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ABSTRACT 

HIGH-PERFORMANCE MATRIX MULTIPLICATION  
ON INTEL AND FPGA PLATFORMS 

by 
Gang Li 

Matrix multiplication is at the core of high-performance numerical computation. 

Software methods of accelerating matrix multiplication fall into two categories. One is 

based on calculation simplification. The other one is based on increasing the memory 

access efficiency. Also matrix multiplication can be accelerated using vector processors. 

In this investigation, various matrix multiplication algorithms and the vector-based 

hardware acceleration method are analyzed and compared in terms of performance and 

memory requirements. Results are shown for Intel and Xilinx FPGA platforms. They 

show that when the CPU is fast, Goto’s algorithm runs faster than Strassen’s algorithm 

because the data access speed is the bottleneck in this case. On the contrary, when the 

CPU is slow, Strassen’s algorithm runs faster because the computation complexity 

becomes the key factor in this case. Also, the results show that SIMD platforms, such as 

Intel Xeon and SIMD extensions and an in-house developed VP (Vector co-Processor), 

for an FPGA, can accelerate matrix multiplication substantially. It is even shown that the 

VP runs faster than MKL (Intel’s optimized Math Kernel Library). This is because not 

only can the VP take advantage of larger vector lengths but it also minimizes inherent 

hardware overheads. 
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CHAPTER 1 

INTRODUCTION 

 

The objective of this thesis is to present high-performance matrix multiplication 

algorithms and a relevant hardware acceleration method. Software methods of 

accelerating matrix multiplication fall into two categories. One is based on calculation 

simplification. The other one is based on increasing memory access efficiency. The 

hardware acceleration is done by using an in-house built vector co-processor for FPGAs. 

Strassen’s algorithm is a typical algorithm based on calculation simplification. 

Strassen’s algorithm has complexity O(n^2.807) [1] [5] for n * n matrices. It is a 

recursive algorithm. First, the input matrix is divided into four sub-matrices for 

independent multiplications, then recursively into sixteen sub-matrices, etc. But this by 

itself does not reduce the time complexity which is still O(n^3). However, Strassen found 

a way to also reduce the complexity of single sub-matrix multiplication. Thus, the time 

complexity is reduced to O(n^2.807). The Coppersmith-Winograd algorithm has a time 

complexity of O(n^2.3737) [4]. However, this algorithm has a very large constant, so it is 

only useful for the multiplication of extremely large matrices. The lower bound is 

O(n^2), i.e., the same as the number of elements in the product. 

A block-based matrix multiplication method is based on increasing memory 

access efficiency. It calculates the resulting matrix block by block instead of line by line 

(row or column), most of the time, in order to keep the data needed small enough to fit in 

the cache and thus take advantage of cache hits. 
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Besides elaborately identifying blocks in the matrix, the Goto’s method [2] 

increases the memory access efficiency further by copying the most frequently used data 

into contiguous memory locations in order to reduce the TLB misses. 

MKL is the Math Kernel Library developed by Intel [10]. It heavily uses the Intel 

architecture’s SSE instruction extensions to do the computations in parallel in the SIMD 

(Single Instruction Multi Data) mode. 

The vector processor is an efficient implementation of an SIMD architecture for 

array operations. It can simultaneously execute the same operation, e.g. single-precision 

floating-point multiplication, on all the elements in an array.  

The rest of the thesis introduces the details of the studied algorithms or methods 

and presents their implementations on Intel and FPGA platforms. Then, it compares the 

results. 
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CHAPTER 2 

BRUTE-FORCE IMPLEMENTATION 

 

Brute-force matrix multiplication (MM) is implemented exactly according to the matrix 

multiplication definition. It is simple and straight forward and provides a baseline in 

order to facilitate comparisons with other MM algorithms.  

 

2.1 Introduction 

The definition of matrix multiplication is: for N * N matrices A and B, the result of their 

multiplication is matrix C whose elements are: 

 

for i, j = 0, … , N-1 
 

It could be easily implemented using there nested for loops as follows: 

 

for( i = 0; i < N; i++ ) 
for( j = 0; j < N; j++ ) { 

  sum=0; 
for( k = 0; k < N; k++ ) 

   sum += A[i][k] * B[k][j]; 
C[i][j] = sum; 

} 

The process of calculating the result is shown in Figure 2.1 for 6 by 6 matrices. 

Each square represents an element of a matrix. Each element of C is calculated by 

multiplying corresponding elements from one row of A with one column of B. 
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Figure 2.1  Process of MM calculation with the Brute-force implementation. White 
means the data has not been accessed; light gray means older accesses; and dark gray 
means current accesses. 
 
 
 

2.2 Analysis 

2.2.1 Time Complexity  

To calculate one element of C, there are N multiplications and N additions. In total, there 

are N^3 multiplications and N^3 additions. So the time complexity of calculating matrix 

C is O(N^3). 

 
 
 
2.2.2 Cache Performance 

Consider only cache capacity misses and compulsory misses for simplifying the analysis 

(i.e. ignore conflict misses). Capacity misses are those misses that occur regardless of the 

associativity or the block size, solely due to the finite size of the cache. Compulsory 

misses are those misses caused by the first reference to a datum. Conflict misses are those 

misses that could have been avoided, had the cache not evicted an entry earlier. 

For the Brute-force implementation, Table 2.1 shows the absolute cache miss 

numbers for various cache sizes. An explanation for cache size > (L+1)N follows as an 

example. In this case, one row of A and L columns of B could be held in the cache. In 
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order to calculate one row of C, a row of A is repeatedly accessed and there are N/L 

misses. So to calculate the whole matrix C, there will be N^2/L misses. At the same time, 

when calculating one row of C, N^2/L misses will occur for scanning the whole matrix B. 

So to calculate the whole matrix C, there will be N^3/L misses.  

As for the cache organization, if it is directly mapped, there will be more cache 

conflict misses than in the case of set associative.  

Table 2.1  Cache Miss Numbers of Brute-force Implementation for Various Cache Sizes 

(in Number of Elements) 

         Cache Size 
Matrix Size 

> (N+1)N > (L+1)N > (N+L) >2L 0 

A N^2/L N^2/L N^2/L N^3/L N^3 

B N^2/L N^3/L N^3 N^3 N^3 

C N^2 N^2 N^2 N^2 N^2 

Subtotal N^2+ 

2N^2/L 

N^2+N^3/L 

+N^2/L 

N^3+N^2 

+N^2/L 

N^3+N^2 

+N^3/L 

2N^3+N^2 

 
 
 
 

2.2.3 Memory Consumption 

In terms of memory consumption, the Brute-force implementation does not need extra 

memory but just memory to store the three matrices; this requires the storage of 3N^3 

elements. 
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2.3 Results 

2.3.1 Intel Xeon Platform 

The specifications of the Intel platform are shown in Table 2.2. It has a dual-core CPU 

and each core has two threads. In order to analyze the algorithms, only one thread is used.  

The running time of the implementation for various matrix sizes is shown in 

Table 2.3.This shows how much more time is needed for the calculation when N doubles. 

The time complexity is O(N^3), but Table 2.3 shows that the slowdown is not always 8 

when N doubles. This is because the cache performance and the constants in the 

complexity affect the time spent.  

Table 2.2  The Specifications of the Intel Xeon Platform 

CPU Xeon 3.20G Hz * 2 

Memory 3GB 

L1 cache 16KB, 8-way 64-byte line size 

L2 cache 1024KB, 8-way 64-byte line size 

Compiler Intel c/c++ compiler 

Compile option -OD(optimization disabled) 

 

Table 2.3  Execution Time (in Seconds) of the Brute-force Implementation on the Intel 
Xeon Platform 

 

Brute-force Implementation 
Matrix  
Size 

64 128 256 512 1024 2048 

Time Spent 
(sec) 

0.002336 0.029708 0.253991 2.684 63.753 537.389 

Slowdown 
 

NA 12.717 8.549 10.608 23.752 8.429 
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When N<=64, matrix B could fully fit in the L1 cache (16KB). The cache misses 

become N^2 + 2N^2/L. If N is larger than 64, the cache misses are N^2 + N^2/L + 

N^3/L. That is why the slowdown for N = 128 is larger than 8.  

When N=128 or 256, matrix B could fit in L2 cache, therefore the cache miss rate 

for N=128 or 256 are similar. In this case the slowdown is depended on computation 

complexity, thus the slowdown for N=256 is close to 8. 

When N=512, the L2 cache could exactly hold matrix B (no more place for one 

row of matrix A), this makes the L2 cache miss rate higher than in the case of N=256. So 

the slowdown is slightly higher than 8. 

When N >= 1024, the L2 cache (1024KB) is not large enough to hold matrix B, 

so the cache miss rate increases. This causes the slowdown (23.752) for N = 1024 to be 

larger than 8. And because the speed gap between the L2 cache and main memory is 

wide, the slowdown (23.752) is so large. 

 
 

2.3.2 Xilinx ML501 FPGA Platform 

The platform’s specifications are shown in Table 2.4. The Xilinx MicroBlaze processor 

was used. It contains the XC5VLX50 FPGA and runs at 125 MHz. 

Table 2.4  The Specifications of the Xilinx FPGA Platform 

CPU Microblaze 125MHz 

Memory 256MB 

L1 cache 8KB, 1-way 32-byte line size 

Compiler GNU c compiler 

Compile option -OD(optimization disabled) 
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The running time of the implementation for various matrix sizes is shown in 

Table 2.5.  

Table 2.5  Execution Time (in Seconds) of the Brute-force Implementation on the Xilinx 
FPGA Platform 
 

 

 

 

 

It is shown that the slowdowns are all close to 8. This is because the cache (8KB) 

is too small to hold even the 64 by 64 matrix, which means that for all the cases the cache 

performance is quite similar. Thus, the slowdown is depended on the computation 

complexity.  

 

 

Brute-force Implementation 
Matrix  
Size 

64 128 256 512 1024 

Time Spent 
(sec) 

0.105 0.841 6.717 53.664 429.12 

Slowndown 
 

NA 8.009 7.986 7.989 7.996 
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CHAPTER 3 

BASIC BLOCK-BASED IMPLEMENTATION 

 

The Brute-force implementation repeatedly accesses the whole matrix B, column by 

column. If matrix B cannot fit in the cache, the cache miss rate increases. The cost of the 

cache is much higher than that of the memory, so it cannot be too large. The basic Block-

based method provides a way to access matrix B block by block instead of scanning the 

whole matrix. In this way, a small cache could hold all the needed data in each iteration, 

therefore the cache miss rate decreases even when the matrices are large. 

 

3.1 Introduction 

The chosen Block-based implementation calculates one row of C part by part. The 

process is rather complicated and it will be shown in pictures in the following discussion. 

The basic Block-based algorithm implementation [1] in the C language is: 

for (jj=0; jj<N; jj=jj+K) 
 for (kk=0; kk<N; kk=kk+K)  
  for (i=0; i<N; i=i+1)  
   for (j=jj; j<min(jj+K,N); j++) { 
    sum=0.0; 
    for (k=kk; k<min(kk+K,N); k++)  
     sum+=A[i][k] * B[k][j]; 
    C[i][j] += sum; 
   } 

There are five “for loops” assuming blocks of size K*K. The following pictures 

illustrate the process for 6 * 6 matrices. 

 



 

 
 

10

 

3.1.1 Calculating the First Three Columns of C 
 
In the first iteration: 

C[i][j] = A[i][0] * B[0][j] + A[i][1] * B[1][j] + A[i][2] * B[2][j] 

Calculating a part of the first row of C is shown in Figure 3.1. A light shade means an 

older access and a dark shade means a current access. 

 
Figure 3.1  Calculating a part of the first three elements of the first row of matrix C. 
 

The elements accessed in the whole iteration are shown in Figure 3.2. 

 
Figure 3.2  The first iteration of calculating the first three columns of matrix C. White 
means the data has not been accessed; light gray means completed accesses. 
 

After the shown iteration, the calculation of the first 3 columns of C is not 

completed yet. Only one “layer” of the calculation is finished, which means that only 

some summations have been completed. 

 

In the second iteration: 

C[i][j] = A[i][3] * B[3][j] + A[i][4] * B[4][j] + A[i][5] * B[5][j] 

Calculating a part of one row of C is shown in Figure 3.3. 
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Figure 3.3  Calculating another part of the first three elements of the first row of matrix 
C. 
 

The data accessed in the whole iteration is shown in Figure 3.4. 

 
Figure 3.4  The second iteration of calculating the first three columns of matrix C. White 
means the data has not been accessed; light gray means completed accesses. 
 

3.1.2 Calculating the Other Three Columns of C 

In the first iteration: 

C[i][j] = A[i][0] * B[0][j] + A[i][1] * B[1][j] + A[i][2] * B[2][j] 

 
Figure 3.5  The first iteration of calculating the remaining three columns of matrix C. 
White means the data has not been accessed; light gray means completed accesses. 
 

In the second iteration: 

C[i][j] = A[i][3] * B[3][j] + A[i][4] * B[4][j] + A[i][5] * B[5][j] 
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Figure 3.6  The second iteration of calculating the remaining three columns of matrix C. 
White means the data has not been accessed; light gray means completed accesses. 
 
 
 

3.2 Analysis 

3.2.1 Time Complexity 

There are five “for” loops in this implementation. 

Total number of multiplications = N/K * N/K * N * K * K 

                              = N^3 

where K * K is the block size in matrix B used in each iteration. 

So the time complexity of the basic Block-based implementation is O(N^3). 

 

3.2.2 Cache Performance 

When K < L (cache line size), the data stored in the cache will not be fully used, which is 

not efficient and will not be discussed here. 

When K >= L, Table 3.1 shows the cache misses for different scenarios. 

Take the case of cache size > (2NK+K^2) as an example to explain the cache 

misses. In this case, K columns of matrices C and A as well as K^2 elements of matrix B 

can be in the cache. To calculate K columns of matrix C, the cache misses are  

(K/L) * N = NK/L 
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There are N/K calculations of this type to produce the whole matrix C, so the 

cache misses are  

(NK/L) * N/K = N^2/L 

Table 3.1  Cache Miss Numbers of Basic Block-based Implementation for Various 

Cache Sizes (in Number of Elements) 

          Cache Size 
Matrix Size 

>(2NK+K^2) > K^2+2K > K^2+K 0 

A N^2/L N^3/KL N^3/KL N^3 

B N^2/L N^2/L N^2/L N^3 

C N^2/L N^3/KL N^3/K N^3/K 

Subtotal 3N^2/L 2N^3/KL 

+N^2/L 

N^3/K+N^3/KL 

+N^2/L 

2N^3 

+N^3/K 

 

3.2.3 Memory Consumption 

No extra memory is needed other than storing matrices A, B and C, so the storage needed 

is 3N^3. 

 

3.3 Results 

3.3.1 Intel Xeon Platform 

Table 3.2 shows the time needed for calculating matrices of various sizes for the basic 

Block-based implementation.  

The cache line size is 64 bytes. One cache line stores 16 floating point numbers. 

As discussed above, when K < L memory accesses are less efficient. This is verified in 

Table 3.2. 
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Table 3.2  Execution Time (in Seconds) of the Basic Block-based Implementation on the 

Intel Xeon Platform  

 

As shown in Table 3.2, for large matrices the calculation is the most efficient for 

block sizes 32*32. Table 3.3 takes this case as an example to further illustrate the effect 

of the cache as a function of the matrix size. 

Table 3.3  Execution Time (in Seconds) of the Basic Block-based Implementation on the 

Intel Xeon for K=32 

 

 

When N increases, less data can fit in the cache. As shown in Table 3.1, when  

cache size < (2NK+K^2), the cache misses will increase. For K=32 and N > 64 

16K < 2*N*32*4 + 32*32*4 

This is verified in Table 3.3 for N = 128, where the slowdown is much larger than 

8. Compared to the Brute-force implementation for N > 256, the L1 cache could not hold 

(N+1)L data and cache misses increased. But in the basic Block-based implementation it 

is easy to hold K^2+2K data, and the cache miss rate is kept at a low level. It is verified 

Basic Block-based Implementation 
          Matrix  Size 
Block  Size 

64 128 256 512 1024 2048 

4 0.004130 0.051724 0.298041 2.895 36.908 297.644 
8 0.004972 0.029490 0.253050 2.102 19.530 157.101 
16 0.002773 0.040463 0.236596 1.817 15.030 120.654 
32 0.002677 0.043091 0.227063 1.683 13.470 108.300 
64 0.002651 0.037837 0.206537 1.572 15.737 126.023 

Basic Block-based Implementation 
Matrix  
Size 

64 128 256 512 1024 2048 

Time Spent 
(sec) 

0.002677 0.043091 0.227063 1.683 13.470 108.300 

Slowdown 
 

NA 16.096 5.269 7.412 8.003 8.040 
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from Table 2.3 and Table 3.3 that, for N > 256, the basic Block-based implementation 

takes less time. 

 

3.3.2 Xilinx ML501 FPGA Platform 

Table 3.4 shows the time needed for calculating matrices of various sizes for the basic 

Block-based implementation on Xilinx FPGAs. 

Table 3.4  Execution Time (in Seconds) of the Basic Block-based Implementation on a 

Xilinx FPGA Platform 

Basic Block-Based Implementation 
          Matrix Size 
Block Size 

64 128 256 512 1024 

4 0.066 0.549 4.771 38.322 318.234 
8 0.054 0.457 4.029 32.648 269.376 
16 0.050 0.425 7.126 58.740 481.562 
32 0.049 0.866 6.914 56.025 475.860 
64 0.107 0.852 6.809 55.855 440.815 

 

Take K = 8 as an example. Table 3.5 shows a comparison of execution times. 

Table 3.5  Execution Time (in Seconds) of the Basic Block-based Implementation on the 

Xilinx FPGA Platform for K =8 

Basic Block-Based Implementation 
Matrix  
Size 

64 128 256 512 1024 

Time Spent 
(sec) 

0.054 0.457 4.029 32.648 269.376 

Time Ratio 
 

NA 8.462 8.816 8.103 8.250  

 

The slowdown converges to 8. This is because, as analyzed before, the basic 

block-based implementation’s time complexity is O(N^3). So when N doubles, the 

execution time becomes about 8 times as much. 
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CHAPTER 4 

GOTO’S IMPLEMENTATION 

 

The Goto’s implementation[3] not only decomposes the matrices into blocks in order to 

reduce the cache misses but also takes into account TLB misses. The results show that the 

Goto’s implementation has better performance than the basic Blocked-based 

implementation. 

4.1 Introduction 

4.1.1 Goto’s Block-based Method 

Figure 4.1 shows all possible cases of matrix multiplication for matrices A and B having 

sizes m*k and k*n, respectively, according to the Goto’s classification.  

 
Figure 4.1  All possible shapes of matrix multiplication [taken from 2].

mbrown
Stamp



 

 

17

 

 
Goto’s algorithm tries to find the best way to divide the matrices into blocks. All 

possible block-based approaches are shown in Figure 4.2. 

 
Figure 4.2  All possible methods to break down matrix multiplication [taken from 2]. 
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 Goto’s algorithm chooses the number 2 method to implement the matrix 

multiplication if the matrix is stored in the row-major order. 

 In Figure 4.2, cases 1, 4, 5 and 6 are not TLB friendly in that there are horizontal 

panels (rectangle shape matrix). Every two adjacent accesses of the elements of a 

horizontal panel have a gap of N elements in the memory. This means, when N is large 

every access will cause a TLB miss if there is a cache miss first. 

 Now case 2 and case 3 will be compared. It is observed that, for case 2 in order to 

calculate a layer of C, K columns of matrix A are repeatedly accessed. This gives better 

cache performance especially when K columns of A could fit in the L2 cache. For case 3, 

the whole matrix A is accessed in each outer loop, so the chances of reducing the cache 

miss rate for accessing matrix A is relatively low. 

 
 
 

4.1.2 Calculation Process for Goto’s Algorithm 

First, assume the block-based decomposition of matrices A and B as shown in Figure 4.3, 

 
Figure 4.3  Block-based decomposition of matrices A and B. 

 

Second, calculate C1 which is the first layer of summations of each element in 

matrix C (shown in Figure 4.4). 



 

 

19

 

 
Figure 4.4  Blocking B1 to Calculate C1. 

 

Third, calculate C1 block by block (shown in Figure 4.5 and Figure 4.6), 

 

Figure 4.5  Calculate C11. 

 
Figure 4.6  Calculate C12. 

 

It is noticed that B11 is not stored in contiguous memory. By adjusting the block 

size, the cache miss rate could be reduced, but cache misses could not be avoided 

completely because of conflict and capacity misses. When a miss happens in this case, 

the system will access the TLB table. Because B11 is not in contiguous memory, the 
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possibility of having a TLB miss is high. And the cost of a TLB miss is high. Therefore, 

B11 is copied into contiguous memory in order to reduce cache and TLB misses.  

 

Finally, every layer of C is accumulated to produce the result matrix C (shown in 

Figure 4.7). 

 

Figure 4.7  Adding each layer of C. 

 

4.2 Analysis 

4.2.1 Time Complexity 

It is observed that the number of element multiplications is not reduced. Goto’s algorithm 

only changes the order of multiplications. So the time complexity of Goto’s 

implementation is O(N^3). 

 
 
4.2.2 Cache Performance 

Table 4.1 shows the cache misses for various scenarios. 
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Table 4.1  Cache Miss Numbers of Goto’s Implementation for Various Cache Sizes (in 

Number of Elements) 

          Cache 
Size 
Matrix Size 

>(N^2+NK+K^2) >NK+K^2 > K^2+2K > K^2+K 0 

A N^2/L N^2/L N^3/KL N^3/KL N^3 

B N^2/L N^2/L N^2/L N^2/L N^3 

C N^2/L N^3/KL N^3/KL N^3/K N^3/K 

Subtotal 3N^2/L N^3/KL+ 

2N^2/L 

2N^3/KL 

N^2/L 

N^3/K+ 

N^3/KL+N^2/L 

2N^3 

+N^3/K 

 

Take the case of cache size > (K^2 + 2K) as an example to explain the cache miss 

calculation. In this case, K elements of C, K elements of A and K * K elements of B are 

in the cache. To calculate one layer of C, the cache misses for matrix B are: 

(K^2/L) * N/K = NK/L 

  There are N/K layers of C to be calculated, so the total number of cache misses 

for matrix B is: 

(NK/L) * N/K = N^2/L 

  

4.2.3 Memory Consumption 

 No extra memory is needed other than storing matrices A, B and C, so the storage 

needed is 3N^3. 
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4.3 Results 

4.3.1 Intel Xeon Platform 

Table 4.2 shows the time needed for calculating matrices of various sizes for Goto’s 

implementation. 

Table 4.2  Execution Time (in Seconds) of the Goto’s Implementation on the Intel Xeon 

Platform 

 

The performance is overall stable and better than that for the basic Block-based 

implementation. Table 4.3 shows the slowdown as a function of the matrix size for 32*32 

blocks. 

 
Table 4.3  Execution Time (in Seconds) of the Goto’s Implementation on the Intel Xeon 

for K=32 

 

 
The slowdown is always around 8. This is because the time complexity is O(N^3) 

which is analyzed in Section 4.2.1. 

 

Goto’s  Implementation 
          Matrix Size 
Block Size 

64 128 256 512 1024 2048 

4 0.002912 0.031643 0.196508 1.492234 11.565 90.610 
8 0.003932 0.022385 0.191102 1.453994 11.486 90.126 
16 0.003226 0.025004 0.200335 1.466154 11.504 90.230 
32 0.002824 0.022765 0.196912 1.457312 11.495 90.709 
64 0.002831 0.027742 0.190376 1.445694 11.480 90.626 

Goto’s  Implementation 
Matrix  
Size 

64 128 256 512 1024 2048 

Time Spent 
(sec) 

0.002824 0.022765 0.196912 1.457312 11.495 90.709 

Slowdown 
 

NA 8.061 8.649 7.400 7.887 7.891 
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4.3.2 Xilinx ML501 FPGA Platform 

Table 4.4 shows results for the Goto’s implementation on a MicroBlaze processor 

embedded in a Xilinx FPGA. 

 

Table 4.4  Execution Time (in Seconds) of Goto’s Implementation on the Xilinx FPGA 

Platform 

Goto’s Implementation 
          Matrix Size 
Block Size 

64 128 256 512 1024 

4 0.055 0.476 4.410 34.452 270.092 
8 0.054 0.472 4.335 32.975 264.281 
16 0.054 0.468 4.639 36.827 295.163 
32 0.054 0.517 4.625 38.321 317.821 
64 0.075 0.516 4.618 37.385 300.296 

 

 The performance is relatively stable and better than that of the basic Block-based 

implementation. Take block size = 8 as an example to examine the slowdowns in Table 

4.5. 

Table 4.5  Execution Time (in Seconds) of Goto’s Implementation on the Xilinx FPGA 

Platform for K =8 

Goto’s Implementation 
Matrix  
Size 

64 128 256 512 1024 

Time Spent 
(sec) 

0.054 0.472 4.335 32.975 264.281 

Slowdown 
 

NA 8.740 9.184 7.606 8.014 

 

The slowdown is close to 8. 
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CHAPTER 5 

STRASSEN’S IMPLEMENTATION   

 

The previous algorithms all have time complexity of O(N^3). Strassen’s algorithm has 

time complexity of O(N^2.807). It is a recursive algorithm and in each iteration it divides 

each matrix into four sub-matrices. The result will be calculated by sub-matrix 

multiplications. 

 

5.1 Introduction 

First, matrix multiplication could be implemented recursively. For example, A, B and C 

are N*N matrixes and C = A*B. 

C =  , A = , B =  

The sub-matrices of C could be calculated using the sub-matrices of A and B as 

follows: 

r = ae + bg 

s = af + bh 

t = ce + dg 

u = cf + dh 

 There are 8 sub-matrix multiplications. Each multiplication is done in the same 

way until the sub-matrix contains only one element.  

The time complexity is: 

T(n) = 8T(N/2) + O(N^2)



 

 
  

25

Resolving the recurrence, it gives us: 

T(N) = O(N^3) 

 The time complexity of the recursive version of matrix multiplication is still 

O(N^3). However, Strassen found a way to reduce one sub-matrix multiplication in each 

iteration. The process is as follows: 

         1) Caculate s: 

let P1 = a ( f – h ) = af – ah 

let P2 = ( a + b ) h = ah + bh 

s = P1 + P2  = af + bh 

        2) Caculate t: 

let P3 = ( c + d ) e = ce + de 

let P4 = d ( g – e ) = dg – de 

t = P3 + P4  = ce + dg 

  3) Caculate r: 

let P5 = ( a + d ) ( e + h) = ae + ah + de + dh 

let P6 = ( b – d ) ( g + h ) = bg + bh – dg – dh 

r = P5 + P4 – P2 + P6 = ae + bg 

  4) Caculate u: 

let P7 = ( a – c ) ( e + f ) = ae + af – ce - cf 

u = P5 + P1 – P3 – P7 = cf + dh 

 P1 to P7 are intermediate sub-matrices. They are produced by 7 sub-matrix 

multiplications. 

The process is shown in Figure 5.1 to Figure 5.3. 
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Figure 5.1  Sub-matrices of A and B. 

Seven intermediate sub-matrices are produced: 

 

Figure 5.2  Calculate intermediate sub-matrices P1 to P7. 

To calculate the result matrix C: 

 

Figure 5.3  Calculate matrix C from sub-matrices P1 to P7. 
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5.2 Analysis 

5.2.1 Time Complexity 

There are seven multiplications of sub-matrices in each iteration, so 

T(N) = 7T(N/2) + O(N^2) 

Resolving the recurrence, we get 

T(N) = O(N^lg2
7) = O(N^2.807) 

 
 

5.2.2 Cache Performance 

It is observed from the process followed by Strassen’s algorithm that the memory 

accesses are quite scattered, so the cache performance is not good. 

 

5.2.3 Memory Consumption 

Strassen’s is a recursive algorithm. In iteration i, except the last one, it needs 17 

intermediate N/2i by N/2i matrices. When the function returns, the intermediate memory 

will be freed. There are log2
N/K iterations. Therefore, the memory needed could be 

calculated as follows: 

Memory = 3N^2 + 17((N/2)^2 + (N/4)^2 +…+ K^2)  

= 3N^2 + (17N^2/3)(1-(K/N)^2) 

 (in elements) 

When K/N is small: 

Memory = 3N^2 + (17N^2/3) 

= 8.7 * N^2 

 So it needs 2.9 times the memory of the previous algorithms. 
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5.2.4 Disadvantages 

Strassen’s algorithm does not have stable performance. If N is not a power of 2, matrices 

A , B and C will be padded to make their sizes powers of 2. This means extra memory 

and computing time. In the worst case, N increases by 1, the computing complexity 

increases six times and the memory consumption increases three times. 

 

5.3  Results 

In the actual implementation, it was found that it is inefficient for the algorithm to go 

recursively down to a sub-matrix with one element. So a minimum block size is defined. 

If the sub-matrix is smaller than the minimum block, the matrix multiplication is 

implemented using the Brute-force algorithm. Various minimum block sizes were tried 

and the performance of the algorithm is shown in the following sections. 

 
 
 
5.3.1 Intel Xeon platform 

Table 5.1 shows the time needed for calculating matrices of various sizes for Strassen’s 

algorithm. 

Table 5.1  Execution Time (in Seconds) of the Strassen’s Implementation on the Intel 

Xeon Platform 

 

Strassen’s  Implementation 
          Matrix  Size 
Block  Size 

64 128 256 512 1024 2048 

4 0.007765 0.058314 0.389617 2.702897 19.372 132.834 
8 0.004404 0.038448 0.251321 1.708744 11.963 82.893 
16 0.003736 0.027557 0.213323 1.461209 10.102 70.350 
32 0.005010 0.037459 0.202927 1.416484 10.004 69.778 
64 0.004127 0.028823 0.208687 1.499320 10.429 72.877 
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The performance is better than Goto’s algorithm. Take block size = 32 as an 

example to examine the figures for slowdowns and memory consumptions, as shown in 

Table 5.2. 

 

Table 5.2  Execution Time (in Seconds) of the Strassen’s Implementation on the Intel 

Xeon for K=32 

 

The slowdown is close to 7 independent of the matrix size. It is consistent with 

the time complexity of O(N^2.807).  

The memory expansion is defined as follows:  

 

 The memory expansions observed in Table 5.2 have values close to but less than 

the theoretical 2.9. This is because the calculation in the previous section does count 

other memory consumptions, like local variables. 

 

 

Strassen’s Implementation 
Matrix  
Size 

64 128 256 512 1024 2048 

Time Spent 
(sec) 

0.005010 0.037459 0.202927 1.416484 10.004 69.778 

Slowdown 
 

- 7.476 5.417 6.980 7.062  6.975 

Memory 
Consumption 

- - 1.084M 6.876M 31.120M 121.8M 

Size of three 
Matrices 

- - 0.768M 3M 12M 48M 

Memory 
Expansion 

- - 1.41 2.29 2.59 2.54 
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5.3.2 Xilinx ML501 FPGA Platform 

Table 5.3 shows the time needed for calculating matrices of various sizes with Strassen’s 

algorithm. 

Table 5.3  Execution Time (in Seconds) of Strassen’s Implementation on the Xilinx 

FPGA Platform 

Strassen’s Implementation 
          Matrix Size 
Block Size 

64 128 256 512 1024 

4 0.074 0.560 4.069 29.075 210 
8 0.056 0.436 3.202 23.011 170 
16 0.053 0.410 3.038 21.855 155 
32 0.052 0.441 3.234 23.224 165 
64 0.127 0.935 6.691 51 334 

 

The performance is better than Goto’s algorithm.  

When the block size is 16*16, the slowdowns are shown in Table 5.4. 

Table 5.4  Execution Time (in Seconds) of Strassen’s Implementation on the Xilinx 

FPGA Platform for K=16 

Strassen’s Implementation 
Matrix  
Size 

64 128 256 512 1024 

Time Spent 
(sec) 

0.053 0.410 3.038 21.855 155 

Slowdown 
 

NA 7.735 7.409 7.193 7.092 

 

The slowdown is always close to 7. It is consistent with the theoretical analysis. 
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CHAPTER 6 

MKL IMPLEMENTATION 

 

6.1 Introduction 

MKL is Intel’s Math Kernel Library [10]. It is an optimized library for math. There are 

several aspects of optimization. 

1) Multithreading. MKL puts emphasis on multithreaded optimization for 

multicores. 

2) SIMD instructions. Execute in parallel using Intel’s SIMD instruction extensions 

(SSE) which operate on eight 128-bit vector registers. 

3) Assembly. Writing kernel functions in assembly. Carefully arrange instructions to 

reduce stalls. 

4) Cache. Increase cache performance by blocking in order to improve both the 

spatial and temporal localities for better data accesses. 
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6.2 Results 

Table 6.1 shows the execution results for MKL’s MM implementation 

Table 6.1  Execution Time (in Seconds) of the MKL’s MM Implementation on the Intel 

Xeon Platform 

 

The slowdown keeps getting closer to 8 with increases in the matrix size. And the 

memory expansion becomes close to 1. This implies that MKL is not using Strassen’s 

algorithm but a block-based algorithm, otherwise the memory expansion will not be close 

to 1. 

 

 

 

MKL’s MM  Implementation 
Matrix  
Size 

64 128 256 512 1024 2048 4096 

Time Spent 
(sec) 

0.02705
1 

0.00123
1 

0.00431
0 

0.03038
2 

0.328 2.516 20.00 

Slowdown 
 

NA 0.045 3.501 7.049 10.7 7.7 7.9 

Memory 
Consumption 
(MB) 

14.500 14.548 14.748 14.992 15.000 64.2 212.2 

Size of the 3 
Matrices 
(MB) 

0.048 0.192 0.768 3 12 48 192 

Memory 
Expansion 

302.08 75.77 19.2 5.0 1.25 1.34 1.11 
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  CHAPTER 7 

ACCELERATION USING VECTOR CO-PROCESSOR 

 

7.1 Hardware Architecture 

Figure 7.1 shows an in-house developed (at CAPPL laboratory) vector co-processor (VP) 

computing platform [12] [13]. The scalar CPU is a Xilinx MicroBlaze (125MHz). The 

CPU issues vector instructions to the VP. The VP loads data from the vector memory 

(VM) into the VP vector register(s), carries out computations and then, stores the results 

back into the VM. The CPU is responsible to transfer data from the off-chip DDR 

memory to the vector memory through DMA transfers before the computations, and from 

the vector memory to the DDR memory after the computations.  

 

Figure 7.1  Vector processor computing platform architecture [taken from 12]. 
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7.2 Calculation Process 

The fundamental operation used is SAXPY (Single-precision real Alpha X Plus Y: 

z=αx+y), which is a combination of scalar multiplication and vector addition in 

computations with vector processors. In order to use vector instructions, the matrix 

multiplication operation needs to be conducted in a different way than the traditional one. 

The calculation process is as follows. 

Figure 7.2 shows that C1 (sub-matrix of C) is calculated from A1 (sub-matrix of 

A) and B, C2 from A2 and B, and so on.  

 

Figure 7.2  Partitioning matrices A and C for VP-based MM. 

Figure 7.3 shows that C1 is actually calculated as A1*B. 

 

Figure 7.3  C1 is calculated as A1 * B. 

 Figure 7.4 shows how the columns of A1 are multiplied with the rows in matrix 

B. The first column of A1 is multiplied with the first row from B, to produce one layer of 

C1. The second column of A1 is multiplied with the second row from B, and the results 

are accumulated to C1. This procedure repeats until the final C1 is produced. 
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Figure 7.4  Partitioning A1 and B. 

 Figure 7.5 shows that how one column of elements of A1 is multiplied with one 

row of elements of B. One row of elements of B is divided in to several sections. The 

section size is the chosen vector length. The vector length is the number of elements that 

can be processed by one vector instruction. Before the calculation, B1 is transferred from 

the DDR memory to vector memory. To overlap computations with data transfers, when 

the computation happens on B1, B2 is being transferred to the vector memory.  

 

Figure 7.5  Partitioning of C1. 

 Figure 7.6 shows how C11 is produced. The first element of A11 is multiplied 

with B11 to produce the first row of C11. The second element of A11 is multiplied with 

B11 to produce the second row of C11, and so on.  

 

Figure 7.6  Partitioning C11. 
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7.3 Analysis 

7.3.1  Time Complexity 

 The number of multiplications of elements is not reduced. The time complexity is 

still O(N^3). However, in a vector processor, all lanes (processing units) in the VP can 

conduct element multiplication simultaneously. Thus, the speedup depends on the 

number of lanes. In this experiment, the number of lanes is eight. So the expected 

speedup is 8. 

7.3.2  Memory Consumption 

 No extra memory in the DDR is needed, so the memory consumption is still 

3*N^2 elements. 

 

7.4 Results 

Tables 7.1 and 7.2 show the performance of matrix multiplication on the VP platform 

(125MHz). The vector length determines how many elements can be loaded into the VP 

at one time. Compared to other methods that were tested previously, the speedup is 

substantial. 

 

Table 7.1  Execution Time (in seconds) of Matrix Multiplication on the VP Platform 

                              Matrix Size 

Vector Length 

1024 

32 6.325 

128 3.141 
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Table 7.2  Execution Time (in million clock cycles) of Matrix Multiplication on the VP 
Platform 

                              Matrix Size 

Vector Length 

1024 

32 809.6 

128 402.0 
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  CHAPTER 8 

PERFORMANCE COMPARISONS 

 

The previous chapters presented the algorithms’ performance individually and the 

implementations were compiled by disabling the optimizations. This chapter presents 

thorough performance results in various scenarios. 

 

8.1 Intel Xeon Platform 

 

8.1.1 Optimization Disabled (OD) 

The comparison is shown in Table 8.1. K*K is the block size in number of elements. 

Table 8.1  Execution Time (in Seconds) of All the Implementations on the Intel Xeon 

Platform with Compiling Optimization Disabled 

 

 Compiler optimizations are disabled to provide a baseline reference. In reality, 

some degree of optimization will be specified. Table 8.1 shows that Strassen’s 

implementation runs slightly faster than Goto’s for large matrix multiplications. 

          Matrix  Size 
Algorithm 

64 128 256 512 1024 2048 

Brute-force 0.002336 0.029708 0.253991 2.684 63.753 537.389 
Basic Block-
based (K=32) 

0.002677 0.043091 0.227063 1.683 13.470 108.300 

Goto’s (K=8) 0.003932 0.022385 0.191102 1.453994 11.486 90.126 
Strassen’s 
(K=32) 

0.005010 0.037459 0.202927 1.416484 10.004 69.778 

MKL 0.027051 0.001231 0.004310 0.030382 0.328 2.516 
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8.1.2 Full Optimization (O3) 

The comparison is shown in Table 8.2. K*K is the block size in number of elements. 

Table 8.2  Execution Time (in Seconds) of All the Implementations on the Intel Xeon 

Platform with Full Optimization (O3) [11] 

 

 Table 8.2 shows that when compiling with the O3 option, Goto’s implementation 

runs faster than Strassen’s algorithm and produces results even close to those of MKL. 

This shows that when the computation becomes faster, the bottleneck results from 

memory accesses. 

 

8.2 Xilinx FPGA Platform 

The comparison is shown in Table 8.1. K is the block size in number of elements. 

 Table 8.3 shows that the vector processor speeds up the computation drastically. It 

also shows that Strassen’s implementation runs faster than the Goto’s implementation. 

This is because when the processor is slow (125MHz for our FPGA implementation), the 

algorithm’s time complexity is more influential than the memory access efficiency. 

 

          Matrix  Size 
Algorithm 

64 128 256 512 1024 2048 

Brute-force 0.000416 0.006999 0.080045 1.246206 61.403 491.611 
Basic Block-
based (K=32) 

0.000658 0.006737 0.044589 0.395463 3.054 24.686 

Goto’s (K=64) 0.000350 0.004166 0.015871 0.116762 0.870 7.477 
Strassen’s 
(K=16) 

0.001003 0.008999 0.065826 0.391564 2.661 18.565 

MKL 0.050691 0.001343 0.004440 0.030711 0.200172 1.523986 
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Table 8.3  Execution Time (in Seconds) of All the Implementations on the Xilinx FPGA 

Platform with and without the VP 

          Matrix Size 
Algorithm 

64 128 256 512 1024 

Brute-force 0.105 0.841 6.717 53.664 429.12 
Basic Block-
based (K=8) 

0.054 0.457 4.029 32.648 269.376 

Goto’s (K=8) 0.054 0.472 4.335 32.975 264.281 
Strassen’s 
(K=16) 

0.053 0.410 3.038 21.855 155 

Vector 
Processor 

- - - - 3.141 

 

 

8.3 MKL vs. VP 

MKL was tested on the Intel Xeon platform which has a much higher clock frequency 

than the VP platform. In order to compare the performance of MKL and VP, the 

execution time is recorded in clock cycles. The result is shown in Table 8.4. 

Table 8.4  Execution Time (in million clock cycles) of MM using MKL and the VP 

                              Matrix Size 

Method 

1024 

MKL 640.5 

VP 402.0 

  

The result shows that the VP consumes fewer clock cycles than MKL.  
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CHAPTER 9 

CONCLUSIONS 

 

In terms of time complexity: Strassen’s matrix multiplication algorithm has time 

complexity of O(N^2.807). The Brute-force, basic Block-based, Goto’s algorithm and VP 

implementation all have time complexity of O(N^3). In terms of memory accesses: the 

basic Block-based and Goto’s algorithm improve the cache performance by blocking, 

which improves data access locality. Other than that, Goto’s algorithm improves the TLB 

performance by copying kernel blocks into contiguous memory. The Brute-force and 

Strassen’s algorithms have inferior cache performance due to poor data locality. The 

results show that when the CPU is fast, Goto’s algorithm runs faster than Strassen’s 

algorithm because the data access speed is the bottleneck in this case. On the contrary, 

when the CPU is slow, Strassen’s algorithm runs faster because the computation 

complexity becomes the key factor in this case. Finally, the results show that SIMD 

platforms, such as the Intel Xeon with instruction extensions and the in-house developed 

VP (Vector Processor) for FPGA prototyping, matrix multiplication is accelerated 

substantially. In fact, the results show that the VP runs much faster than MKL (Intel’s 

optimized Math Kernel Library) because the VP has can take advantage of much larger 

vector lengths while its overheads are negligible. 
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APPENDIX 

C SOURCE CODE 

Here is all the source code implemented. 

//config.h 

#ifndef __CONFIG_H__ 

#define __CONFIG_H__ 

 

#define EN_THR 

#define EN_BLK 

#define EN_GOTO 

#define EN_STRSN 

#define EN_MKL 

 

/* define DEBUG to use simpler initialized matrix value */ 

#define DEBUG 

//#define PRT_MALLOC 

 

//#define PRT_MTX 

#define PRT_LIGHT 

 

#ifdef PRT_LIGHT 

 #define PRT_SIZE 4 

#else 

 #define PRT_SIZE mtx_sz 

#endif 

 

//#define EN_CHK 

//#define CTN_ERR 
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#define MTX_SIZE 64 

#define B_SZ 4 

#define GOTO_BL_SZ 4 

#define STRSN_BL_SZ 4 

 

#define MAX_MTX_SIZE 2048 

#define MAX_B_SZ 64 

#define MAX_GOTO_BL_SZ 64 

#define MAX_STRSN_BL_SZ 64 

 

#define TEST_SIZE 2 

 

 

//Strassen's 

//#define MY_MALLOC 

#define EN_FREE 

 

#define MALLOC_BASE (XPAR_DDR2_SDRAM_MPMC_BASEADDR + 0x01000000) 

 

#define A_MTX_BASE  XPAR_DDR2_SDRAM_MPMC_BASEADDR 

#define B_MTX_BASE  (XPAR_DDR2_SDRAM_MPMC_BASEADDR + 0x00400000) 

#define C_MTX_BASE  (XPAR_DDR2_SDRAM_MPMC_BASEADDR + 0x00800000) 

#define TST_MTX_BASE  (XPAR_DDR2_SDRAM_MPMC_BASEADDR + 0x00C00000) 

 

/* if define "CLOCK", it will use millisecond clock, otherwise high precision.*/ 

//#define CLOCK 

#endif 

 

//misc.h 
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#ifndef __MISC_H__ 

#define __MISC_H__ 

#include <malloc.h> 

#include "config.h" 

 

#define min(a,b) ((a)<(b)?(a):(b)) 

#define max(a,b) ((a)>(b)?(a):(b)) 

 

char* malloc_li(unsigned int size); 

 

int free_li(char *p, unsigned int size); 

 

void init_mtxs(float *DDR_A_mtx, float *DDR_B_mtx, float *DDR_C_mtx, unsigned int mtx_sz); 

 

void blocking_mm(float *DDR_A_mtx, float *DDR_B_mtx, \ 

      float *DDR_C_mtx, unsigned int mtx_sz,\ 

      unsigned int B); 

       

int cmp_mtx(float *A, float *B, unsigned int mtx_sz); 

 

void printm(float *A, int lda, int n); 

 

void resetm(float *A, unsigned int mtx_sz); 

       

void goto_sgemm(float *A, int lda,\ 

    float *B, int ldb,\ 

    float *C, int ldc, \ 

    int Msz, int blk_size); 

       

void stra_sgemm(  float *A,   int lda,   float *B,   int ldb, float *C,   int ldc,   \ 
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    int n, unsigned int strsn_blsz); 

     

double clock_it(void); 

 

void thr_for_loop(float *DDR_A_mtx, float *DDR_B_mtx, float *DDR_C_mtx, unsigned int mtx_sz); 

 

#endif 

 

 

 

//goto_blas.c 

#include "config.h" 

#include "misc.h" 

 

 

/* 

  * Block multiply Panel. 

  */ 

static void sgebp(float *A, int lda,\ 

    float *B, int ldb,\ 

    float *C, int ldc, \ 

    int Msz, int blk_size) 

{ 

 float *a; 

 unsigned int bs = blk_size * blk_size; 

 int m, k, n, lixa, lixb, lixc, lixA; 

  

 

 //copy A to continuous memory 

#ifdef MY_MALLOC 
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 a = (float*)malloc_li(bs*sizeof(float)); 

#else 

 a = (float*)malloc(bs*sizeof(float)); 

#endif 

 

 

 

 for(m=0; m < blk_size; m++){ 

  lixA = m*lda; 

  lixa = m*blk_size; 

  for(k=0; k < blk_size; k++){ 

   *(a + lixa + k) = *(A + lixA + k); 

  } 

 } 

 

 //normal MM mutliplication 

 for(k=0; k < blk_size; k++){ 

  for(m=0; m <blk_size; m++){ 

   lixa=m*blk_size; 

   lixb=k*ldb; 

   lixc=m*ldc; //line index 

   for(n=0; n <Msz; n++) 

    *(C+ lixc +n) += *(a + lixa + k) * *(B + lixb + n); 

  } 

 } 

#ifdef MY_MALLOC 

 free_li((char *)a, bs*sizeof(float)); 

#else 

 free(a); 

#endif 
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} 

 

 

/* 

  * Panel multiply Panel. 

  */ 

static void sgepp(float *A, int lda,\ 

    float *B, int ldb,\ 

    float *C, int ldc, \ 

    int Msz, int blk_size) 

{ 

 int N = Msz/blk_size; 

 int i = 0; 

 float *Ax = A; 

 float *Cx = C; 

 int idxGapA = lda * blk_size; 

 int idxGapC = ldc * blk_size; 

 for( i = 0; i < N; i++) { 

  sgebp(Ax, lda,\ 

    B,  ldb,\ 

    Cx,  ldc, \ 

    Msz,  blk_size); 

  Ax += idxGapA; 

  Cx += idxGapC; 

 } 

} 

 

 

/* 

  * Matrix multiply Matrix. 
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  */ 

void goto_sgemm(float *A, int lda,\ 

    float *B, int ldb,\ 

    float *C, int ldc, \ 

    int Msz, int blk_size) 

{ 

 int N, i; 

 int idxGapA, idxGapB; 

 float *Ax, *Bx; 

 blk_size = blk_size < Msz ? blk_size : Msz; 

 N = Msz/blk_size; 

 Ax = A; 

 Bx = B; 

 idxGapA = blk_size; 

 idxGapB = ldb * blk_size; 

 for( i = 0; i < N; i++) { 

  sgepp(Ax, lda,\ 

    Bx,  ldb,\ 

    C,  ldc, \ 

    Msz,  blk_size); 

  Ax += idxGapA; 

  Bx += idxGapB; 

 } 

} 

 

 

 

//main.c 

/* 

 * Xilinx EDK 12.3 EDK_MS3.70d 
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 * 

 * This file is a sample test application 

 * 

 * This application is intended to test and/or illustrate some  

 * functionality of your system.  The contents of this file may 

 * vary depending on the IP in your system and may use existing 

 * IP driver functions.  These drivers will be generated in your 

 * XPS project when you run the "Generate Libraries" menu item 

 * in XPS. 

 * 

 * Your XPS project directory is at: 

 *    D:\Programs\Xilinx\FALL_11\mb_board_test_v01\ 

 */ 

 

 

// Located in: microblaze_0/include/xparameters.h 

#include <stdio.h> 

#include<malloc.h> 

#include <time.h> 

#include <mkl_blas.h> 

#include <windows.h> 

 

#include "config.h" 

#include "misc.h" 

 

#ifdef MY_MALLOC 

 extern unsigned int malloc_current ; 

 extern unsigned int malloc_base; 

 extern unsigned int malloc_high; 

#endif 
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//==================================================== 

 

int main (void) { 

 unsigned int mtx_sz; 

 

#ifdef EN_BLK 

 unsigned int B; 

#endif 

 

#ifdef EN_GOTO 

 unsigned int goto_blsz; 

#endif 

 

#ifdef EN_STRSN 

 unsigned int strsn_blsz; 

#endif 

 

#ifdef EN_MKL 

 const float alpha = 1; 

 const float beta = 0; 

 const char transa='t'; 

 const char transb='t'; 

#endif 

 

 int re; 

 float* DDR_A_mtx; 

 float* DDR_B_mtx; 

 float* DDR_C_mtx; 

 float* DDR_T_mtx; 
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 double execTime; 

 

#ifdef CLOCK 

 double startTime, endTime; 

#else 

 LARGE_INTEGER nFreq; 

 LARGE_INTEGER nBeginTime; 

 LARGE_INTEGER nEndTime; 

 double nCycles; 

 QueryPerformanceFrequency(&nFreq); 

#endif 

 

#ifdef MY_MALLOC 

 malloc_base = (unsigned int)malloc(256*1024*1024);//256M memory 

 malloc_current = malloc_base; 

 malloc_high = malloc_base + 256*1024*1024 - 1; 

#endif 

 

 for(mtx_sz = MTX_SIZE; mtx_sz <= MAX_MTX_SIZE; mtx_sz *= 2) 

 { 

 DDR_A_mtx = (float *)malloc(sizeof(float) * mtx_sz * mtx_sz); 

 DDR_B_mtx = (float *)malloc(sizeof(float) * mtx_sz * mtx_sz); 

 DDR_C_mtx = (float *)malloc(sizeof(float) * mtx_sz * mtx_sz); 

 DDR_T_mtx = (float *)malloc(sizeof(float) * mtx_sz * mtx_sz); 

  

 init_mtxs(DDR_A_mtx, DDR_B_mtx, DDR_C_mtx, mtx_sz); 

 resetm(DDR_T_mtx, mtx_sz); 

  

#ifdef PRT_MTX 
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 printf("A:\r\n"); 

 printm(DDR_A_mtx,mtx_sz ,PRT_SIZE); 

 printf("B:\r\n"); 

 printm(DDR_B_mtx,mtx_sz ,PRT_SIZE); 

 printf("C:\r\n"); 

 printm(DDR_C_mtx,mtx_sz ,PRT_SIZE); 

#endif 

 

#ifdef EN_THR 

 {//Algorithm 1 

 printf("\n---------- 3-for-loop:\r\n"); 

 printf("Matrix size = %d\r\n", mtx_sz); 

 printf("START 3-for-loop implementation\r\n"); 

 

#ifdef CLOCK 

 startTime = clock_it(); 

 

 // START PERFOMANCE ROUTINE 

 thr_for_loop(DDR_A_mtx, DDR_B_mtx, DDR_T_mtx, mtx_sz); 

 // END PERFOMANCE ROUTINE 

  

 endTime = clock_it(); 

 execTime = endTime - startTime; 

 printf("Execution time is %3.4f seconds\n", execTime); 

#else 

 QueryPerformanceCounter(&nBeginTime);  

 // START PERFOMANCE ROUTINE 

 thr_for_loop(DDR_A_mtx, DDR_B_mtx, DDR_T_mtx, mtx_sz); 

 // END PERFOMANCE ROUTINE 

 QueryPerformanceCounter(&nEndTime); 
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 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart); 

 execTime =nCycles /(double)nFreq.QuadPart; 

 

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart); 

 printf("Execution takes %.0f cycles\n", nCycles); 

 printf("Execution takes %.9f seconds\n", execTime); 

#endif 

 

  

#ifdef PRT_MTX 

 printf("T:\r\n"); 

 printm(DDR_T_mtx,mtx_sz ,PRT_SIZE); 

#endif 

 printf("END 3-for-loop implementation\r\n"); 

 } 

#endif 

 

#ifdef EN_BLK 

 for(B = B_SZ; B <= MAX_B_SZ; B*=2){ 

 //Algorithm 2 

 resetm(DDR_C_mtx, mtx_sz); 

 printf("\n---------- Blocking algorithm:\r\n"); 

 printf("Matrix size = %d\r\n", mtx_sz); 

 printf("Block size = %d\r\n", B); 

 printf("START blocking implementation\r\n"); 

 

#ifdef CLOCK 

 startTime = clock_it(); 
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 // START PERFOMANCE ROUTINE 

 blocking_mm(DDR_A_mtx, DDR_B_mtx, DDR_C_mtx, mtx_sz, B); 

 // END PERFOMANCE ROUTINE 

  

 endTime = clock_it(); 

 execTime = endTime - startTime; 

 printf("Execution time is %3.4f seconds\n", execTime); 

#else 

 QueryPerformanceCounter(&nBeginTime);  

 // START PERFOMANCE ROUTINE 

 blocking_mm(DDR_A_mtx, DDR_B_mtx, DDR_C_mtx, mtx_sz, B); 

 // END PERFOMANCE ROUTINE 

 QueryPerformanceCounter(&nEndTime); 

 

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart); 

 execTime =nCycles /(double)nFreq.QuadPart; 

 

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart); 

 printf("Execution takes %.0f cycles\n", nCycles); 

 printf("Execution takes %.9f seconds\n", execTime); 

#endif 

  

  

  

#ifdef PRT_MTX 

 printf("C:\r\n"); 

 printm(DDR_C_mtx, mtx_sz,PRT_SIZE); 

#endif 

 

#ifdef EN_CHK 
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 if((re = cmp_mtx(DDR_C_mtx, DDR_T_mtx, mtx_sz)) != -1) 

 { 

  printf("Calculation wrong at row %d, column %d\r\n",re/mtx_sz, re%mtx_sz); 

#ifndef CTN_ERR 

  printf("Abort.\r\n"); 

  return -1; 

#endif 

 } 

 else 

 { 

  printf("Result correct!\r\n"); 

 } 

#endif 

 printf("END blocking implementation\r\n"); 

  

 }//for 

#endif 

  

#ifdef EN_GOTO 

 for(goto_blsz = GOTO_BL_SZ; goto_blsz <= MAX_GOTO_BL_SZ; goto_blsz*=2){ 

 //Algorithm 3 

 resetm(DDR_C_mtx, mtx_sz); 

 printf("---------- GotoBLAS algorithm:\r\n"); 

 printf("Matrix size = %d\r\n", mtx_sz); 

 printf("Block size = %d\r\n", goto_blsz); 

 printf("START GotoBLAS implementation\r\n"); 

#ifdef CLOCK 

 startTime = clock_it(); 

 

 // START PERFOMANCE ROUTINE 
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 goto_sgemm(DDR_A_mtx, mtx_sz, DDR_B_mtx, mtx_sz,DDR_C_mtx, mtx_sz, mtx_sz, 
goto_blsz); 

 // END PERFOMANCE ROUTINE 

  

 endTime = clock_it(); 

 execTime = endTime - startTime; 

 printf("Execution time is %3.4f seconds\n", execTime); 

#else 

 QueryPerformanceCounter(&nBeginTime);  

 // START PERFOMANCE ROUTINE 

 goto_sgemm(DDR_A_mtx, mtx_sz, DDR_B_mtx, mtx_sz,DDR_C_mtx, mtx_sz, mtx_sz, 
goto_blsz); 

 // END PERFOMANCE ROUTINE 

 QueryPerformanceCounter(&nEndTime); 

 

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart); 

 execTime =nCycles /(double)nFreq.QuadPart; 

 

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart); 

 printf("Execution takes %.0f cycles\n", nCycles); 

 printf("Execution takes %.9f seconds\n", execTime); 

#endif 

  

  

#ifdef PRT_MTX 

 printf("C:\r\n"); 

 printm(DDR_C_mtx,mtx_sz,PRT_SIZE); 

#endif 

  

 

#ifdef EN_CHK 
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 if((re = cmp_mtx(DDR_C_mtx, DDR_T_mtx, mtx_sz)) != -1) 

 { 

  printf("Calculation wrong at row %d, column %d\r\n",re/mtx_sz, re%mtx_sz); 

#ifndef CTN_ERR 

  printf("Abort.\r\n"); 

  return -1; 

#endif 

 } 

 else 

 { 

  printf("Result correct!\r\n"); 

 } 

#endif 

 printf("END GotoBLAS implementation\r\n"); 

 } 

#endif 

  

#ifdef EN_STRSN 

 for(strsn_blsz = STRSN_BL_SZ; strsn_blsz <= MAX_STRSN_BL_SZ; strsn_blsz*=2){ 

 resetm(DDR_C_mtx, mtx_sz); 

 //Algorithm 4 

 printf("---------- Strassen:\r\n"); 

 printf("Matrix size = %d\r\n", mtx_sz); 

 printf("Block size = %d\r\n", strsn_blsz); 

 printf("START STRASSEN\r\n"); 

 

#ifdef CLOCK 

 startTime = clock_it(); 

 

 // START PERFOMANCE ROUTINE 
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 stra_sgemm(DDR_A_mtx, mtx_sz, DDR_B_mtx, mtx_sz, DDR_C_mtx, mtx_sz, \ 

   mtx_sz, strsn_blsz); 

 // END PERFOMANCE ROUTINE 

 

 endTime = clock_it(); 

 execTime = endTime - startTime; 

 printf("Execution time is %3.4f seconds\n", execTime); 

#else 

 QueryPerformanceCounter(&nBeginTime);  

 // START PERFOMANCE ROUTINE 

 stra_sgemm(DDR_A_mtx, mtx_sz, DDR_B_mtx, mtx_sz, DDR_C_mtx, mtx_sz, \ 

  mtx_sz, strsn_blsz); 

 // END PERFOMANCE ROUTINE 

 QueryPerformanceCounter(&nEndTime); 

 

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart); 

 execTime =nCycles /(double)nFreq.QuadPart; 

 

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart); 

 printf("Execution takes %.0f cycles\n", nCycles); 

 printf("Execution takes %.9f seconds\n", execTime); 

#endif 

  

 

 

#ifdef PRT_MTX 

 printf("C:\r\n"); 

 printm(DDR_C_mtx,mtx_sz,PRT_SIZE); 

#endif 
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#ifdef EN_CHK 

 if((re = cmp_mtx(DDR_C_mtx, DDR_T_mtx, mtx_sz)) != -1) 

 { 

  printf("Calculation wrong at row %d, column %d\r\n",re/mtx_sz, re%mtx_sz); 

#ifndef CTN_ERR 

  printf("Abort.\r\n"); 

  return -1; 

#endif 

 } 

 else 

 { 

  printf("Result correct!\r\n"); 

 } 

#endif 

 

 printf("END STRASSEN\r\n"); 

 } 

#endif 

 

#ifdef EN_MKL 

 //Algorithm 3 

 resetm(DDR_C_mtx, mtx_sz); 

 printf("---------- MKL library:\r\n"); 

 printf("Matrix size = %d\r\n", mtx_sz); 

 printf("START MKL implementation\r\n"); 

 //using function from MKL. 

 //void sgemm(const char *transa, const char *transb, const MKL_INT *m, const MKL_INT *n, 
const MKL_INT *k, 

 //const float *alpha, const float *a, const MKL_INT *lda, const float *b, const MKL_INT *ldb, 

 //const float *beta, float *c, const MKL_INT *ldc); 

#ifdef CLOCK 
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 startTime = clock_it(); 

 //result = alpha * A * B + beta * C 

 sgemm(&transa, &transb, &mtx_sz, &mtx_sz, &mtx_sz, 

  &alpha, DDR_A_mtx, &mtx_sz, DDR_B_mtx, &mtx_sz, 

  &beta, DDR_C_mtx, &mtx_sz); 

 endTime = clock_it(); 

 execTime = endTime - startTime; 

 printf("Execution takes %3.4f seconds\n", execTime); 

#else 

 QueryPerformanceCounter(&nBeginTime);  

 //result = alpha * A * B + beta * C 

 sgemm(&transa, &transb, &mtx_sz, &mtx_sz, &mtx_sz, 

  &alpha, DDR_A_mtx, &mtx_sz, DDR_B_mtx, &mtx_sz, 

  &beta, DDR_C_mtx, &mtx_sz); 

 QueryPerformanceCounter(&nEndTime); 

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart); 

 execTime =nCycles /(double)nFreq.QuadPart; 

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart); 

 printf("Execution takes %.0f cycles\n", nCycles); 

 printf("Execution takes %.9f seconds\n", execTime); 

 

#endif 

  

 

#ifdef PRT_MTX 

 printf("C:\r\n"); 

 printm(DDR_C_mtx,mtx_sz,PRT_SIZE); 

#endif 

 

#ifdef EN_CHK 
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 if((re = cmp_mtx(DDR_C_mtx, DDR_T_mtx, mtx_sz)) != -1) 

 { 

  printf("Calculation wrong at row %d, column %d\r\n",re/mtx_sz, re%mtx_sz); 

#ifndef CTN_ERR 

  printf("Abort.\r\n"); 

  return -1; 

#endif 

 } 

 else 

 { 

  printf("Result correct!\r\n"); 

 } 

#endif 

 printf("END MKL implementation\r\n"); 

#endif 

 

 free(DDR_A_mtx); 

 free(DDR_B_mtx); 

 free(DDR_C_mtx); 

 free(DDR_T_mtx); 

 }//outer most "for"  

  

 printf("-- Exiting main()--\r\n"); 

  

   return 0; 

} 

 

 

//strassen.c 

#include <stdio.h> 
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#include "misc.h" 

#include "config.h" 

 

//singel precision general matrix-matrix addition 

//'ld' is leading dimenstion, for example, for submatrix in A[m][n], their leading dimension is 'm'. 

void sgema(float *A, int lda, float *B, int ldb, float *C, int ldc, int n) 

{ 

 int i,j; 

 for(i=0; i < n; i++) 

 { 

  for(j=0; j < n; j++) 

  { 

   *(C + i*ldc + j) = *(A + i*lda + j) + *(B + i*ldb + j); 

  } 

 } 

} 

 

//singel precision general matrix-matrix substraction 

void sgems(float *A, int lda, float *B, int ldb, float *C, int ldc, int n) 

{ 

 int i,j; 

 for(i=0; i < n; i++) 

 { 

  for(j=0; j < n; j++) 

  { 

   *(C + i*ldc + j) = *(A + i*lda + j) - *(B + i*ldb + j); 

  } 

 } 

} 
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//matrix-matrix multiplication 

void stra_sgemm(  float *A,   int lda,   float *B,   int ldb, float *C,   int ldc,   \ 

    int n, unsigned int strsn_blsz) 

{ 

 //print("Entering sgemm.\r\n"); 

 if( n <= strsn_blsz) 

 { 

  int i,j,k; 

  for( i=0; i<n; i++ ) 

  { 

   for( j=0; j<n; j++ ) 

   { 

    *(C + i*ldc +j) = 0; 

    for( k=0; k<n; k++ ) 

    { 

     *(C + i*ldc +j) += *(A + i*lda +k) * *(B + k*ldb + j); 

    } 

   } 

  } 

 } 

 else 

 { 

  int ldm = n/2; 

  float *a,*b,*c,*d; 

  float *e,*f,*g,*h; 

  float *r,*s,*t,*u; 

#ifdef MY_MALLOC 

  float *p1 = (float *)malloc_li(sizeof(float) * ldm * ldm);  

  float *p2 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *p3 = (float *)malloc_li(sizeof(float) * ldm * ldm); 
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  float *p4 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *p5 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *p6 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *p7 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

 

  float *A1 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *A2 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *A3 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *A4 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *A5 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *B5 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *A6 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *B6 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *A7 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

  float *B7 = (float *)malloc_li(sizeof(float) * ldm * ldm); 

#else 

  float *p1 = (float *)malloc(sizeof(float) * ldm * ldm);  

  float *p2 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *p3 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *p4 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *p5 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *p6 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *p7 = (float *)malloc(sizeof(float) * ldm * ldm); 

 

  float *A1 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *A2 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *A3 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *A4 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *A5 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *B5 = (float *)malloc(sizeof(float) * ldm * ldm); 
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  float *A6 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *B6 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *A7 = (float *)malloc(sizeof(float) * ldm * ldm); 

  float *B7 = (float *)malloc(sizeof(float) * ldm * ldm); 

#endif 

   

  a = A; 

  b = A + ldm; 

  c = A + lda * ldm; 

  d = c + ldm; 

 

  e = B; 

  f = B + ldm; 

  g = B + ldb * ldm; 

  h = g + ldm; 

 

  r = C; 

  s = C + ldm; 

  t = C + ldc * ldm; 

  u = t + ldm; 

 

  //p1 = a * (f - h); 

  sgems(f, ldb, h, ldb, A1, ldm, ldm); 

  stra_sgemm(a, lda, A1, ldm, p1, ldm, ldm, strsn_blsz); 

   

  //p2 = (a + b) * h; 

  sgema(a, lda, b, lda, A2, ldm, ldm); 

  stra_sgemm(A2, ldm, h, ldb, p2, ldm, ldm, strsn_blsz); 

 

  //p3 = (c + d) * e; 
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  sgema(c, lda, d, lda, A3, ldm, ldm); 

  stra_sgemm(A3, ldm, e, ldb, p3, ldm, ldm, strsn_blsz); 

   

  //p4 = d * (g - e); 

  sgems(g, ldb, e, ldb, A4, ldm, ldm); 

  stra_sgemm(d, lda, A4, ldm, p4, ldm, ldm, strsn_blsz); 

 

  //p5 = (a + d) * (e + h); 

  sgema(a, lda, d, lda, A5, ldm, ldm); 

  sgema(e, ldb, h, ldb, B5, ldm, ldm); 

  stra_sgemm(A5, ldm, B5, ldm, p5, ldm, ldm, strsn_blsz); 

 

  //p6 = (b - d) * (g + h); 

  sgems(b, lda, d, lda, A6, ldm, ldm); 

  sgema(g, ldb, h, ldb, B6, ldm, ldm); 

  stra_sgemm(A6, ldm, B6, ldm, p6, ldm, ldm, strsn_blsz); 

 

  //p7 = (a -c ) * (e + f); 

  sgems(a, lda, c, lda, A7, ldm, ldm); 

  sgema(e, ldb, f, ldb, B7, ldm, ldm); 

  stra_sgemm(A7, ldm, B7, ldm, p7, ldm, ldm, strsn_blsz); 

   

  //r = p5 + p4 - p2 + p6; 

  sgema(p5, ldm, p4, ldm, A1, ldm, ldm); 

  sgems(A1, ldm, p2, ldm, A2, ldm, ldm); 

  sgema(A2, ldm, p6, ldm, r, ldc, ldm); 

 

  //s = p1 + p2; 

  sgema(p1, ldm, p2, ldm, s, ldc, ldm); 
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  //t = p3 + p4; 

  sgema(p3, ldm, p4, ldm, t, ldc, ldm); 

 

  //u = p5 + p1 - p3 - p7; 

  sgema(p5, ldm, p1, ldm, A1, ldm, ldm); 

  sgems(A1, ldm, p3, ldm, A2, ldm, ldm); 

  sgems(A2, ldm, p7, ldm, u, ldc, ldm); 

 

 

#ifdef MY_MALLOC 

 

#ifdef EN_FREE //free space  

  //free space 

  free_li((char*)B7, sizeof(float) * ldm * ldm);  

  free_li((char*)A7, sizeof(float) * ldm * ldm); 

  free_li((char*)B6, sizeof(float) * ldm * ldm); 

  free_li((char*)A6, sizeof(float) * ldm * ldm); 

  free_li((char*)B5, sizeof(float) * ldm * ldm); 

  free_li((char*)A5, sizeof(float) * ldm * ldm); 

  free_li((char*)A4, sizeof(float) * ldm * ldm); 

  free_li((char*)A3, sizeof(float) * ldm * ldm); 

  free_li((char*)A2, sizeof(float) * ldm * ldm); 

  free_li((char*)A1, sizeof(float) * ldm * ldm); 

   

  free_li((char*)p7, sizeof(float) * ldm * ldm); 

  free_li((char*)p6, sizeof(float) * ldm * ldm); 

  free_li((char*)p5, sizeof(float) * ldm * ldm); 

  free_li((char*)p4, sizeof(float) * ldm * ldm); 

  free_li((char*)p3, sizeof(float) * ldm * ldm); 

  free_li((char*)p2, sizeof(float) * ldm * ldm); 
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  free_li((char*)p1, sizeof(float) * ldm * ldm); 

#endif 

 

#else 

  free(p1); 

  free(p2); 

  free(p3); 

  free(p4); 

  free(p5); 

  free(p6); 

  free(p7); 

 

  free(A1); 

  free(A2); 

  free(A3); 

  free(A4); 

  free(A5); 

  free(B5); 

  free(A6); 

  free(B6); 

  free(A7); 

  free(B7); 

#endif 

 } 

} 

 

 

//utility.c 

#include <stdio.h> 

#include <time.h> 
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#include "config.h" 

#include "misc.h" 

 

#ifdef MY_MALLOC 

 

unsigned int malloc_current = 0; 

unsigned int malloc_base=0; 

unsigned int malloc_high=0; 

 

char* malloc_li(unsigned int size) 

{ 

 char *ret; 

 ret = (char*)malloc_current; 

 if((malloc_current + size) > malloc_high) 

 { 

  printf("Error: Malloc(), not enough memory.\r\n"); 

  printf("size: %d, current: 0x%x \r\n", size, malloc_current); 

  return 0; 

 } 

 else 

 { 

  malloc_current += size; 

#ifdef PRT_MALLOC 

  xil_printf("malloced: %d, current: 0x%x \r\n", size, malloc_current); 

#endif 

  return ret; 

 } 

} 

 

int free_li(char *p, unsigned int size) 
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{ 

 if( (malloc_current - size) < malloc_base) 

 { 

  printf("Error: free_li(), reached bottom.\r\n"); 

  printf("size: %d, current: 0x%x \r\n", size, malloc_current); 

  return -1; 

 } 

 else 

 { 

  malloc_current -= size; 

  p = 0; 

#ifdef PRT_MALLOC 

  xil_printf("freed: %d, current: 0x%x \r\n", size, malloc_current); 

#endif 

  return 0; 

 } 

} 

#endif 

 

void init_mtxs(float *DDR_A_mtx, float *DDR_B_mtx, float *DDR_C_mtx, unsigned int mtx_sz) 

{ 

 unsigned int i, j; 

 

 printf("START Initialize DDRAM\r\n"); 

 // Initialize DDRAM 

 for (i=0; i<mtx_sz; i++) { 

  for (j=0; j<mtx_sz; j++) { 

#ifndef DEBUG 

   DDR_A_mtx[i*mtx_sz+j] = (float)(i*j+1)/(float)23; 

   DDR_B_mtx[i*mtx_sz+j] = (float)(i*j+3)/(float)31; 
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   DDR_C_mtx[i*mtx_sz+j] = (float)0.0; 

#else 

   DDR_A_mtx[i*mtx_sz+j] = (float)((i*j+1)%2)/(float)10.0; 

   DDR_B_mtx[i*mtx_sz+j] = (float)((i*j+3)%3)/(float)10.0; 

   DDR_C_mtx[i*mtx_sz+j] = (float)0.0; 

#endif 

  } 

 } 

  

 printf("END Initialize DDRAM\r\n"); 

} 

 

 

//get the current time in seconds 

double clock_it(void) 

{ 

 clock_t start; 

 double  timeInSec; 

 

 start = clock(); 

 timeInSec = (double)(start) / CLOCKS_PER_SEC; 

 return timeInSec; 

} 

 

//three for loops implementation of Matrix-Matrix Multiplication 

void thr_for_loop(float *DDR_A_mtx, float *DDR_B_mtx, float *DDR_C_mtx, unsigned int mtx_sz) 

{ 

 unsigned int i,j,k; 

 float sum; 

 for (i=0; i<mtx_sz; i++) { 
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  for (j=0; j<mtx_sz; j++) { 

   sum=0.0; 

   for (k=0; k<mtx_sz; k++) { 

    sum+= DDR_A_mtx[i*mtx_sz+k] * DDR_B_mtx[k*mtx_sz+j];  

   } 

   DDR_C_mtx[i*mtx_sz+j]=sum; 

  }  

 } 

} 

 

/* 

 * Blocking implementation of MM Multiplication. 

 * Caculate block by bock to increase cache hit rate. 

 */ 

void blocking_mm(float *DDR_A_mtx, float *DDR_B_mtx, \ 

      float *DDR_C_mtx, unsigned int mtx_sz,\ 

      unsigned int B) 

{ 

 unsigned int i, j, k, jj, kk; 

 float sum; 

 B = B < mtx_sz ? B : mtx_sz; 

 for (jj=0; jj<mtx_sz; jj=jj+B) { 

  for (kk=0; kk<mtx_sz; kk=kk+B) { 

   for (i=0; i<mtx_sz; i=i+1) { 

    for (j=jj; j<min(jj+B,mtx_sz); j++) { 

     sum=0.0; 

     for (k=kk; k<min(kk+B,mtx_sz); k++) { 

      sum+=DDR_A_mtx[i*mtx_sz+k] * 
DDR_B_mtx[k*mtx_sz+j]; 

     } 

     DDR_C_mtx[i*mtx_sz+j]+=sum; 
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    } 

   } 

  } 

 } 

} 

 

int cmp_mtx(float *A, float *B, unsigned int mtx_sz) 

{ 

 int i,j; 

 int test_size; 

 test_size = TEST_SIZE < mtx_sz ? TEST_SIZE : mtx_sz; 

 for (i=0; i<test_size; i=i+1) { 

  for (j=0; j<test_size; j=j+1) 

  { 

   if((A[i*mtx_sz+j] - B[i*mtx_sz+j]) < 1) 

    continue; 

   else 

    return i*mtx_sz+j; 

  } 

 } 

 return -1; 

} 

 

//print matrix 

void printm(float *A, int lda, int n) 

{ 

 float x; 

 int i,j; 

 for(i=0; i < n; i++) 

 { 
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  for(j=0; j < n; j++) 

  { 

   x = *(A + i*lda + j); 

   printf("\t%.2f",x); 

  } 

  printf("\n"); 

 } 

 printf("\n"); 

} 

void resetm(float *A, unsigned int mtx_sz) 

{ 

 unsigned int i,j; 

 for (i=0; i<mtx_sz; i=i+1) { 

  for (j=0; j<mtx_sz; j=j+1) 

  { 

   A[i*mtx_sz+j] = 0; 

  } 

 } 

} 
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