse matrix AAA−1 equals to its own transpose AAAT , which

is AAA−1 = AAAT . Then an orthogonal transform of a column vector xxx = [x1,x2, . . . ,xN ]
T can be

defined as

yyy = AAAxxx (2.2)

or in the expansion form

yyy =



a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

...
...

aN1 aN2 . . . aNN





x1

x2

...

xN


(2.3)

If we define aaai = [a1i,a2i, . . . ,aNi] as ith column vector of A, above forward transform can

be rewritten as

yyy =



y1

y2

...

yN


= AAAT x =



aaaT
1

aaaT
2

...

aaaT
N


xxx (2.4)

Where A is transform matrix. Correspondingly, inverse transform can be obtained by left



5

multiplying AAA on both sides of transform equation above,

xxx =



x1

x2

...

xn


= AAAyyy =

[
aaa1 aaa2 . . . aaaN

]


y1

y2

...

yN


(2.5)

Above operation relies on the property of orthogonal matrix that transpose of orthogonal

matrix is equal to its inverse (Axler 1997). Hence, AAAAAAT = AAAAAA−1 = III. The bi-direction

transform above also reveals the Parseval Relation between signal domain and transform

domain. The energy in a signal sequence is defined as the square of the norm. Signal energy

is preserved under the transformation and can also be measured by the norm of transformed

(spectral) coefficients (Akansu 2000).

Geometrically, above operation can be interpreted as signal vector xxx represented by

a set of orthonormal basis defined in an N Dimensional space being applied coordinate

rotation defined by orthogonal transform matrix through matrix-vector operation. Trans-

form coefficients can be seen as signal representation with rotated coordinate. Considering

a signal matrix with multiple signal vector entries XXX = [xxx1,xxx2, . . . ,xxxN ]. Through opera-

tion (transform) defined previously, block orthogonal transform is an expansion of matrix-

vector to matrix-matrix case. Let signal be matrix with N by N elements, such a matrix can

be converted to an N2 dimension vector by cascading all the vectors column by column.

Hence, each block can then be interpreted as a vector with length N2 (Fisher 1995).



6

2.3 Why KLT is Optimal Transform

2.3.1 Correlation and Covariance

Let signal vector xxxi be a random variable vector, the covariance matrix of xxx is defined as

CCCx = EEE
[
(xxx−µµµx)(xxx−µµµx)

T ]= EEE[xxxxxxT ]−µµµxµµµ
T
x =


σ2

0 . . . σ2
0(N−1)

...
...

...

σ2
(N−1)0 . . . σ2

N−1

 (2.6)

where µµµx is the mean vector of random vector xxx, the element σ2
i j is the covariance of xi and

x j. Correspondingly, the correlation matrix composed of all correlation coefficients:

RRRx =


r2

0 . . . r2
0(N−1)

...
...

...

r2
(N−1)0 . . . r2

N−1

 (2.7)

where ri j is correlation coefficient between the two variables, defined as the covariance σ2
i j

normalized by σi and σ j. It can be assumed that xxx is centred with µµµ = 0 without loss ofgen-

erality. Figure 2.1 and Figure 2.2 gives a perfect illustration of correlation between pixels

in an actual image (Lenna). Each dot represents a pixel in the image with the x coordinate

being its gray level value and the y coordinate being the gray level value of its neighbour

to the right (Rao 2000). The diagonal convergence reveals the strong correlation between

neighbouring pixels. Figure 2.2 (Rao 2000) shows result of 45 degree rotation on input

signal pairs. Simply after 45 degree rotation, the pre-exist correlation between neighbour

pixels have already been significantly reduced. Here, covariance matrix can be introduced



7

Figure 2.1 Scatter plot of adjacent pixel value pairs of "Lenna"

to represent correlation among all pixels. Such correlation between adjunct pixels is re-

flected in first sub-diagonal elements of covariance matrix. Intuitively, all non-diagonal

elements of covariance matrix reflects correlation between any two different spatial image

pixels. From a signal coding standpoint, the purpose of transform coding is to decompose

a batch of correlated signal samples into a set of uncorrelated spectral coefficients (Akansu

2000). If idea of decorrelation spans to the example above, after transform desired covari-

ance matrix of uncorrelated spectral coefficients is a diagonal matrix. The Karhunen-Loeve

transform (KLT) has property to diagonalized input signal covariance matrix.

Suppose λk is kth eigenvalue of the covariance matrix Cx,

λkφk =CCCxφk 1≤ k ≤ N (2.8)



8

Figure 2.2 Scatter plot of adjacent pixel value pairs of "Lenna" rotated by 45 degree

An N by N transform matrix ΦΦΦ can be constructed through aligning eigenvectors of signal

matrix.

ΦΦΦ = [φφφ 1,φφφ 2, . . . ,φφφ N ] (2.9)

The transform matrix ΦΦΦ is orthogonal, it retains all orthogonal matrix attributes. Combining

N equation for all N index in equation form (1.7). The transform can be written as:

CCCxΦΦΦ = ΦΦΦΛ (2.10)

Where Λ is diagonal matrix with all diagonal entries are eigenvalues of input covariance

matrix CCCx. Through choosing N eigenvectors of input signal covariance matrix as basis

vectors. An orthogonal transform matrix with perfect decorrelation property can be found.

The signal vector xxx is also expressed in an N-dimensional space constructed Another ob-



9

servation can be made is the covariance matrix of transform coefficients is same as covari-

ance matrix of input signal vector, which means the spare energy of input signal vector x

contract in first N component after transform. The example reveals that the signal charac-

teristics of local correlation is reflected in the correlation matrix RRRx. All elements along

the main diagonal take the maximum value, representing the maximal self-correlation of

each signal sample, and all off-diagonal elements takes a smaller value representing the

cross-correlation between the two signal samples xi and x j. rrri j close to the main diagonal

tends to take large values than those whiche are farther away from the main diagonal, due

to local correlation.

2.4 Two-Dimensional Orthogonal Transform

Taking KLT as an example, we can extend one-dimensional orthogonal transform to two-

dimensional case, by assuming separable statistics of rows and columns(which is reason-

able by examination of previous image signal example)(Rao 2011), two dimensional real

random input κκκ:

κκκ =


x11 . . . x1N

... . . . ...

xN1 . . . xNN

 (2.11)

By rearranging order of κ, (N2×1) column vector u can be obtained:

u = (x11 . . .x1Nx21 . . .x2N . . .xN1xNN)
T (2.12)



10

If assuming separable statistics of the row and the column, Here Φ1 and Φ2 are orthogonal

matrices in the KLT matrix Ψ. After 2D separation we have:

Ψ = Φ1⊗Φ2 (2.13)

The symbol ⊗ stands for Kronecker Product of two matrices can be defined as:

A⊗B =


a11B . . . a1nB

... . . . ...

am1B . . . amnB

 (2.14)

When A and B matrices are respectively of sizes (m×n) and (p×q). Since Φ1 and Φ2 are

orthogonal, then Ψ is orthogonal. Equation (4) holds,

RΨk = λkΨk (2.15)

Perform KLT to u, we obtain µ: (?)

µ = Ψ
T u = (ΦT

1 ⊗Φ
T
2 ) (2.16)

Left Multipying Ψ = (ΨT )−1 on both sides of above equation, 2D case inverse transform

with respect to µ can be shown:

u = Ψµ (2.17)

To generalize procedure above, a row-column operation can be taken. First, one

dimensional orthogonal transform of the signal along the columns, then one dimensional



11

orthogonal transform can be applied along rows. The two-dimensional forward and inverse

transform can be expressed as:

yyy = AAAxxxAAAT (2.18)

xxx = AAAT yyyAAA (2.19)

Although the KLT is optimal among all orthogonal transforms, other orthogonal

transforms are still widely used for two reasons. First, by definition the KLT transform

is for random signals and it depends on the specific data being analysed. The transform

matrix is composed of the eigenvectors of the covariance matrix CCCx of the signal xxx, which

can be estimated only upon data. Second, the computational cost of the KLT transform is

much higher than other orthogonal transforms. Moreover, fast algorithms exist for many

transforms such as DFT, DCT. For these reasons, the DCT may be the preferred method in

many applications. The KLT can be used when the covariance matrix of the data can be

estimated and computational cost is not critical. Also the KLT as the optimal transform can

be used to serve as a standard against which all other transform methods can be compared

and evaluated (Akansu 2000). Although no fast algorithm exists for the KLT, it can be

approximated by DCT if the signal locally correlated As most signals of interest in practice

are likely to be locally correlated we can always expect the results of the DCT transform

are close to the optimal transform of KLT.



CHAPTER 3

CUDA PROGRAMMING MODEL

3.1 Introduction to CUDA

Compute Unified Device Architecture (CUDA) is a general purpose parallel computing ar-

chitecture developed by NVIDIA that leverage the parallel computing ability in NVIDIA

Graphics Processing Units (GPUs) to solve many complex computational problems in a

more efficient way than on a Central Processing Unit (CPU) (NVIDIA 2010). The parallel

computing engine in GPU is accessible to programmers through ′CUDA C′ (industry stan-

dard C with NVIDIA extensions and certain restrictions) (Wik 2010). It transparently scales

its parallelism and inherent floating point processing ability allows that modern GPUs

emerge not only as a specialized graphic processors but also a numerical co-processors

for high performance general application on CPU.

3.2 Hardware Model

In CUDA hardware model. host is often referred as CPU. Device is a GPU connected to

a host through a high speed IO bus slot, typically a PCI-Express (Wolfe 2010). CUDA

device has its own device memory on GPU. Programmed DMA, can operate concurrently

with both host and device can be used to transfer data between host and device memories.

Although CUDA parallelism model shares some features of popular Single Instruc-

tion Multiple Data (SIMD) and Single Program Multiple Data (SPMD) parallel schemes,

it has to be noted that the architecture should not be simply categorised as any one of

the classes. NVIDIA introduced Single Instruction Multiple Thread (SIMT) architecture

12



13

which combines features of multiple parallel models. Similar to SIMD vector organiza-

tions that a single instruction controls multiple processing elements, in instruction and

data level, threads are organised in groups (warps) that execute same instruction simul-

taneously (NVIDIA 2010). However, unlike popular SIMD architecture implementation

Streaming SIMD Extension (SSE) on CPU, each CUDA thread has private register, which

allows parallel threads process multiple data elements from different address without being

packed in single register. The mechanism change–without extra alignment instructions re-

quired, directly affects programming behaviour (Kirk and Hwu 2010). On the other hand,

thread block executes independently, within thread block private shared memory block

being used for thread cooperation and communication. But synchronization and communi-

cation among blocks is limited.

3.3 Programming Model

3.3.1 CUDA Thread Organization

CUDA thread hierarchy is organized into a 3 level hierarchy. The basic parallel unit is

warp, which also defines hardware memory bandwidth of GPU device. Each warp has

total 32 threads, when actual execution, each warp is divided into two half warps and

scheduled to execution queue by hardware scheduler (Figure 3.1) (Stein 2010). From

programmer point of view, CUDA language extension does not provide explicit definition

to control warp behaviour flow explicitly. Hence, the thread blocks can be seen at the

bottom of programmable CUDA thread structure as Figure 3.2 shows. Grid is a collection

of thread blocks and it can be seen as an acronym of device. For the reason that, in current

architecture, only one grid on device at a time is allowed when the kernel being launched



14

Figure 3.1 Execution of CUDA warp

from host.

All threads in a grid execute same kernel function. Programmer is able to determine

size and dimension of thread blocks through build-in variables under hard limit different

from product to product, which is quite flexible in practice. Pre-defined thread indices

coordinate can be utilized by threads to distinguish from each other. Programmer is also

responsible to create mapping from thread to appropriate portion accessing data from ho-

mogeneous or non-homogeneous address.

Although there is no strict pre-requisite for block size initialization when only con-

sidering program correctness, when threads executing on hardware, threads are always

scheduled in warp unit size. So for optimization, there is no point to create thread block of

size that is not a multiple of 32 threads (?).



15

Figure 3.2 CUDA thread organization

3.4 Execution Model

Excution model: Figure 3.3 is a clear illustration of CUDA execution model. CUDA

programming model assumes that the CUDA threads execute on a physically separate de-

vice. Different kernel functions are executed sequentially. When parallel threads being

executed on device, the rest C program runs on CPU (NVIDIA 2010). This may not be the

case, when comes to newly introduced architecture, Fermi architecture supports concurrent

kernel execution allowing programs that execute a number of small kernels to maximize

resource utilization (NVIDIA 2011b).



16

Figure 3.3 Heterogeneous Programming

3.5 CUDA Memory Model

CUDA programming model assumes device managing separate memory space which re-

sides on GPU DRAM. Before Fermi unified virtual Accessing is introduced, accessing to

the host memory space subjects to the explicit operation managed by programmer. CUDA

supports three types of memory that can be utilized by programmers: global(device) mem-

ory, shared memory and registers, figure 3.4 shows these device memory. Each thread in a

thread block can read/write per-thread 32-bit registers. Each thread block has shared mem-



17

Figure 3.4 Overview of the CUDA device memory model

ory visible to all threads within the block and with the same lifetime as the block (NVIDIA

2010). Registers and shared memory are on-chip memories. Variables that reside in these

types can be accessed at very high speed (it takes about 20 clock cycles) in a highly parallel

manner. Shared memory is an efficient mean for threads to cooperate by sharing input data

and the intermediate results of processed data (Kirk and Hwu 2010). Appropriate accessing

may have shared memory works as fast as registers. All threads have access to the same

global memory. Several hundred clock cycles are needed to access data in device memory.

As part of of device memory, constant and texture memory reside off-chip. However, con-

stant memory is read-only and cached, it supports short-latency, high-bandwidth memory

access by device all threads access the same location simultaneously (Kirk and Hwu 2010).

3.6 Hardware Perspective

It is important to understand the aforementioned scalability and limiting factor on program-

ming side. Such Scalability roots in hardware as previous shown, the structure of GPU



18

building blocks is self similar. The threads of a thread block execute concurrently on one

multiprocessor, and multi thread blocks can execute concurrently on one multiprocessor

(NVIDIA 2010). Consequently, streaming multiprocessors (SMs) can be seen as hardware

abstraction basic unit of CUDA architecture. As its name suggests, each streaming multi-

processors contains multiple stream processors(SPs). Control logic and instruction cache

is shared between different SPs.

3.6.1 Dynamic Partitioning of SM Resources

Because of all threads in a thread block execute on an SM, GPU hardware designers are

able to provide low-latency local on-chip memory inside SMs to reduce external memory

bandwidth requirement. This is an elegant solution for avoiding known scaling issues with

maintaining coherent caches in multi core processors. Including more higher performance

components in next generation enables forward compatible. Functional behaviour is identi-

cal across the scaling range; one application will run unchanged on any implementation of

an architecture family (Kirk and Hwu 2010). To programmers, the most visible difference

between various CUDA products is "scale" of resource– size and dimension of threads and

thread blocks supported.

The execution resources such as memory usage, threads, threads block distribution

are dynamically partitioned and assigned on SMs. This mechanism makes the SMs versa-

tile. They can either execute many thread blocks with few threads inside, or execute fewer

number blocks, each of which consists of many threads (Kirk and Hwu 2010). However,

this can result in underutilizing or overutilizing SM resources which may affect application

performance.



CHAPTER 4

GPU IMPLEMENTATION

4.1 Implementing DCT by Definition

This solution is never used in practice when calculating block by block DCT transform

on CPU because its high computational complexity relatively to some "separable meth-

ods". However such implementation matches/maps nicely to CUDA programming model,

architecture, which could be used to exhibit GPU computational capability.

From previous shown 2D separable transform property, 2D separable forward DCT

can be expressed in the following form in matrix notation:

YYY = AAA XXX AAAT (4.1)

Furthermore, above operation can be dissected to two separate matrix multiplications AAAXXX

and (AAAXXX)AAAT .

4.2 Implementation Scheme1

One of the primary concern of correctly implementation algorithm on CUDA is how to

create proper mapping from parallel executing threads to data address. Definition for clar-

ify, to avoid confusion, some notations need to be introduced. N by N block of pixels will

be further referred as simply block or pixel blocks. CUDA threads grouped into execution

block will be referred to as CUDA-block or CUDA-thread block.

The most direct thread mapping scheme is one to one mapping from thread to pixel

19



20

Figure 4.1 Lenna image split scheme

of image and setting size of thread blocks same as pixel blocks. This scheme leads to 2d

thread blocks configuration, assigning each pixel on image a thread to compute a single

DCT coefficient. Image is split into batch of blocks shown in Figure 4.1.

4.2.1 Device Data Memory Organization

Each multiprocessor has its own read-only constant cache that is shared by all function

units and speeds up reading from the constant memory, where resides in device memory is

cached and read only global memory space accessible by all threads (NVIDIA 2010). The

features make constant memory suitable for storing DCT matrix which is required visible

to all data and read only. DCT matrix is pre-computed on host(CPU) side beforehand then



21

Figure 4.2 Device data memory organization

copied to array located in device constant memory. Memory access pattern of image and

many other graphics applications often exhibits natural spatial locality. This implies a

group of threads with high possibility to access a batch of near addresses. Texture memory

is cached on chip as Figure 4.3 shows and visible to all streaming multiprocessors on

same Texture Processor Cluster (TPC) which contains number of SMs and a single texture

processing unit. Properly using this feature will provide higher effective bandwidth by

reducing memory requests to off-chip DRAM (Sanders and Kandrot 2010). However the

details of these texture caches have not generally been publicized, potential benefiting from

one and two dimensional spatial caching has been confirmed (NVIDIA 2010). This may

not be true for later CUDA device with higher compute capability, for example, on Fermi



22

Figure 4.3 Texture Processor Cluster (TPC)

architecture device, global memory accessing is also L1 cached (NVIDIA 2011b).

Each thread loads correspond one pixel data from texture memory to shared mem-

ory. Bitwise left shift operation is used for early generation of CUDA hardware perfor-

mance optimization, which had considerably slower integer arithmetic performance than

floating point. When transform block size is not exponential of 2, bitwise operation will be

substituted by intrinsic float multiplication function (NVIDIA 2010). To ensure the whole

block is loaded, all threads are aligned at synchronization barrier. The thread computes

inner product between two vectors. To perform correct inner product between ΦT and X ,

indexing strategy is adjusted as Figure 4.5 shows. Synchronization barrier is also utilized

to ensure left multiplication across all thread blocks has been performed. Right multiplica-

tion between intermediate result and DCT coefficients follows similar manner mentioned

above (without transpose involved). After all elements in block being updated, local result

is copied back to the destination in global memory.



23

Figure 4.4 Code for texture coordinates conversion from linear memory to CUDA array
texture

Figure 4.5 Left multiplication indexing

4.2.2 Scheme1 Kernel Parameter Configuration

On computing ability 1.x device, each CUDA-thread block can only contains 512

threads, which hints for purposed implementation, the square block size is limited to 16 by

16. On platform with computing ability 2.0, the limit is raised to 1024, correspondingly,

32 by 32 pixel and threads block are maximum transform block size can be achieved.



24

Figure 4.6 Three dimensional execution parameter configuration

4.3 Implementation Scheme 2

CUDA execution model limits high bandwidth threads cooperation/communication through

local multi processor resources. Unlike previous scheme, transform block size is indepen-

dent of CUDA thread block size. Three dimensional parameter configuration is proposed

as Figure 4.6 shows. Each block works on single pixel. Hence, each thread block contains

transform block size threads that perform inner product between vectors and data reduction

and result collection operation. Proposed configuration scheme requires threads coopera-

Figure 4.7 Three dimensional thread hierarchy indexing



25

Figure 4.8 Code for texture coordinates conversion

tion/communication from different thread blocks and block synchronization. The solution

to the two modification made is instead performing two dimensional forward transform

in one kernel, left multiplication and right multiplication are separately executed in two

different kernels. At the end of each kernel, result is collected then written back to global

memory. Although the implementation scheme provides more flexible solution to configure

kernel parameters, untuned code gives low performance with low computation arithmetic

ratio.

4.4 Implementation Scheme 3

The third scheme is proposed for balancing speed-up performance and configuration flex-

ibility. In Figure 4.9, block size indicates size of CUDA thread blocks while BLOCK

SIZE indicates DCT transform block size. On certain CUDA platform thread block size is

fixed(to be specified 16 for compute capability 1.x, 32 for compute capability 2.x). One

transform operation (matrix multiplication) can be finished by several CUDA thread blocks.

In classical parallel computation context, the solution is expanding standard matrix mul-

tiplication to block algorithm (Dongarra 1997). Visually, block matrix multiplication ex-

ample is easily comprehended. Individual elements in standard matrix multiplication is

substituted by one that operates on subarrays of data. The operations on subarrays can still



26

Figure 4.9 The Third Scheme

be expressed in the common way. Numerical analysis has shown that matrix multiplication

and other most important computations for dense matrices is blockable (Dongarra 1997).

This approach leads to taking advantage of using CUDA architecture size limited but fast

local data storage space and resource such as shared memory, cache and registers.

This trick is also referenced as tiling (Kirk and Hwu 2010).The Figure 4.10 shows

a 32 by 32 matrix divided into four 16 by 16 tiles. Kernel function computes result matrix

C in multiple iterations. Fixed size thread block loads one tile of matrix A and one tile

of matrix B to local shared memory, perform inner product to produce one element of C,

and stores subarray result of C in register in each iteration. Temporary result of C in each

thread register is accumulated from iteration to iteration. In final iteration, the element of

C in register will be stored back to global memory.



27

Figure 4.10 Tiling scheme

Figure 4.11 Loading sequence

4.5 Tuning Performance and Profiling

As (Dongarra 1997)’s analysis shows, the total amount of computation is same

between with or without utilizing tiling. But tiling serves as an important strategy for

reducing global memory traffic which involves accessing to high latency global memory

(Kirk and Hwu 2010) However, carefully tuning program to meet hardware specification

and mechanism is often necessary to achieve higher computation performance.



28

4.5.1 Memory Coalescing

Different accessing patterns provide significantly performance divergence in accessing global

memory on CUDA device. CUDA hardware combines (or coalesces) consecutive global

memory locations accessing requests from the same instruction for all threads in a warp

into a consolidated single access to consecutive DRAM locations (Kirk and Hwu 2010)

After removing uncoalesced memory accessing and bank conflict shared memory opera-

Figure 4.12 Tuned code after applying optimization techniques

tions, constant memory degraded overall performance in testing with transform block size

128, for the reason that, memory referencing in such test overloads constant memory 8kb

cache. Testing also shows that image pixel loading benefits from two dimensional cached

coherent referencing texture memory. Common coalesced technique does not provide sig-



29

nificantly performance enhancement when accessing texture memory. Figure 4.13 and

4.14 shows performance enhancement after different tuning techniques being applied.

Figure 4.13 Instruction throughput of different implementation

The Visual profiler contains a powerful analysis feature that provides performance analysis

of the application at the context level, kernel level, session level, and device level. Since

codes from different tuning session are running on same device, it is reasonable to pay

more attention on previous two performance analysis(NVIDIA 2011a). CUDA profiler is

used to analysis bottleneck in code and measure program performance.



30

Figure 4.14 Instruction throughput of different implementation

4.5.2 Context Level Analysis

An analysis of GPU utilization efficiency for the CUDA context is carried out at this level.

Figure 4.15 is output of CUDA profiler that shows summary table of unoptimized program.

Data under grid entry gst uncoalesced indicts un-coalesced global memory storage/load

operation. After removing un-coalesced global memory accessing, profiler gives output in

Figure 4.16. Summary table for kernel in Figure 4.18, gld efficiency and gst efficiency also

serves as an indicator of whether loading and storing global memory operation is coalesced

or not.

Figure 4.15 Uncoalesced memory accessing profiler output



31

If two addresses of a memory request fall in the same memory bank, there is a bank

conflict and the access has to be serialized. The counter warp serialize gives the number of

thread warps that serialize on address conflicts to either shared or constant memory. In our

application, bank conflict brought by inappropriate shared memory accessing and constant

memory usage both contribute to warp serialize. Figure 4.17 gives result after recondition

shared memory accessing pattern and substituting constant memory usage to general global

memory usage.

4.5.3 Kernel Level Analysis

Greater detail regarding to particular kernel can be found below. For compute capability

below 2.0 Memory Throughput Analysis and Instruction Throughput Analysis are grayed

out. Only Occupancy Analysis is available.

Occupancy analysis gives theoretical kernel occupancy and identifies the limiting

factor for occupancy. It is calculated using the static parameters (multi-run) of the kernel

like launch configuration, shared memory, and register usage. By observing profiler occu-

pancy analysis output, it can be discovered that both un-coalesced memory accessing and

bank conflict can result in more local register usage. From previous discussion, It is advised

register usage per kernel should not exceed 10 per thread in case of local register usage be-

coming bottle neck. This also shows that indirect performance degradation of uncoalesed

Figure 4.16 Coalesced memory accessing profiler output



32

Figure 4.17 Profiler output after removing warp serialize

Figure 4.18 Summary table for kernel profiler output

Figure 4.19 Occupancy analysis for kernel with lower efficiency

Figure 4.20 Occupancy analysis for kernel with higher efficiency



33

global memory. Figure 4.20 is output of high occupancy achieved after tuning.

4.5.4 Testing Result Analysis

Testing is performed on NVIDIA early CUDA support GPU with compute capability 1.1

and only one multi-processor on device. In other words, testing device has only eight

parallel processing units–streaming processors or cores. Testing result shows potential to

achieve more speed enhancement by simply switching to higher compute capability or

devices with more cores. The high end Tesla accelerators have 30 multiprocessors, for a

total of 240 cores; a high end Fermi has 16 multiprocessors. for 512 cores. It is reasonable

to extrapolate performance enhancement to 100 times speed-up over current CPU version.

Quantization is not performed between forward and inverse transform. The pri-

mary source of error introduced is numerical error. For all integer type image data, all

floating point numerical errors are round-off or up after inverse transform. Consequently,

reconstructed image is identical to input image, mean square error measurement was not

performed.

4.6 Eigen Decomposition Implementation

In previous chapter, it has been shown that to completely decorrelate signal, in our ap-

plication for every N ×N real non-singular symmetric matrix, correlation matrix can be

rewritten in A = GDGT form. This hints transform matrix can be found through perform-

ing Singular Value Decompostion (SVD) which equals to eigen decomposition when apply

to signal covariance matrix. So the problem tranforms to how to obtain eigenvalues and

eigenvectors of covariance matrix. Jacobi-type algorithms are often considered too slow



34

for practical usage. However, due to their accuracy properties and inherent amenability for

parallelisation, it becomes a potential candidate of parallel algorithm.

4.6.1 Jacobi

Given a symmetric matrix G = G0, Jacobi’s method produces a sequence of orthogonally

similar matrices, which eventually converge to a diagonal matrix with the eigenvalues on

the diagonal. Gi denotes orthogonally similar matrix of original matrix after i-th iteration.

Gi+1 is obtained from Gi through plane rotation Gi+1 =V T
i AiVi, where Vi is an orthogonal

matrix called Jacobi rotation (Demmel 1997).

G(k) = G(k−1)V T
k , [V T ](k) = [V T ]k = [V T ]k−1V T

k ,k = 1,2, . . . ,s. (4.2)

where k denotes iteration steps. If G(s) has sufficiently orthogonal columns, [V T ]s serves

as a quite good approximation of V T . Now, the matrix V of right singular vectors is easily

obtainable from V T . The J-orthogonal matrices V T
k in equation above become simply as

plane rotations (trigonometric). Such a rotation orthogonalizes a pair of columns of G. The

rotators can be represented as

V T =

 cosφ sinφ

−sinφ cosφ

=

 1 tanφ

tanφ 1


cosφ 0

0 cosφ

 (4.3)

If two columns within one pair are relatively orthogonal (up to the machine epsilon),

|ai j|< ε
√

aiia j j (4.4)



35

According to form above, apply equation on the right hand side of G. Updated ith and jth

column of G,

gk
i = (gk−1

i − tanφgk−1
j )cosφ (4.5)

gk
j = (gk−1

j + tanφgk−1
i )cosφ (4.6)

The columns of V T can be updated in the same fashion. For N by N square symmetrical

real matrix:

Rx =


a11 . . . a1N

... ai j
...

aN1 . . . aNN

 (4.7)

For each index pairs (i, j)(i < j), after applying certain algorithm to block

aii ai j

ai j a j j

 (4.8)

Block above can be decomposed in such form:

aii ai j

ai j a j j

=V (i, j)

σi 0

0 σ j

V T (i, j) (4.9)

When plane rotation operates on both sides of orthogonal similar matrix sequence, the

algorithm is also named as two-sided Jacobi Algorithm. To update the ith and jth rows of



36

Rx, apply orthogonal transform V (i, j)

V T (i, j)

ai,1:n

a j,1:n

 (4.10)

Then update the ith and jth columns

[
a1:n,i a1:n, j

]
V (i, j) (4.11)

To N by N matrix, up to N/2 pairs of rows/columns updating share no common indices can

be performed in parallel. After sweeping over all possible non-contradiction row/column

pairs, when convergence condition meets, decomposition finishes. Eigenvectors can be

found through accumulating all orthogonal matrices V (i, j) or V ( j, i) in an identity matrix.

4.6.2 Results and Further Discussion

Basically, CUDA implementation follows procedures introduced above. Row/Col update

scheme: Load ith and jth row/col pair from global(DRAM) to each block shared memory.

Then perform arithmetic operation to update row pairs and column pairs of input matrix.

Input matrix are symmetric whose elements are integer storing in float point type

integer ranging from 0 to 255. If we define looping over all non-overlap pairs one sweep

(n−1 row/column updating iteration, where denotes input matrix size), n/2+1 sweeps are

used to evaluate running time. Measurement takes time consumed by memory allocation/-

copy, communication between host(CPU) and device(GPU), data generation/deletion into

account.



37

Table 4.1: Execution time for cyclic and naive parallel implementation
MatrixSize Cyclic(s) Parallel(s)

2048 test 1 2291.293 48.637
test 2 2215.404 51.245
test 3 2237.124 49.387

1024 test 1 160.293 12.165
test 2 163.651 12.135
test 3 161.329 12.105

512 test 1 10.651 3.133
test 2 10.679 3.125
test 3 10.793 3.128

Cyclic Jacobi

Cyclic Jacobi algorithm or generalized Jacobi algorithm is favourable implemen-

tation scheme on traditional CPU architecture for taking advantage of appropriately using

CPU cache line.

Parallel Jacobi

4.6.3 Divide and Conquer

diagonalization and triangularization are the two different strategies behind prac-

tically all modern eigen-routines. Jacobi iteration method can be taken as an example of

diagonalization method. In this section, divide and conquer is introduced as the example of

implementation of triangularization. It is reported that this method is reported as the fastest

now available for obtaining all eigenvalues and eigenvectors of a tridiagonal matrix whose

dimension is "larger" (Demmel 1997).



38

Table 4.2: Execution time for LAPACK (CPU) and MAGMA (GPU)
MatrixSize CPUTime(s) GPUTime(s)

1024 3.11 1.97
2048 21.46 5.74
3072 73.20 16.97
4032 154.47 32.19
5184 330.11 70.27
6016 501.16 105.67

4.6.4 MAGMA Testing Result

MAGMA is an open source, high performance heterogeneous platform linear alge-

bra operation library. Combining widely used standard linear algebra library LAPACK on

CPU and wrappred CUBLAS function on CUDA GPU. This routine is available as both in

LAPACK and MAMGA eigen solvers. Table 4.2 gives performance comparison on Fermi

platform with compute capability 2.0.



CHAPTER 5

REAL TIME DISPLAY APPLICATION FRAME

5.1 Program Flow

Graphics interoperability of CUDA architecture allows using GPU for both rendering and

general purpose computation in the same application even when the images we want to ren-

der rely on the results of kernel computation. NVIDIA SDK sample is used as framework

and adapted for our application. As a window system independent OpenGL Toolkit, GLUT

is utilized for Linux compatibility. On screen image display is created through Pixel Buffer

Object (PBO) on a pixel-by-pixel basis. The schematic summarizes how OpenGL GLUT

system interacts with PBO (Farber 2010). The routine display() calls the The CUDA C ker-

nel that generates or modifies data in the OpenGL buffer, then data is passed to the OpenGL

driver to render new image to the screen as in Figure. Live video is imported from webcam

via TCP connection.

5.2 FFmpeg

FFmpeg is a complete, cross-platform open source project that produces both libraries and

programs which can record, convert and stream various format digital audio and video

(FFm 2010). In our application, FFmpeg retrieves output captured by web camera with

ability to output uncompressed raw video or other video device and file then convert it to

24 bit RGB format. After conversion, it feeds/supplys TCP socket with streaming data, as

illustrated in Figure. No actual TCP device is involved for transmitting data between appli-

cations (FFmpeg and application). A loop back network is set-up on localhost (Localhost is

39



40

Figure 5.1 OpenGL Display Flow

the name of the loop back device used by application that need to communicate with each

other one the same computer) and acts as an Ethernet interface. Using FFmpeg and TCP

connection is a succinct solution to handle video input with less programming involved.

TCP server in application is listening specified port and accepts connection attempts

from client. After connection established, it reads streaming data from TCP socket into

CPU managed data array when client sends data and writes it to buffer on the GPU for

kernel utilization. CUDA kernel discussed in previous chapter is fit into the framework.



41

Figure 5.2 Display Routine Flow

5.3 Test Result

Figure 5.4 and 5.5 shows test result of application running with viewport size 640 by 480

and transform block size 256. Although current application runs at high compute complex-

ity with great performance, an possible alternative solution to enhance performance further

could be using FFmpeg libraries within application directly to get raw input video from

camera input or get around TCP connection on localhost.



42

Figure 5.3 Video Data Flow

Figure 5.4 Image grabbed from raw video input



43

Figure 5.5 Image grabbed from video after one dimensional DCT transform



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, GPU-based DCT and KLT implementation has been presented. The workflow

of developing program on GPU and using profiling tool to tune and measure performance

is showed. A real time video input, processing and display flow application frame is also

developed. Multiple purpose computational kernel could be fit into the frame for potential

GPU application. The practising shows fixed transform on image signal greatly benefits

from CUDA-specific features. Moreover, proper implementation can also lead to signif-

icantly performance improvement on serialized iterative algorithms over same algorithm

implementation on Central Processing Unit.

6.2 Future Work

To better excavate computational power of GPU, it is necessary to understand GPU ar-

chitecture, tool-chain, and general concept of parallel computing. Capability of CUDA

enable device may from product to product. Although CUDA architecture can be trans-

parent through different generation products, to maximize performance, applying different

configuration parameter to different CUDA product may be a reasonable option subject to

scrutinize. Right now, most developers resort to a "trial and error" approach of tuning code

to achieve better performance. CUDA API can be used to retrieve device information which

provide possibility to auto-tune performance according to different device and device con-

tent. Automatic performance tuning has been used for years to optimize CPU code. Test

44



45

platform used in thesis is low end early version of CUDA capable GPU. Such serial of prod-

uct suffers from weakness on structure lacking of global memory cache, which could lead

relatively high latency penalty for accessing global memory. The current architecture and

compiler design also do not allow combing usage of register and shared memory. From

the previous chapters, it is common to see limit number of registers often contributes to

hindering higher capacity being achieved. But the trend can be seen that, in Fermi architec-

ture, global L1 cache has already been added to enhance DRAM accessing performance. In

other word, techniques like memory coalescing or not may not affect general performance

significantly. Compiler also plays a major role in program optimizing. After analysing

PTX code, that instruction mix and register level code optimization technique can be used

to enhance performance furthermore (which will be added later).

Finally, "Butterfly" like or other fast algorithm actually used in real world can be

evaluated for enhancing performance to the next level.



APPENDIX A

TESTING RESULT FOR IMPLEMENTATION SCHEME 3

Figure A.1 Execution Time Comparison with picture size 512 x 512

46



47

Figure A.2 GPU vs CPU speed up with picture size 512 x 512

Figure A.3 Execution Time Comparison with picture size 2048 x 2048



48

Figure A.4 GPU vs CPU speed up with picture size 2048 x 2048



APPENDIX B

GPU AND CPU SPECIFICATION

GPU Specification

Model Name: GeForce 9300GS

Frequency: 1450.0MHz

Memory: 127.3 MB

Compute Capability: 1.1

Machine Specification:

Processor: 0

Model Name: Intel(R) Core(TM)2 Duo T5670

Frequency: 1800.000MHz

cache size: 2048 KB

Processor: 1

Model Name: Intel(R) Core(TM)2 Duo T5670

Frequency: 800.000MHz

cache size : 2048 KB

49



REFERENCES

(2010). Compute unified device architecture (cuda).

(2010). Ffmpeg project description.

Akansu, A. (2000). Multiresolution Signal Decomposition. Academic Press, second edition
edition.

Axler, S. (1997). Linear Algebra Done Right. Springer, second edition edition.

Demmel, J. (1997). Applied Numerical Linear Algebra. SIAM, first edition edition.

Dongarra, J. (1997). Block algorithms: Matrix multiplication as an example.

Farber, R. (2010). Cuda supercomputing for the masses part15.

Fisher, Y. (1995). Fractal Image Compression. Springer.

Kirk, D. B. and Hwu, W. (2010). Programming Massive Parallel Processor. Morgan
Kaufmann.

NVIDIA (2010). Nvidia cuda programming guide version 4.0.

NVIDIA (2011a). Compute visual profiler user guide.

NVIDIA (2011b). Next generation cuda compute architecture.

Rao, K. (2000). The Transform and Data Compression Handbook.

Rao, K. (2011). Optimal Decorrelation and The KLT.

Sanders, J. and Kandrot, E. (2010). CUDA by example. Addison-Wesley Professional.

Stein, M. (2010). Cuda basics. Technical report, New York University.

Tee, W. (2011). Finite-difference time-domain method implemented on the cuda architec-
ture. Master’s thesis.

Wolfe, M. (2010). Understanding the cuda data parallel threading model a primer.

50


	GPU implementation of block transforms
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Block Orthogonal Transform
	Chapter 3: CUDA Programming Model
	Chapter 4: GPU Implementation
	Chapter 5: Real Time Display Application Frame
	Chapter 6: Conclusion and Future WOrk
	Appendix A: Testing Result for Implementation Scheme 3
	Appendix B: GPU and CPU Specification
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)


