
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2012

High-performance matrix multiplication on Intel and FGPA High-performance matrix multiplication on Intel and FGPA

platforms platforms

Gang Li
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Li, Gang, "High-performance matrix multiplication on Intel and FGPA platforms" (2012). Theses. 136.
https://digitalcommons.njit.edu/theses/136

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/136?utm_source=digitalcommons.njit.edu%2Ftheses%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

HIGH-PERFORMANCE MATRIX MULTIPLICATION
ON INTEL AND FPGA PLATFORMS

by
Gang Li

Matrix multiplication is at the core of high-performance numerical computation.

Software methods of accelerating matrix multiplication fall into two categories. One is

based on calculation simplification. The other one is based on increasing the memory

access efficiency. Also matrix multiplication can be accelerated using vector processors.

In this investigation, various matrix multiplication algorithms and the vector-based

hardware acceleration method are analyzed and compared in terms of performance and

memory requirements. Results are shown for Intel and Xilinx FPGA platforms. They

show that when the CPU is fast, Goto’s algorithm runs faster than Strassen’s algorithm

because the data access speed is the bottleneck in this case. On the contrary, when the

CPU is slow, Strassen’s algorithm runs faster because the computation complexity

becomes the key factor in this case. Also, the results show that SIMD platforms, such as

Intel Xeon and SIMD extensions and an in-house developed VP (Vector co-Processor),

for an FPGA, can accelerate matrix multiplication substantially. It is even shown that the

VP runs faster than MKL (Intel’s optimized Math Kernel Library). This is because not

only can the VP take advantage of larger vector lengths but it also minimizes inherent

hardware overheads.

HIGH-PERFORMANCE MATRIX MULTIPLICATION
ON INTEL AND FPGA PLATFORMS

by

Gang Li

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

May 2012

APPROVAL PAGE

HIGH-PERFORMANCE MATRIX MULTIPLICATION ON
INTEL AND FPGA PLATFORMS

Gang Li

Dr. Sotirios G. Ziavras, Thesis Advisor Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Roberto Rojas-Cessa, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	Gang Li

Degree: 	Master of Science

Date: 	May 2012

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2012

• Bachelor of Science in Software Engineering,
Wuhan University of Technology, Wuhan, P. R. China, 2006

Major: 	Computer Engineering

iv

v

To my parents and Yayun.

vi

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my advisor, Dr. Sotirios G. Ziavras, for

the opportunity to explore the field of high-performance computation. His

encouragement, guidance, and support are invaluable in my work. I would also like to

thank Dr. Roberto Rojas-Cessa and Dr. Edwin Hou for their support as my professors and

committee members. And many thanks to my fellow student, Spiridon F. Beldianu, for

his support and inspiration.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……..…..…………………………. 1

2 BRUTE-FORCE IMPLEMENTATION …………………………………….…….. 3

 2.1 Introduction …………………………………………………………….……… 3

 2.2 Analysis ………………………………………………………………………... 4

 2.2.1 Time Complexity ……………………………………………………….. 4

 2.2.2 Cache Performance ……………………………………………………... 4

 2.2.3 Memory Consumption ……………………………………….…………. 5

 2.3 Results …………………………………………………………………………. 6

 2.3.1 Intel Xeon Platform …………………………...………………………... 6

 2.3.2 Xilinx ML501 FPGA Platform …………………………………………. 7

3 BASIC BLOCK-BASED IMPLEMENTATION ………………………….………. 9

 3.1 Introduction …………………………………………………………….……… 8

 3.1.1 Calculating the First Three Columns of C …….…………………...…… 10

 3.1.2 Calculating the Other Three Columns of C …………………………….. 11

 3.2 Analysis ………………………………………………………………………... 12

 3.2.1 Time Complexity ……………………………………………………….. 12

 3.2.2 Cache Performance ……………………………………………….…….. 12

 3.2.3 Memory Consumption ……………………………………………..…… 13

 3.3 Results …………………………………………………………………………. 13

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

 3.3.1 Intel Xeon Platform ……………………………………………………. 13

 3.3.2 Xilinx ML501 FPGA Platform ………………………………………… 15

4 GOTO’S IMPLEMENTATION………………………………………….………… 15

 4.1 Introduction …………………………………………………………………… 16

 4.1.1 Goto’s Block-based Method …………………………………………… 16

 4.1.2 Calculation Process for Goto’s Algorithm …………………..…………. 18

 4.2 Analysis ………………………………………………………………………... 20

 4.2.1 Time Complexity ……………………………………………………….. 20

 4.2.2 Cache Performance ……………………………………………………... 20

 4.2.3 Memory Consumption …………………………………………………. 21

 4.3 Results …………………………………………………………………………. 22

 4.3.1 Intel Xeon Platform ……………………………..………………………. 22

 4.3.2 Xilinx ML501 FPGA Platform ………………………………………… 23

5 STRASSEN’S IMPLEMENTATION ……………………………………..………. 24

 5.1 Introduction …………………………………………………………………… 24

 5.2 Analysis ………………………………………………………………………... 27

 5.2.1 Time Complexity ……………………………………………………….. 27

 5.2.2 Cache Performance ……………………………………………………... 27

 5.2.3 Memory Consumption ………………………………………….………. 27

 5.2.4 Disadvantages ……………………………………………….…..……… 28

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

 5.3 Results …………………………………………………………………………. 28

 5.3.1 Intel Xeon Platform ……… ……………………….…………………… 28

 5.3.2 Xilinx ML501 FPGA Platform ………………………………..……….. 30

6 MKL’S IMPLEMENTATION……………………………………………………... 31

 6.1 Introduction ……………………………………………………….…………… 31

 6.2 Results …………………………………………………………………………. 32

7 ACCELERATION USING VECTOR CO-PROCESSOR………………………… 33

 7.1 Hardware Architecture………………………………………………………… 33

 7.2 Calculation Process……………………………………………………………. 34

 7.3 Analysis………………………………………………………………….…….. 36

 7.3.1 Time Complexity………………………………………………….……. 36

 7.3.2 Memory Consumption…………………………………………….……. 36

 7.4 Results………………………………………………………………………….. 36

8 PERFORMANCE COMPARISONS ………………………………………………. 38

 8.1 Intel Xeon Platform ………………………………………..…………..………. 38

 8.1.1 Optimization Disabled (OD) ………………………………….….……... 38

 8.1.2 Full Optimization (O3) ……… ………………………………………… 39

 8.2 Xilinx ML501 FPGA Platform …………………………………………...…… 39

 8.3 MKL vs. VP……………………………………………………..……….…….. 40

9 CONCLUSIONS …………………………………………………………………… 41

x

Chapter Page

APPENDIX C SOURCE CODE ………..

42

REFERENCES ………………………………………………………………………... 75

xi

LIST OF TABLES

Table Page

2.1 Cache Miss Numbers of Brute-force Implementation for Various Cache Sizes

(in Number of Elements)…………………………………………………………

5

2.2 The Specifications of the Intel Xeon Platform ………………………………….. 6

2.3 Execution Time (in Seconds) of the Brute-force Implementation on the Intel

Xeon Platform……………….……………………………………………………

6

2.4 The Specifications of the Xilinx FPGA Platform…………………………….….. 7

2.5 Execution Time (in Seconds) of the Brute-force Implementation on the Xilinx

FPGA Platform…………………………………………………………………...

8

3.1 Cache Miss Numbers of Basic Block-based Implementation for Various Cache

Sizes (in Number of Elements)……………………………………………….…..

13

3.2 Execution Time (in Seconds) of the Basic Block-based Implementation on the

Intel Xeon Platform…………………………………………………....................

14

3.3 Execution Time (in Seconds) of the Basic Block-based Implementation on the

Intel Xeon for K=32………………………………………………………………

14

3.4 Execution Time (in Seconds) of the Basic Block-based Implementation on a

Xilinx FPGA Platform……………………………………………………………

15

3.5 Execution Time (in Seconds) of the Basic Block-based Implementation on the

Xilinx FPGA Platform for K =8………………………………………………….

15

4.1 Cache Miss Numbers of Goto’s Implementation for Various Cache Sizes (in

Number of Elements)…………………………………….……………………….

21

4.2 Execution Time (in Seconds) of the Goto’s Implementation on the Intel Xeon

Platform………………………………………………………………………….

22

4.3 Execution Time (in Seconds) of the Goto’s Implementation on the Intel Xeon

for K=32………………………………………………………………………….

22

4.4 Execution Time (in Seconds) of Goto’s Implementation on the Xilinx FPGA

Platform…………………………………………………………………………..

23

xii

 LIST OF TABLES
(Continued)

Table Page

4.5 Execution Time (in Seconds) of Goto’s Implementation on the Xilinx FPGA

Platform for K =8…………………………………………………………………

23

5.1 Execution Time (in Seconds) of the Strassen’s Implementation on the Intel

Xeon Platform………………………………………………………...................

28

5.2 Execution Time (in Seconds) of the Strassen’s Implementation on the Intel

Xeon for K=32……………………………………………………………………

29

5.3 Execution Time (in Seconds) of Strassen’s Implementation on the Xilinx FPGA

Platform…………………………………………………………………………..

30

5.4 Execution Time (in Seconds) of Strassen’s Implementation on the Xilinx FPGA

Platform for K=16………………………………………………………………...

30

6.1 Execution Time (in Seconds) of the MKL’s MM Implementation on the Intel

Xeon Platform………………………………………………………....................

32

7.1 Execution Time (in seconds) of Matrix Multiplication on the VP Platform……. 36

7.2 Execution Time (in million clock cycles) of Matrix Multiplication on the VP

Platform…………………………………………………………………………..

37

8.1 Execution Time (in Seconds) of All the Implementations on the Intel Xeon

Platform with Compiling Optimization Disabled………………………………..

38

8.2 Execution Time (in Seconds) of All the Implementations on the Intel Xeon

Platform with Full Optimization (O3) [11]……………………………………...

39

8.3 Execution Time (in Seconds) of All the Implementations on the Xilinx FPGA

Platform with and without the VP ………………………………..……………..

40

8.4 Execution Time (in million clock cycles) of MM using MKL and the VP……... 40

xiii

LIST OF FIGURES

Figure Page

2.1 Process of MM calculation with the Brute-force implementation……………….. 4

3.1 Calculating a part of the first three elements of the first row of matrix C………. 10

3.2 The first iteration of calculating first three columns of matrix C ………….……. 10

3.3 Calculating another part of the first three elements of the first row of matrix C ... 11

3.4 The second iteration of calculating the first three columns of matrix C ………… 11

3.5 The first iteration of calculating the remaining three columns of matrix C …….. 11

3.6 The second iteration of calculating the remaining three columns of matrix C …. 12

4.1 All possible shapes of matrix multiplication [taken from 2]…………………….. 16

4.2 All possible methods to break down matrix multiplication [taken from 2]……… 17

4.3 Block-based decomposition of matrices A and B ………………………………. 18

4.4 Blocking B1 to calculate C1 …………………………………………………….. 19

4.5 Calculate C11 ……………………………………………………………………. 19

4.6 Calculate C12 …………………………………………………………………… 19

4.7 Adding each layer of C …………………………………………………………. 20

5.1 Sub-matrices of A and B ………………………………………………………… 26

5.2 Calculate intermediate sub-matrices P1 to P7 …………………………………... 26

5.3 Calculate matrix C from sub-matrices P1 to P7 ………………………………… 26

7.1 Vector processor computing platform architecture [taken from 12]…………….. 33

7.2 Partitioning matrices A and C for VP-based MM……………………………….. 34

7.3 C1 is calculated as A1 * B………………………………………………………. 34

xiv

Figure Page

7.4 Partitioning A1 and B……………………………………………………………. 35

7.5 Partitioning of C1………………………………………………………………… 35

7.6 Partitioning C11…………………………………………………………………. 35

1

CHAPTER 1

INTRODUCTION

The objective of this thesis is to present high-performance matrix multiplication

algorithms and a relevant hardware acceleration method. Software methods of

accelerating matrix multiplication fall into two categories. One is based on calculation

simplification. The other one is based on increasing memory access efficiency. The

hardware acceleration is done by using an in-house built vector co-processor for FPGAs.

Strassen’s algorithm is a typical algorithm based on calculation simplification.

Strassen’s algorithm has complexity O(n^2.807) [1] [5] for n * n matrices. It is a

recursive algorithm. First, the input matrix is divided into four sub-matrices for

independent multiplications, then recursively into sixteen sub-matrices, etc. But this by

itself does not reduce the time complexity which is still O(n^3). However, Strassen found

a way to also reduce the complexity of single sub-matrix multiplication. Thus, the time

complexity is reduced to O(n^2.807). The Coppersmith-Winograd algorithm has a time

complexity of O(n^2.3737) [4]. However, this algorithm has a very large constant, so it is

only useful for the multiplication of extremely large matrices. The lower bound is

O(n^2), i.e., the same as the number of elements in the product.

A block-based matrix multiplication method is based on increasing memory

access efficiency. It calculates the resulting matrix block by block instead of line by line

(row or column), most of the time, in order to keep the data needed small enough to fit in

the cache and thus take advantage of cache hits.

2

Besides elaborately identifying blocks in the matrix, the Goto’s method [2]

increases the memory access efficiency further by copying the most frequently used data

into contiguous memory locations in order to reduce the TLB misses.

MKL is the Math Kernel Library developed by Intel [10]. It heavily uses the Intel

architecture’s SSE instruction extensions to do the computations in parallel in the SIMD

(Single Instruction Multi Data) mode.

The vector processor is an efficient implementation of an SIMD architecture for

array operations. It can simultaneously execute the same operation, e.g. single-precision

floating-point multiplication, on all the elements in an array.

The rest of the thesis introduces the details of the studied algorithms or methods

and presents their implementations on Intel and FPGA platforms. Then, it compares the

results.

3

CHAPTER 2

BRUTE-FORCE IMPLEMENTATION

Brute-force matrix multiplication (MM) is implemented exactly according to the matrix

multiplication definition. It is simple and straight forward and provides a baseline in

order to facilitate comparisons with other MM algorithms.

2.1 Introduction

The definition of matrix multiplication is: for N * N matrices A and B, the result of their

multiplication is matrix C whose elements are:

for i, j = 0, … , N-1

It could be easily implemented using there nested for loops as follows:

for(i = 0; i < N; i++)
for(j = 0; j < N; j++) {

 sum=0;
for(k = 0; k < N; k++)

 sum += A[i][k] * B[k][j];
C[i][j] = sum;

}

The process of calculating the result is shown in Figure 2.1 for 6 by 6 matrices.

Each square represents an element of a matrix. Each element of C is calculated by

multiplying corresponding elements from one row of A with one column of B.

4

Figure 2.1 Process of MM calculation with the Brute-force implementation. White
means the data has not been accessed; light gray means older accesses; and dark gray
means current accesses.

2.2 Analysis

2.2.1 Time Complexity

To calculate one element of C, there are N multiplications and N additions. In total, there

are N^3 multiplications and N^3 additions. So the time complexity of calculating matrix

C is O(N^3).

2.2.2 Cache Performance

Consider only cache capacity misses and compulsory misses for simplifying the analysis

(i.e. ignore conflict misses). Capacity misses are those misses that occur regardless of the

associativity or the block size, solely due to the finite size of the cache. Compulsory

misses are those misses caused by the first reference to a datum. Conflict misses are those

misses that could have been avoided, had the cache not evicted an entry earlier.

For the Brute-force implementation, Table 2.1 shows the absolute cache miss

numbers for various cache sizes. An explanation for cache size > (L+1)N follows as an

example. In this case, one row of A and L columns of B could be held in the cache. In

5

order to calculate one row of C, a row of A is repeatedly accessed and there are N/L

misses. So to calculate the whole matrix C, there will be N^2/L misses. At the same time,

when calculating one row of C, N^2/L misses will occur for scanning the whole matrix B.

So to calculate the whole matrix C, there will be N^3/L misses.

As for the cache organization, if it is directly mapped, there will be more cache

conflict misses than in the case of set associative.

Table 2.1 Cache Miss Numbers of Brute-force Implementation for Various Cache Sizes

(in Number of Elements)

 Cache Size
Matrix Size

> (N+1)N > (L+1)N > (N+L) >2L 0

A N^2/L N^2/L N^2/L N^3/L N^3

B N^2/L N^3/L N^3 N^3 N^3

C N^2 N^2 N^2 N^2 N^2

Subtotal N^2+

2N^2/L

N^2+N^3/L

+N^2/L

N^3+N^2

+N^2/L

N^3+N^2

+N^3/L

2N^3+N^2

2.2.3 Memory Consumption

In terms of memory consumption, the Brute-force implementation does not need extra

memory but just memory to store the three matrices; this requires the storage of 3N^3

elements.

6

2.3 Results

2.3.1 Intel Xeon Platform

The specifications of the Intel platform are shown in Table 2.2. It has a dual-core CPU

and each core has two threads. In order to analyze the algorithms, only one thread is used.

The running time of the implementation for various matrix sizes is shown in

Table 2.3.This shows how much more time is needed for the calculation when N doubles.

The time complexity is O(N^3), but Table 2.3 shows that the slowdown is not always 8

when N doubles. This is because the cache performance and the constants in the

complexity affect the time spent.

Table 2.2 The Specifications of the Intel Xeon Platform

CPU Xeon 3.20G Hz * 2

Memory 3GB

L1 cache 16KB, 8-way 64-byte line size

L2 cache 1024KB, 8-way 64-byte line size

Compiler Intel c/c++ compiler

Compile option -OD(optimization disabled)

Table 2.3 Execution Time (in Seconds) of the Brute-force Implementation on the Intel
Xeon Platform

Brute-force Implementation
Matrix
Size

64 128 256 512 1024 2048

Time Spent
(sec)

0.002336 0.029708 0.253991 2.684 63.753 537.389

Slowdown

NA 12.717 8.549 10.608 23.752 8.429

7

When N<=64, matrix B could fully fit in the L1 cache (16KB). The cache misses

become N^2 + 2N^2/L. If N is larger than 64, the cache misses are N^2 + N^2/L +

N^3/L. That is why the slowdown for N = 128 is larger than 8.

When N=128 or 256, matrix B could fit in L2 cache, therefore the cache miss rate

for N=128 or 256 are similar. In this case the slowdown is depended on computation

complexity, thus the slowdown for N=256 is close to 8.

When N=512, the L2 cache could exactly hold matrix B (no more place for one

row of matrix A), this makes the L2 cache miss rate higher than in the case of N=256. So

the slowdown is slightly higher than 8.

When N >= 1024, the L2 cache (1024KB) is not large enough to hold matrix B,

so the cache miss rate increases. This causes the slowdown (23.752) for N = 1024 to be

larger than 8. And because the speed gap between the L2 cache and main memory is

wide, the slowdown (23.752) is so large.

2.3.2 Xilinx ML501 FPGA Platform

The platform’s specifications are shown in Table 2.4. The Xilinx MicroBlaze processor

was used. It contains the XC5VLX50 FPGA and runs at 125 MHz.

Table 2.4 The Specifications of the Xilinx FPGA Platform

CPU Microblaze 125MHz

Memory 256MB

L1 cache 8KB, 1-way 32-byte line size

Compiler GNU c compiler

Compile option -OD(optimization disabled)

8

The running time of the implementation for various matrix sizes is shown in

Table 2.5.

Table 2.5 Execution Time (in Seconds) of the Brute-force Implementation on the Xilinx
FPGA Platform

It is shown that the slowdowns are all close to 8. This is because the cache (8KB)

is too small to hold even the 64 by 64 matrix, which means that for all the cases the cache

performance is quite similar. Thus, the slowdown is depended on the computation

complexity.

Brute-force Implementation
Matrix
Size

64 128 256 512 1024

Time Spent
(sec)

0.105 0.841 6.717 53.664 429.12

Slowndown

NA 8.009 7.986 7.989 7.996

9

CHAPTER 3

BASIC BLOCK-BASED IMPLEMENTATION

The Brute-force implementation repeatedly accesses the whole matrix B, column by

column. If matrix B cannot fit in the cache, the cache miss rate increases. The cost of the

cache is much higher than that of the memory, so it cannot be too large. The basic Block-

based method provides a way to access matrix B block by block instead of scanning the

whole matrix. In this way, a small cache could hold all the needed data in each iteration,

therefore the cache miss rate decreases even when the matrices are large.

3.1 Introduction

The chosen Block-based implementation calculates one row of C part by part. The

process is rather complicated and it will be shown in pictures in the following discussion.

The basic Block-based algorithm implementation [1] in the C language is:

for (jj=0; jj<N; jj=jj+K)
 for (kk=0; kk<N; kk=kk+K)
 for (i=0; i<N; i=i+1)
 for (j=jj; j<min(jj+K,N); j++) {
 sum=0.0;
 for (k=kk; k<min(kk+K,N); k++)
 sum+=A[i][k] * B[k][j];
 C[i][j] += sum;
 }

There are five “for loops” assuming blocks of size K*K. The following pictures

illustrate the process for 6 * 6 matrices.

10

3.1.1 Calculating the First Three Columns of C

In the first iteration:

C[i][j] = A[i][0] * B[0][j] + A[i][1] * B[1][j] + A[i][2] * B[2][j]

Calculating a part of the first row of C is shown in Figure 3.1. A light shade means an

older access and a dark shade means a current access.

Figure 3.1 Calculating a part of the first three elements of the first row of matrix C.

The elements accessed in the whole iteration are shown in Figure 3.2.

Figure 3.2 The first iteration of calculating the first three columns of matrix C. White
means the data has not been accessed; light gray means completed accesses.

After the shown iteration, the calculation of the first 3 columns of C is not

completed yet. Only one “layer” of the calculation is finished, which means that only

some summations have been completed.

In the second iteration:

C[i][j] = A[i][3] * B[3][j] + A[i][4] * B[4][j] + A[i][5] * B[5][j]

Calculating a part of one row of C is shown in Figure 3.3.

11

Figure 3.3 Calculating another part of the first three elements of the first row of matrix
C.

The data accessed in the whole iteration is shown in Figure 3.4.

Figure 3.4 The second iteration of calculating the first three columns of matrix C. White
means the data has not been accessed; light gray means completed accesses.

3.1.2 Calculating the Other Three Columns of C

In the first iteration:

C[i][j] = A[i][0] * B[0][j] + A[i][1] * B[1][j] + A[i][2] * B[2][j]

Figure 3.5 The first iteration of calculating the remaining three columns of matrix C.
White means the data has not been accessed; light gray means completed accesses.

In the second iteration:

C[i][j] = A[i][3] * B[3][j] + A[i][4] * B[4][j] + A[i][5] * B[5][j]

12

Figure 3.6 The second iteration of calculating the remaining three columns of matrix C.
White means the data has not been accessed; light gray means completed accesses.

3.2 Analysis

3.2.1 Time Complexity

There are five “for” loops in this implementation.

Total number of multiplications = N/K * N/K * N * K * K

 = N^3

where K * K is the block size in matrix B used in each iteration.

So the time complexity of the basic Block-based implementation is O(N^3).

3.2.2 Cache Performance

When K < L (cache line size), the data stored in the cache will not be fully used, which is

not efficient and will not be discussed here.

When K >= L, Table 3.1 shows the cache misses for different scenarios.

Take the case of cache size > (2NK+K^2) as an example to explain the cache

misses. In this case, K columns of matrices C and A as well as K^2 elements of matrix B

can be in the cache. To calculate K columns of matrix C, the cache misses are

(K/L) * N = NK/L

13

There are N/K calculations of this type to produce the whole matrix C, so the

cache misses are

(NK/L) * N/K = N^2/L

Table 3.1 Cache Miss Numbers of Basic Block-based Implementation for Various

Cache Sizes (in Number of Elements)

 Cache Size
Matrix Size

>(2NK+K^2) > K^2+2K > K^2+K 0

A N^2/L N^3/KL N^3/KL N^3

B N^2/L N^2/L N^2/L N^3

C N^2/L N^3/KL N^3/K N^3/K

Subtotal 3N^2/L 2N^3/KL

+N^2/L

N^3/K+N^3/KL

+N^2/L

2N^3

+N^3/K

3.2.3 Memory Consumption

No extra memory is needed other than storing matrices A, B and C, so the storage needed

is 3N^3.

3.3 Results

3.3.1 Intel Xeon Platform

Table 3.2 shows the time needed for calculating matrices of various sizes for the basic

Block-based implementation.

The cache line size is 64 bytes. One cache line stores 16 floating point numbers.

As discussed above, when K < L memory accesses are less efficient. This is verified in

Table 3.2.

14

Table 3.2 Execution Time (in Seconds) of the Basic Block-based Implementation on the

Intel Xeon Platform

As shown in Table 3.2, for large matrices the calculation is the most efficient for

block sizes 32*32. Table 3.3 takes this case as an example to further illustrate the effect

of the cache as a function of the matrix size.

Table 3.3 Execution Time (in Seconds) of the Basic Block-based Implementation on the

Intel Xeon for K=32

When N increases, less data can fit in the cache. As shown in Table 3.1, when

cache size < (2NK+K^2), the cache misses will increase. For K=32 and N > 64

16K < 2*N*32*4 + 32*32*4

This is verified in Table 3.3 for N = 128, where the slowdown is much larger than

8. Compared to the Brute-force implementation for N > 256, the L1 cache could not hold

(N+1)L data and cache misses increased. But in the basic Block-based implementation it

is easy to hold K^2+2K data, and the cache miss rate is kept at a low level. It is verified

Basic Block-based Implementation
 Matrix Size
Block Size

64 128 256 512 1024 2048

4 0.004130 0.051724 0.298041 2.895 36.908 297.644
8 0.004972 0.029490 0.253050 2.102 19.530 157.101
16 0.002773 0.040463 0.236596 1.817 15.030 120.654
32 0.002677 0.043091 0.227063 1.683 13.470 108.300
64 0.002651 0.037837 0.206537 1.572 15.737 126.023

Basic Block-based Implementation
Matrix
Size

64 128 256 512 1024 2048

Time Spent
(sec)

0.002677 0.043091 0.227063 1.683 13.470 108.300

Slowdown

NA 16.096 5.269 7.412 8.003 8.040

15

from Table 2.3 and Table 3.3 that, for N > 256, the basic Block-based implementation

takes less time.

3.3.2 Xilinx ML501 FPGA Platform

Table 3.4 shows the time needed for calculating matrices of various sizes for the basic

Block-based implementation on Xilinx FPGAs.

Table 3.4 Execution Time (in Seconds) of the Basic Block-based Implementation on a

Xilinx FPGA Platform

Basic Block-Based Implementation
 Matrix Size
Block Size

64 128 256 512 1024

4 0.066 0.549 4.771 38.322 318.234
8 0.054 0.457 4.029 32.648 269.376
16 0.050 0.425 7.126 58.740 481.562
32 0.049 0.866 6.914 56.025 475.860
64 0.107 0.852 6.809 55.855 440.815

Take K = 8 as an example. Table 3.5 shows a comparison of execution times.

Table 3.5 Execution Time (in Seconds) of the Basic Block-based Implementation on the

Xilinx FPGA Platform for K =8

Basic Block-Based Implementation
Matrix
Size

64 128 256 512 1024

Time Spent
(sec)

0.054 0.457 4.029 32.648 269.376

Time Ratio

NA 8.462 8.816 8.103 8.250

The slowdown converges to 8. This is because, as analyzed before, the basic

block-based implementation’s time complexity is O(N^3). So when N doubles, the

execution time becomes about 8 times as much.

16

CHAPTER 4

GOTO’S IMPLEMENTATION

The Goto’s implementation[3] not only decomposes the matrices into blocks in order to

reduce the cache misses but also takes into account TLB misses. The results show that the

Goto’s implementation has better performance than the basic Blocked-based

implementation.

4.1 Introduction

4.1.1 Goto’s Block-based Method

Figure 4.1 shows all possible cases of matrix multiplication for matrices A and B having

sizes m*k and k*n, respectively, according to the Goto’s classification.

Figure 4.1 All possible shapes of matrix multiplication [taken from 2].

mbrown
Stamp

17

Goto’s algorithm tries to find the best way to divide the matrices into blocks. All

possible block-based approaches are shown in Figure 4.2.

Figure 4.2 All possible methods to break down matrix multiplication [taken from 2].

18

 Goto’s algorithm chooses the number 2 method to implement the matrix

multiplication if the matrix is stored in the row-major order.

 In Figure 4.2, cases 1, 4, 5 and 6 are not TLB friendly in that there are horizontal

panels (rectangle shape matrix). Every two adjacent accesses of the elements of a

horizontal panel have a gap of N elements in the memory. This means, when N is large

every access will cause a TLB miss if there is a cache miss first.

 Now case 2 and case 3 will be compared. It is observed that, for case 2 in order to

calculate a layer of C, K columns of matrix A are repeatedly accessed. This gives better

cache performance especially when K columns of A could fit in the L2 cache. For case 3,

the whole matrix A is accessed in each outer loop, so the chances of reducing the cache

miss rate for accessing matrix A is relatively low.

4.1.2 Calculation Process for Goto’s Algorithm

First, assume the block-based decomposition of matrices A and B as shown in Figure 4.3,

Figure 4.3 Block-based decomposition of matrices A and B.

Second, calculate C1 which is the first layer of summations of each element in

matrix C (shown in Figure 4.4).

19

Figure 4.4 Blocking B1 to Calculate C1.

Third, calculate C1 block by block (shown in Figure 4.5 and Figure 4.6),

Figure 4.5 Calculate C11.

Figure 4.6 Calculate C12.

It is noticed that B11 is not stored in contiguous memory. By adjusting the block

size, the cache miss rate could be reduced, but cache misses could not be avoided

completely because of conflict and capacity misses. When a miss happens in this case,

the system will access the TLB table. Because B11 is not in contiguous memory, the

20

possibility of having a TLB miss is high. And the cost of a TLB miss is high. Therefore,

B11 is copied into contiguous memory in order to reduce cache and TLB misses.

Finally, every layer of C is accumulated to produce the result matrix C (shown in

Figure 4.7).

Figure 4.7 Adding each layer of C.

4.2 Analysis

4.2.1 Time Complexity

It is observed that the number of element multiplications is not reduced. Goto’s algorithm

only changes the order of multiplications. So the time complexity of Goto’s

implementation is O(N^3).

4.2.2 Cache Performance

Table 4.1 shows the cache misses for various scenarios.

21

Table 4.1 Cache Miss Numbers of Goto’s Implementation for Various Cache Sizes (in

Number of Elements)

 Cache
Size
Matrix Size

>(N^2+NK+K^2) >NK+K^2 > K^2+2K > K^2+K 0

A N^2/L N^2/L N^3/KL N^3/KL N^3

B N^2/L N^2/L N^2/L N^2/L N^3

C N^2/L N^3/KL N^3/KL N^3/K N^3/K

Subtotal 3N^2/L N^3/KL+

2N^2/L

2N^3/KL

N^2/L

N^3/K+

N^3/KL+N^2/L

2N^3

+N^3/K

Take the case of cache size > (K^2 + 2K) as an example to explain the cache miss

calculation. In this case, K elements of C, K elements of A and K * K elements of B are

in the cache. To calculate one layer of C, the cache misses for matrix B are:

(K^2/L) * N/K = NK/L

 There are N/K layers of C to be calculated, so the total number of cache misses

for matrix B is:

(NK/L) * N/K = N^2/L

4.2.3 Memory Consumption

 No extra memory is needed other than storing matrices A, B and C, so the storage

needed is 3N^3.

22

4.3 Results

4.3.1 Intel Xeon Platform

Table 4.2 shows the time needed for calculating matrices of various sizes for Goto’s

implementation.

Table 4.2 Execution Time (in Seconds) of the Goto’s Implementation on the Intel Xeon

Platform

The performance is overall stable and better than that for the basic Block-based

implementation. Table 4.3 shows the slowdown as a function of the matrix size for 32*32

blocks.

Table 4.3 Execution Time (in Seconds) of the Goto’s Implementation on the Intel Xeon

for K=32

The slowdown is always around 8. This is because the time complexity is O(N^3)

which is analyzed in Section 4.2.1.

Goto’s Implementation
 Matrix Size
Block Size

64 128 256 512 1024 2048

4 0.002912 0.031643 0.196508 1.492234 11.565 90.610
8 0.003932 0.022385 0.191102 1.453994 11.486 90.126
16 0.003226 0.025004 0.200335 1.466154 11.504 90.230
32 0.002824 0.022765 0.196912 1.457312 11.495 90.709
64 0.002831 0.027742 0.190376 1.445694 11.480 90.626

Goto’s Implementation
Matrix
Size

64 128 256 512 1024 2048

Time Spent
(sec)

0.002824 0.022765 0.196912 1.457312 11.495 90.709

Slowdown

NA 8.061 8.649 7.400 7.887 7.891

23

4.3.2 Xilinx ML501 FPGA Platform

Table 4.4 shows results for the Goto’s implementation on a MicroBlaze processor

embedded in a Xilinx FPGA.

Table 4.4 Execution Time (in Seconds) of Goto’s Implementation on the Xilinx FPGA

Platform

Goto’s Implementation
 Matrix Size
Block Size

64 128 256 512 1024

4 0.055 0.476 4.410 34.452 270.092
8 0.054 0.472 4.335 32.975 264.281
16 0.054 0.468 4.639 36.827 295.163
32 0.054 0.517 4.625 38.321 317.821
64 0.075 0.516 4.618 37.385 300.296

 The performance is relatively stable and better than that of the basic Block-based

implementation. Take block size = 8 as an example to examine the slowdowns in Table

4.5.

Table 4.5 Execution Time (in Seconds) of Goto’s Implementation on the Xilinx FPGA

Platform for K =8

Goto’s Implementation
Matrix
Size

64 128 256 512 1024

Time Spent
(sec)

0.054 0.472 4.335 32.975 264.281

Slowdown

NA 8.740 9.184 7.606 8.014

The slowdown is close to 8.

24

CHAPTER 5

STRASSEN’S IMPLEMENTATION

The previous algorithms all have time complexity of O(N^3). Strassen’s algorithm has

time complexity of O(N^2.807). It is a recursive algorithm and in each iteration it divides

each matrix into four sub-matrices. The result will be calculated by sub-matrix

multiplications.

5.1 Introduction

First, matrix multiplication could be implemented recursively. For example, A, B and C

are N*N matrixes and C = A*B.

C = , A = , B =

The sub-matrices of C could be calculated using the sub-matrices of A and B as

follows:

r = ae + bg

s = af + bh

t = ce + dg

u = cf + dh

 There are 8 sub-matrix multiplications. Each multiplication is done in the same

way until the sub-matrix contains only one element.

The time complexity is:

T(n) = 8T(N/2) + O(N^2)

25

Resolving the recurrence, it gives us:

T(N) = O(N^3)

 The time complexity of the recursive version of matrix multiplication is still

O(N^3). However, Strassen found a way to reduce one sub-matrix multiplication in each

iteration. The process is as follows:

 1) Caculate s:

let P1 = a (f – h) = af – ah

let P2 = (a + b) h = ah + bh

s = P1 + P2 = af + bh

 2) Caculate t:

let P3 = (c + d) e = ce + de

let P4 = d (g – e) = dg – de

t = P3 + P4 = ce + dg

 3) Caculate r:

let P5 = (a + d) (e + h) = ae + ah + de + dh

let P6 = (b – d) (g + h) = bg + bh – dg – dh

r = P5 + P4 – P2 + P6 = ae + bg

 4) Caculate u:

let P7 = (a – c) (e + f) = ae + af – ce - cf

u = P5 + P1 – P3 – P7 = cf + dh

 P1 to P7 are intermediate sub-matrices. They are produced by 7 sub-matrix

multiplications.

The process is shown in Figure 5.1 to Figure 5.3.

26

Figure 5.1 Sub-matrices of A and B.

Seven intermediate sub-matrices are produced:

Figure 5.2 Calculate intermediate sub-matrices P1 to P7.

To calculate the result matrix C:

Figure 5.3 Calculate matrix C from sub-matrices P1 to P7.

27

5.2 Analysis

5.2.1 Time Complexity

There are seven multiplications of sub-matrices in each iteration, so

T(N) = 7T(N/2) + O(N^2)

Resolving the recurrence, we get

T(N) = O(N^lg2
7) = O(N^2.807)

5.2.2 Cache Performance

It is observed from the process followed by Strassen’s algorithm that the memory

accesses are quite scattered, so the cache performance is not good.

5.2.3 Memory Consumption

Strassen’s is a recursive algorithm. In iteration i, except the last one, it needs 17

intermediate N/2i by N/2i matrices. When the function returns, the intermediate memory

will be freed. There are log2
N/K iterations. Therefore, the memory needed could be

calculated as follows:

Memory = 3N^2 + 17((N/2)^2 + (N/4)^2 +…+ K^2)

= 3N^2 + (17N^2/3)(1-(K/N)^2)

 (in elements)

When K/N is small:

Memory = 3N^2 + (17N^2/3)

= 8.7 * N^2

 So it needs 2.9 times the memory of the previous algorithms.

28

5.2.4 Disadvantages

Strassen’s algorithm does not have stable performance. If N is not a power of 2, matrices

A , B and C will be padded to make their sizes powers of 2. This means extra memory

and computing time. In the worst case, N increases by 1, the computing complexity

increases six times and the memory consumption increases three times.

5.3 Results

In the actual implementation, it was found that it is inefficient for the algorithm to go

recursively down to a sub-matrix with one element. So a minimum block size is defined.

If the sub-matrix is smaller than the minimum block, the matrix multiplication is

implemented using the Brute-force algorithm. Various minimum block sizes were tried

and the performance of the algorithm is shown in the following sections.

5.3.1 Intel Xeon platform

Table 5.1 shows the time needed for calculating matrices of various sizes for Strassen’s

algorithm.

Table 5.1 Execution Time (in Seconds) of the Strassen’s Implementation on the Intel

Xeon Platform

Strassen’s Implementation
 Matrix Size
Block Size

64 128 256 512 1024 2048

4 0.007765 0.058314 0.389617 2.702897 19.372 132.834
8 0.004404 0.038448 0.251321 1.708744 11.963 82.893
16 0.003736 0.027557 0.213323 1.461209 10.102 70.350
32 0.005010 0.037459 0.202927 1.416484 10.004 69.778
64 0.004127 0.028823 0.208687 1.499320 10.429 72.877

29

The performance is better than Goto’s algorithm. Take block size = 32 as an

example to examine the figures for slowdowns and memory consumptions, as shown in

Table 5.2.

Table 5.2 Execution Time (in Seconds) of the Strassen’s Implementation on the Intel

Xeon for K=32

The slowdown is close to 7 independent of the matrix size. It is consistent with

the time complexity of O(N^2.807).

The memory expansion is defined as follows:

 The memory expansions observed in Table 5.2 have values close to but less than

the theoretical 2.9. This is because the calculation in the previous section does count

other memory consumptions, like local variables.

Strassen’s Implementation
Matrix
Size

64 128 256 512 1024 2048

Time Spent
(sec)

0.005010 0.037459 0.202927 1.416484 10.004 69.778

Slowdown

- 7.476 5.417 6.980 7.062 6.975

Memory
Consumption

- - 1.084M 6.876M 31.120M 121.8M

Size of three
Matrices

- - 0.768M 3M 12M 48M

Memory
Expansion

- - 1.41 2.29 2.59 2.54

30

5.3.2 Xilinx ML501 FPGA Platform

Table 5.3 shows the time needed for calculating matrices of various sizes with Strassen’s

algorithm.

Table 5.3 Execution Time (in Seconds) of Strassen’s Implementation on the Xilinx

FPGA Platform

Strassen’s Implementation
 Matrix Size
Block Size

64 128 256 512 1024

4 0.074 0.560 4.069 29.075 210
8 0.056 0.436 3.202 23.011 170
16 0.053 0.410 3.038 21.855 155
32 0.052 0.441 3.234 23.224 165
64 0.127 0.935 6.691 51 334

The performance is better than Goto’s algorithm.

When the block size is 16*16, the slowdowns are shown in Table 5.4.

Table 5.4 Execution Time (in Seconds) of Strassen’s Implementation on the Xilinx

FPGA Platform for K=16

Strassen’s Implementation
Matrix
Size

64 128 256 512 1024

Time Spent
(sec)

0.053 0.410 3.038 21.855 155

Slowdown

NA 7.735 7.409 7.193 7.092

The slowdown is always close to 7. It is consistent with the theoretical analysis.

31

CHAPTER 6

MKL IMPLEMENTATION

6.1 Introduction

MKL is Intel’s Math Kernel Library [10]. It is an optimized library for math. There are

several aspects of optimization.

1) Multithreading. MKL puts emphasis on multithreaded optimization for

multicores.

2) SIMD instructions. Execute in parallel using Intel’s SIMD instruction extensions

(SSE) which operate on eight 128-bit vector registers.

3) Assembly. Writing kernel functions in assembly. Carefully arrange instructions to

reduce stalls.

4) Cache. Increase cache performance by blocking in order to improve both the

spatial and temporal localities for better data accesses.

32

6.2 Results

Table 6.1 shows the execution results for MKL’s MM implementation

Table 6.1 Execution Time (in Seconds) of the MKL’s MM Implementation on the Intel

Xeon Platform

The slowdown keeps getting closer to 8 with increases in the matrix size. And the

memory expansion becomes close to 1. This implies that MKL is not using Strassen’s

algorithm but a block-based algorithm, otherwise the memory expansion will not be close

to 1.

MKL’s MM Implementation
Matrix
Size

64 128 256 512 1024 2048 4096

Time Spent
(sec)

0.02705
1

0.00123
1

0.00431
0

0.03038
2

0.328 2.516 20.00

Slowdown

NA 0.045 3.501 7.049 10.7 7.7 7.9

Memory
Consumption
(MB)

14.500 14.548 14.748 14.992 15.000 64.2 212.2

Size of the 3
Matrices
(MB)

0.048 0.192 0.768 3 12 48 192

Memory
Expansion

302.08 75.77 19.2 5.0 1.25 1.34 1.11

33

 CHAPTER 7

ACCELERATION USING VECTOR CO-PROCESSOR

7.1 Hardware Architecture

Figure 7.1 shows an in-house developed (at CAPPL laboratory) vector co-processor (VP)

computing platform [12] [13]. The scalar CPU is a Xilinx MicroBlaze (125MHz). The

CPU issues vector instructions to the VP. The VP loads data from the vector memory

(VM) into the VP vector register(s), carries out computations and then, stores the results

back into the VM. The CPU is responsible to transfer data from the off-chip DDR

memory to the vector memory through DMA transfers before the computations, and from

the vector memory to the DDR memory after the computations.

Figure 7.1 Vector processor computing platform architecture [taken from 12].

34

7.2 Calculation Process

The fundamental operation used is SAXPY (Single-precision real Alpha X Plus Y:

z=αx+y), which is a combination of scalar multiplication and vector addition in

computations with vector processors. In order to use vector instructions, the matrix

multiplication operation needs to be conducted in a different way than the traditional one.

The calculation process is as follows.

Figure 7.2 shows that C1 (sub-matrix of C) is calculated from A1 (sub-matrix of

A) and B, C2 from A2 and B, and so on.

Figure 7.2 Partitioning matrices A and C for VP-based MM.

Figure 7.3 shows that C1 is actually calculated as A1*B.

Figure 7.3 C1 is calculated as A1 * B.

 Figure 7.4 shows how the columns of A1 are multiplied with the rows in matrix

B. The first column of A1 is multiplied with the first row from B, to produce one layer of

C1. The second column of A1 is multiplied with the second row from B, and the results

are accumulated to C1. This procedure repeats until the final C1 is produced.

35

Figure 7.4 Partitioning A1 and B.

 Figure 7.5 shows that how one column of elements of A1 is multiplied with one

row of elements of B. One row of elements of B is divided in to several sections. The

section size is the chosen vector length. The vector length is the number of elements that

can be processed by one vector instruction. Before the calculation, B1 is transferred from

the DDR memory to vector memory. To overlap computations with data transfers, when

the computation happens on B1, B2 is being transferred to the vector memory.

Figure 7.5 Partitioning of C1.

 Figure 7.6 shows how C11 is produced. The first element of A11 is multiplied

with B11 to produce the first row of C11. The second element of A11 is multiplied with

B11 to produce the second row of C11, and so on.

Figure 7.6 Partitioning C11.

36

7.3 Analysis

7.3.1 Time Complexity

 The number of multiplications of elements is not reduced. The time complexity is

still O(N^3). However, in a vector processor, all lanes (processing units) in the VP can

conduct element multiplication simultaneously. Thus, the speedup depends on the

number of lanes. In this experiment, the number of lanes is eight. So the expected

speedup is 8.

7.3.2 Memory Consumption

 No extra memory in the DDR is needed, so the memory consumption is still

3*N^2 elements.

7.4 Results

Tables 7.1 and 7.2 show the performance of matrix multiplication on the VP platform

(125MHz). The vector length determines how many elements can be loaded into the VP

at one time. Compared to other methods that were tested previously, the speedup is

substantial.

Table 7.1 Execution Time (in seconds) of Matrix Multiplication on the VP Platform

 Matrix Size

Vector Length

1024

32 6.325

128 3.141

37

Table 7.2 Execution Time (in million clock cycles) of Matrix Multiplication on the VP
Platform

 Matrix Size

Vector Length

1024

32 809.6

128 402.0

38

 CHAPTER 8

PERFORMANCE COMPARISONS

The previous chapters presented the algorithms’ performance individually and the

implementations were compiled by disabling the optimizations. This chapter presents

thorough performance results in various scenarios.

8.1 Intel Xeon Platform

8.1.1 Optimization Disabled (OD)

The comparison is shown in Table 8.1. K*K is the block size in number of elements.

Table 8.1 Execution Time (in Seconds) of All the Implementations on the Intel Xeon

Platform with Compiling Optimization Disabled

 Compiler optimizations are disabled to provide a baseline reference. In reality,

some degree of optimization will be specified. Table 8.1 shows that Strassen’s

implementation runs slightly faster than Goto’s for large matrix multiplications.

 Matrix Size
Algorithm

64 128 256 512 1024 2048

Brute-force 0.002336 0.029708 0.253991 2.684 63.753 537.389
Basic Block-
based (K=32)

0.002677 0.043091 0.227063 1.683 13.470 108.300

Goto’s (K=8) 0.003932 0.022385 0.191102 1.453994 11.486 90.126
Strassen’s
(K=32)

0.005010 0.037459 0.202927 1.416484 10.004 69.778

MKL 0.027051 0.001231 0.004310 0.030382 0.328 2.516

39

8.1.2 Full Optimization (O3)

The comparison is shown in Table 8.2. K*K is the block size in number of elements.

Table 8.2 Execution Time (in Seconds) of All the Implementations on the Intel Xeon

Platform with Full Optimization (O3) [11]

 Table 8.2 shows that when compiling with the O3 option, Goto’s implementation

runs faster than Strassen’s algorithm and produces results even close to those of MKL.

This shows that when the computation becomes faster, the bottleneck results from

memory accesses.

8.2 Xilinx FPGA Platform

The comparison is shown in Table 8.1. K is the block size in number of elements.

 Table 8.3 shows that the vector processor speeds up the computation drastically. It

also shows that Strassen’s implementation runs faster than the Goto’s implementation.

This is because when the processor is slow (125MHz for our FPGA implementation), the

algorithm’s time complexity is more influential than the memory access efficiency.

 Matrix Size
Algorithm

64 128 256 512 1024 2048

Brute-force 0.000416 0.006999 0.080045 1.246206 61.403 491.611
Basic Block-
based (K=32)

0.000658 0.006737 0.044589 0.395463 3.054 24.686

Goto’s (K=64) 0.000350 0.004166 0.015871 0.116762 0.870 7.477
Strassen’s
(K=16)

0.001003 0.008999 0.065826 0.391564 2.661 18.565

MKL 0.050691 0.001343 0.004440 0.030711 0.200172 1.523986

40

Table 8.3 Execution Time (in Seconds) of All the Implementations on the Xilinx FPGA

Platform with and without the VP

 Matrix Size
Algorithm

64 128 256 512 1024

Brute-force 0.105 0.841 6.717 53.664 429.12
Basic Block-
based (K=8)

0.054 0.457 4.029 32.648 269.376

Goto’s (K=8) 0.054 0.472 4.335 32.975 264.281
Strassen’s
(K=16)

0.053 0.410 3.038 21.855 155

Vector
Processor

- - - - 3.141

8.3 MKL vs. VP

MKL was tested on the Intel Xeon platform which has a much higher clock frequency

than the VP platform. In order to compare the performance of MKL and VP, the

execution time is recorded in clock cycles. The result is shown in Table 8.4.

Table 8.4 Execution Time (in million clock cycles) of MM using MKL and the VP

 Matrix Size

Method

1024

MKL 640.5

VP 402.0

The result shows that the VP consumes fewer clock cycles than MKL.

41

CHAPTER 9

CONCLUSIONS

In terms of time complexity: Strassen’s matrix multiplication algorithm has time

complexity of O(N^2.807). The Brute-force, basic Block-based, Goto’s algorithm and VP

implementation all have time complexity of O(N^3). In terms of memory accesses: the

basic Block-based and Goto’s algorithm improve the cache performance by blocking,

which improves data access locality. Other than that, Goto’s algorithm improves the TLB

performance by copying kernel blocks into contiguous memory. The Brute-force and

Strassen’s algorithms have inferior cache performance due to poor data locality. The

results show that when the CPU is fast, Goto’s algorithm runs faster than Strassen’s

algorithm because the data access speed is the bottleneck in this case. On the contrary,

when the CPU is slow, Strassen’s algorithm runs faster because the computation

complexity becomes the key factor in this case. Finally, the results show that SIMD

platforms, such as the Intel Xeon with instruction extensions and the in-house developed

VP (Vector Processor) for FPGA prototyping, matrix multiplication is accelerated

substantially. In fact, the results show that the VP runs much faster than MKL (Intel’s

optimized Math Kernel Library) because the VP has can take advantage of much larger

vector lengths while its overheads are negligible.

42

APPENDIX

C SOURCE CODE

Here is all the source code implemented.

//config.h

#ifndef __CONFIG_H__

#define __CONFIG_H__

#define EN_THR

#define EN_BLK

#define EN_GOTO

#define EN_STRSN

#define EN_MKL

/* define DEBUG to use simpler initialized matrix value */

#define DEBUG

//#define PRT_MALLOC

//#define PRT_MTX

#define PRT_LIGHT

#ifdef PRT_LIGHT

 #define PRT_SIZE 4

#else

 #define PRT_SIZE mtx_sz

#endif

//#define EN_CHK

//#define CTN_ERR

43

#define MTX_SIZE 64

#define B_SZ 4

#define GOTO_BL_SZ 4

#define STRSN_BL_SZ 4

#define MAX_MTX_SIZE 2048

#define MAX_B_SZ 64

#define MAX_GOTO_BL_SZ 64

#define MAX_STRSN_BL_SZ 64

#define TEST_SIZE 2

//Strassen's

//#define MY_MALLOC

#define EN_FREE

#define MALLOC_BASE (XPAR_DDR2_SDRAM_MPMC_BASEADDR + 0x01000000)

#define A_MTX_BASE XPAR_DDR2_SDRAM_MPMC_BASEADDR

#define B_MTX_BASE (XPAR_DDR2_SDRAM_MPMC_BASEADDR + 0x00400000)

#define C_MTX_BASE (XPAR_DDR2_SDRAM_MPMC_BASEADDR + 0x00800000)

#define TST_MTX_BASE (XPAR_DDR2_SDRAM_MPMC_BASEADDR + 0x00C00000)

/* if define "CLOCK", it will use millisecond clock, otherwise high precision.*/

//#define CLOCK

#endif

//misc.h

44

#ifndef __MISC_H__

#define __MISC_H__

#include <malloc.h>

#include "config.h"

#define min(a,b) ((a)<(b)?(a):(b))

#define max(a,b) ((a)>(b)?(a):(b))

char* malloc_li(unsigned int size);

int free_li(char *p, unsigned int size);

void init_mtxs(float *DDR_A_mtx, float *DDR_B_mtx, float *DDR_C_mtx, unsigned int mtx_sz);

void blocking_mm(float *DDR_A_mtx, float *DDR_B_mtx, \

 float *DDR_C_mtx, unsigned int mtx_sz,\

 unsigned int B);

int cmp_mtx(float *A, float *B, unsigned int mtx_sz);

void printm(float *A, int lda, int n);

void resetm(float *A, unsigned int mtx_sz);

void goto_sgemm(float *A, int lda,\

 float *B, int ldb,\

 float *C, int ldc, \

 int Msz, int blk_size);

void stra_sgemm(float *A, int lda, float *B, int ldb, float *C, int ldc, \

45

 int n, unsigned int strsn_blsz);

double clock_it(void);

void thr_for_loop(float *DDR_A_mtx, float *DDR_B_mtx, float *DDR_C_mtx, unsigned int mtx_sz);

#endif

//goto_blas.c

#include "config.h"

#include "misc.h"

/*

 * Block multiply Panel.

 */

static void sgebp(float *A, int lda,\

 float *B, int ldb,\

 float *C, int ldc, \

 int Msz, int blk_size)

{

 float *a;

 unsigned int bs = blk_size * blk_size;

 int m, k, n, lixa, lixb, lixc, lixA;

 //copy A to continuous memory

#ifdef MY_MALLOC

46

 a = (float*)malloc_li(bs*sizeof(float));

#else

 a = (float*)malloc(bs*sizeof(float));

#endif

 for(m=0; m < blk_size; m++){

 lixA = m*lda;

 lixa = m*blk_size;

 for(k=0; k < blk_size; k++){

 *(a + lixa + k) = *(A + lixA + k);

 }

 }

 //normal MM mutliplication

 for(k=0; k < blk_size; k++){

 for(m=0; m <blk_size; m++){

 lixa=m*blk_size;

 lixb=k*ldb;

 lixc=m*ldc; //line index

 for(n=0; n <Msz; n++)

 *(C+ lixc +n) += *(a + lixa + k) * *(B + lixb + n);

 }

 }

#ifdef MY_MALLOC

 free_li((char *)a, bs*sizeof(float));

#else

 free(a);

#endif

47

}

/*

 * Panel multiply Panel.

 */

static void sgepp(float *A, int lda,\

 float *B, int ldb,\

 float *C, int ldc, \

 int Msz, int blk_size)

{

 int N = Msz/blk_size;

 int i = 0;

 float *Ax = A;

 float *Cx = C;

 int idxGapA = lda * blk_size;

 int idxGapC = ldc * blk_size;

 for(i = 0; i < N; i++) {

 sgebp(Ax, lda,\

 B, ldb,\

 Cx, ldc, \

 Msz, blk_size);

 Ax += idxGapA;

 Cx += idxGapC;

 }

}

/*

 * Matrix multiply Matrix.

48

 */

void goto_sgemm(float *A, int lda,\

 float *B, int ldb,\

 float *C, int ldc, \

 int Msz, int blk_size)

{

 int N, i;

 int idxGapA, idxGapB;

 float *Ax, *Bx;

 blk_size = blk_size < Msz ? blk_size : Msz;

 N = Msz/blk_size;

 Ax = A;

 Bx = B;

 idxGapA = blk_size;

 idxGapB = ldb * blk_size;

 for(i = 0; i < N; i++) {

 sgepp(Ax, lda,\

 Bx, ldb,\

 C, ldc, \

 Msz, blk_size);

 Ax += idxGapA;

 Bx += idxGapB;

 }

}

//main.c

/*

 * Xilinx EDK 12.3 EDK_MS3.70d

49

 *

 * This file is a sample test application

 *

 * This application is intended to test and/or illustrate some

 * functionality of your system. The contents of this file may

 * vary depending on the IP in your system and may use existing

 * IP driver functions. These drivers will be generated in your

 * XPS project when you run the "Generate Libraries" menu item

 * in XPS.

 *

 * Your XPS project directory is at:

 * D:\Programs\Xilinx\FALL_11\mb_board_test_v01\

 */

// Located in: microblaze_0/include/xparameters.h

#include <stdio.h>

#include<malloc.h>

#include <time.h>

#include <mkl_blas.h>

#include <windows.h>

#include "config.h"

#include "misc.h"

#ifdef MY_MALLOC

 extern unsigned int malloc_current ;

 extern unsigned int malloc_base;

 extern unsigned int malloc_high;

#endif

50

//==

int main (void) {

 unsigned int mtx_sz;

#ifdef EN_BLK

 unsigned int B;

#endif

#ifdef EN_GOTO

 unsigned int goto_blsz;

#endif

#ifdef EN_STRSN

 unsigned int strsn_blsz;

#endif

#ifdef EN_MKL

 const float alpha = 1;

 const float beta = 0;

 const char transa='t';

 const char transb='t';

#endif

 int re;

 float* DDR_A_mtx;

 float* DDR_B_mtx;

 float* DDR_C_mtx;

 float* DDR_T_mtx;

51

 double execTime;

#ifdef CLOCK

 double startTime, endTime;

#else

 LARGE_INTEGER nFreq;

 LARGE_INTEGER nBeginTime;

 LARGE_INTEGER nEndTime;

 double nCycles;

 QueryPerformanceFrequency(&nFreq);

#endif

#ifdef MY_MALLOC

 malloc_base = (unsigned int)malloc(256*1024*1024);//256M memory

 malloc_current = malloc_base;

 malloc_high = malloc_base + 256*1024*1024 - 1;

#endif

 for(mtx_sz = MTX_SIZE; mtx_sz <= MAX_MTX_SIZE; mtx_sz *= 2)

 {

 DDR_A_mtx = (float *)malloc(sizeof(float) * mtx_sz * mtx_sz);

 DDR_B_mtx = (float *)malloc(sizeof(float) * mtx_sz * mtx_sz);

 DDR_C_mtx = (float *)malloc(sizeof(float) * mtx_sz * mtx_sz);

 DDR_T_mtx = (float *)malloc(sizeof(float) * mtx_sz * mtx_sz);

 init_mtxs(DDR_A_mtx, DDR_B_mtx, DDR_C_mtx, mtx_sz);

 resetm(DDR_T_mtx, mtx_sz);

#ifdef PRT_MTX

52

 printf("A:\r\n");

 printm(DDR_A_mtx,mtx_sz ,PRT_SIZE);

 printf("B:\r\n");

 printm(DDR_B_mtx,mtx_sz ,PRT_SIZE);

 printf("C:\r\n");

 printm(DDR_C_mtx,mtx_sz ,PRT_SIZE);

#endif

#ifdef EN_THR

 {//Algorithm 1

 printf("\n---------- 3-for-loop:\r\n");

 printf("Matrix size = %d\r\n", mtx_sz);

 printf("START 3-for-loop implementation\r\n");

#ifdef CLOCK

 startTime = clock_it();

 // START PERFOMANCE ROUTINE

 thr_for_loop(DDR_A_mtx, DDR_B_mtx, DDR_T_mtx, mtx_sz);

 // END PERFOMANCE ROUTINE

 endTime = clock_it();

 execTime = endTime - startTime;

 printf("Execution time is %3.4f seconds\n", execTime);

#else

 QueryPerformanceCounter(&nBeginTime);

 // START PERFOMANCE ROUTINE

 thr_for_loop(DDR_A_mtx, DDR_B_mtx, DDR_T_mtx, mtx_sz);

 // END PERFOMANCE ROUTINE

 QueryPerformanceCounter(&nEndTime);

53

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart);

 execTime =nCycles /(double)nFreq.QuadPart;

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart);

 printf("Execution takes %.0f cycles\n", nCycles);

 printf("Execution takes %.9f seconds\n", execTime);

#endif

#ifdef PRT_MTX

 printf("T:\r\n");

 printm(DDR_T_mtx,mtx_sz ,PRT_SIZE);

#endif

 printf("END 3-for-loop implementation\r\n");

 }

#endif

#ifdef EN_BLK

 for(B = B_SZ; B <= MAX_B_SZ; B*=2){

 //Algorithm 2

 resetm(DDR_C_mtx, mtx_sz);

 printf("\n---------- Blocking algorithm:\r\n");

 printf("Matrix size = %d\r\n", mtx_sz);

 printf("Block size = %d\r\n", B);

 printf("START blocking implementation\r\n");

#ifdef CLOCK

 startTime = clock_it();

54

 // START PERFOMANCE ROUTINE

 blocking_mm(DDR_A_mtx, DDR_B_mtx, DDR_C_mtx, mtx_sz, B);

 // END PERFOMANCE ROUTINE

 endTime = clock_it();

 execTime = endTime - startTime;

 printf("Execution time is %3.4f seconds\n", execTime);

#else

 QueryPerformanceCounter(&nBeginTime);

 // START PERFOMANCE ROUTINE

 blocking_mm(DDR_A_mtx, DDR_B_mtx, DDR_C_mtx, mtx_sz, B);

 // END PERFOMANCE ROUTINE

 QueryPerformanceCounter(&nEndTime);

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart);

 execTime =nCycles /(double)nFreq.QuadPart;

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart);

 printf("Execution takes %.0f cycles\n", nCycles);

 printf("Execution takes %.9f seconds\n", execTime);

#endif

#ifdef PRT_MTX

 printf("C:\r\n");

 printm(DDR_C_mtx, mtx_sz,PRT_SIZE);

#endif

#ifdef EN_CHK

55

 if((re = cmp_mtx(DDR_C_mtx, DDR_T_mtx, mtx_sz)) != -1)

 {

 printf("Calculation wrong at row %d, column %d\r\n",re/mtx_sz, re%mtx_sz);

#ifndef CTN_ERR

 printf("Abort.\r\n");

 return -1;

#endif

 }

 else

 {

 printf("Result correct!\r\n");

 }

#endif

 printf("END blocking implementation\r\n");

 }//for

#endif

#ifdef EN_GOTO

 for(goto_blsz = GOTO_BL_SZ; goto_blsz <= MAX_GOTO_BL_SZ; goto_blsz*=2){

 //Algorithm 3

 resetm(DDR_C_mtx, mtx_sz);

 printf("---------- GotoBLAS algorithm:\r\n");

 printf("Matrix size = %d\r\n", mtx_sz);

 printf("Block size = %d\r\n", goto_blsz);

 printf("START GotoBLAS implementation\r\n");

#ifdef CLOCK

 startTime = clock_it();

 // START PERFOMANCE ROUTINE

56

 goto_sgemm(DDR_A_mtx, mtx_sz, DDR_B_mtx, mtx_sz,DDR_C_mtx, mtx_sz, mtx_sz,
goto_blsz);

 // END PERFOMANCE ROUTINE

 endTime = clock_it();

 execTime = endTime - startTime;

 printf("Execution time is %3.4f seconds\n", execTime);

#else

 QueryPerformanceCounter(&nBeginTime);

 // START PERFOMANCE ROUTINE

 goto_sgemm(DDR_A_mtx, mtx_sz, DDR_B_mtx, mtx_sz,DDR_C_mtx, mtx_sz, mtx_sz,
goto_blsz);

 // END PERFOMANCE ROUTINE

 QueryPerformanceCounter(&nEndTime);

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart);

 execTime =nCycles /(double)nFreq.QuadPart;

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart);

 printf("Execution takes %.0f cycles\n", nCycles);

 printf("Execution takes %.9f seconds\n", execTime);

#endif

#ifdef PRT_MTX

 printf("C:\r\n");

 printm(DDR_C_mtx,mtx_sz,PRT_SIZE);

#endif

#ifdef EN_CHK

57

 if((re = cmp_mtx(DDR_C_mtx, DDR_T_mtx, mtx_sz)) != -1)

 {

 printf("Calculation wrong at row %d, column %d\r\n",re/mtx_sz, re%mtx_sz);

#ifndef CTN_ERR

 printf("Abort.\r\n");

 return -1;

#endif

 }

 else

 {

 printf("Result correct!\r\n");

 }

#endif

 printf("END GotoBLAS implementation\r\n");

 }

#endif

#ifdef EN_STRSN

 for(strsn_blsz = STRSN_BL_SZ; strsn_blsz <= MAX_STRSN_BL_SZ; strsn_blsz*=2){

 resetm(DDR_C_mtx, mtx_sz);

 //Algorithm 4

 printf("---------- Strassen:\r\n");

 printf("Matrix size = %d\r\n", mtx_sz);

 printf("Block size = %d\r\n", strsn_blsz);

 printf("START STRASSEN\r\n");

#ifdef CLOCK

 startTime = clock_it();

 // START PERFOMANCE ROUTINE

58

 stra_sgemm(DDR_A_mtx, mtx_sz, DDR_B_mtx, mtx_sz, DDR_C_mtx, mtx_sz, \

 mtx_sz, strsn_blsz);

 // END PERFOMANCE ROUTINE

 endTime = clock_it();

 execTime = endTime - startTime;

 printf("Execution time is %3.4f seconds\n", execTime);

#else

 QueryPerformanceCounter(&nBeginTime);

 // START PERFOMANCE ROUTINE

 stra_sgemm(DDR_A_mtx, mtx_sz, DDR_B_mtx, mtx_sz, DDR_C_mtx, mtx_sz, \

 mtx_sz, strsn_blsz);

 // END PERFOMANCE ROUTINE

 QueryPerformanceCounter(&nEndTime);

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart);

 execTime =nCycles /(double)nFreq.QuadPart;

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart);

 printf("Execution takes %.0f cycles\n", nCycles);

 printf("Execution takes %.9f seconds\n", execTime);

#endif

#ifdef PRT_MTX

 printf("C:\r\n");

 printm(DDR_C_mtx,mtx_sz,PRT_SIZE);

#endif

59

#ifdef EN_CHK

 if((re = cmp_mtx(DDR_C_mtx, DDR_T_mtx, mtx_sz)) != -1)

 {

 printf("Calculation wrong at row %d, column %d\r\n",re/mtx_sz, re%mtx_sz);

#ifndef CTN_ERR

 printf("Abort.\r\n");

 return -1;

#endif

 }

 else

 {

 printf("Result correct!\r\n");

 }

#endif

 printf("END STRASSEN\r\n");

 }

#endif

#ifdef EN_MKL

 //Algorithm 3

 resetm(DDR_C_mtx, mtx_sz);

 printf("---------- MKL library:\r\n");

 printf("Matrix size = %d\r\n", mtx_sz);

 printf("START MKL implementation\r\n");

 //using function from MKL.

 //void sgemm(const char *transa, const char *transb, const MKL_INT *m, const MKL_INT *n,
const MKL_INT *k,

 //const float *alpha, const float *a, const MKL_INT *lda, const float *b, const MKL_INT *ldb,

 //const float *beta, float *c, const MKL_INT *ldc);

#ifdef CLOCK

60

 startTime = clock_it();

 //result = alpha * A * B + beta * C

 sgemm(&transa, &transb, &mtx_sz, &mtx_sz, &mtx_sz,

 &alpha, DDR_A_mtx, &mtx_sz, DDR_B_mtx, &mtx_sz,

 &beta, DDR_C_mtx, &mtx_sz);

 endTime = clock_it();

 execTime = endTime - startTime;

 printf("Execution takes %3.4f seconds\n", execTime);

#else

 QueryPerformanceCounter(&nBeginTime);

 //result = alpha * A * B + beta * C

 sgemm(&transa, &transb, &mtx_sz, &mtx_sz, &mtx_sz,

 &alpha, DDR_A_mtx, &mtx_sz, DDR_B_mtx, &mtx_sz,

 &beta, DDR_C_mtx, &mtx_sz);

 QueryPerformanceCounter(&nEndTime);

 nCycles = (double)(nEndTime.QuadPart-nBeginTime.QuadPart);

 execTime =nCycles /(double)nFreq.QuadPart;

 printf("The cpu's frequency is: %.0f Hz\n", (double)nFreq.QuadPart);

 printf("Execution takes %.0f cycles\n", nCycles);

 printf("Execution takes %.9f seconds\n", execTime);

#endif

#ifdef PRT_MTX

 printf("C:\r\n");

 printm(DDR_C_mtx,mtx_sz,PRT_SIZE);

#endif

#ifdef EN_CHK

61

 if((re = cmp_mtx(DDR_C_mtx, DDR_T_mtx, mtx_sz)) != -1)

 {

 printf("Calculation wrong at row %d, column %d\r\n",re/mtx_sz, re%mtx_sz);

#ifndef CTN_ERR

 printf("Abort.\r\n");

 return -1;

#endif

 }

 else

 {

 printf("Result correct!\r\n");

 }

#endif

 printf("END MKL implementation\r\n");

#endif

 free(DDR_A_mtx);

 free(DDR_B_mtx);

 free(DDR_C_mtx);

 free(DDR_T_mtx);

 }//outer most "for"

 printf("-- Exiting main()--\r\n");

 return 0;

}

//strassen.c

#include <stdio.h>

62

#include "misc.h"

#include "config.h"

//singel precision general matrix-matrix addition

//'ld' is leading dimenstion, for example, for submatrix in A[m][n], their leading dimension is 'm'.

void sgema(float *A, int lda, float *B, int ldb, float *C, int ldc, int n)

{

 int i,j;

 for(i=0; i < n; i++)

 {

 for(j=0; j < n; j++)

 {

 *(C + i*ldc + j) = *(A + i*lda + j) + *(B + i*ldb + j);

 }

 }

}

//singel precision general matrix-matrix substraction

void sgems(float *A, int lda, float *B, int ldb, float *C, int ldc, int n)

{

 int i,j;

 for(i=0; i < n; i++)

 {

 for(j=0; j < n; j++)

 {

 *(C + i*ldc + j) = *(A + i*lda + j) - *(B + i*ldb + j);

 }

 }

}

63

//matrix-matrix multiplication

void stra_sgemm(float *A, int lda, float *B, int ldb, float *C, int ldc, \

 int n, unsigned int strsn_blsz)

{

 //print("Entering sgemm.\r\n");

 if(n <= strsn_blsz)

 {

 int i,j,k;

 for(i=0; i<n; i++)

 {

 for(j=0; j<n; j++)

 {

 *(C + i*ldc +j) = 0;

 for(k=0; k<n; k++)

 {

 *(C + i*ldc +j) += *(A + i*lda +k) * *(B + k*ldb + j);

 }

 }

 }

 }

 else

 {

 int ldm = n/2;

 float *a,*b,*c,*d;

 float *e,*f,*g,*h;

 float *r,*s,*t,*u;

#ifdef MY_MALLOC

 float *p1 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *p2 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *p3 = (float *)malloc_li(sizeof(float) * ldm * ldm);

64

 float *p4 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *p5 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *p6 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *p7 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *A1 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *A2 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *A3 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *A4 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *A5 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *B5 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *A6 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *B6 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *A7 = (float *)malloc_li(sizeof(float) * ldm * ldm);

 float *B7 = (float *)malloc_li(sizeof(float) * ldm * ldm);

#else

 float *p1 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *p2 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *p3 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *p4 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *p5 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *p6 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *p7 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *A1 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *A2 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *A3 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *A4 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *A5 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *B5 = (float *)malloc(sizeof(float) * ldm * ldm);

65

 float *A6 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *B6 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *A7 = (float *)malloc(sizeof(float) * ldm * ldm);

 float *B7 = (float *)malloc(sizeof(float) * ldm * ldm);

#endif

 a = A;

 b = A + ldm;

 c = A + lda * ldm;

 d = c + ldm;

 e = B;

 f = B + ldm;

 g = B + ldb * ldm;

 h = g + ldm;

 r = C;

 s = C + ldm;

 t = C + ldc * ldm;

 u = t + ldm;

 //p1 = a * (f - h);

 sgems(f, ldb, h, ldb, A1, ldm, ldm);

 stra_sgemm(a, lda, A1, ldm, p1, ldm, ldm, strsn_blsz);

 //p2 = (a + b) * h;

 sgema(a, lda, b, lda, A2, ldm, ldm);

 stra_sgemm(A2, ldm, h, ldb, p2, ldm, ldm, strsn_blsz);

 //p3 = (c + d) * e;

66

 sgema(c, lda, d, lda, A3, ldm, ldm);

 stra_sgemm(A3, ldm, e, ldb, p3, ldm, ldm, strsn_blsz);

 //p4 = d * (g - e);

 sgems(g, ldb, e, ldb, A4, ldm, ldm);

 stra_sgemm(d, lda, A4, ldm, p4, ldm, ldm, strsn_blsz);

 //p5 = (a + d) * (e + h);

 sgema(a, lda, d, lda, A5, ldm, ldm);

 sgema(e, ldb, h, ldb, B5, ldm, ldm);

 stra_sgemm(A5, ldm, B5, ldm, p5, ldm, ldm, strsn_blsz);

 //p6 = (b - d) * (g + h);

 sgems(b, lda, d, lda, A6, ldm, ldm);

 sgema(g, ldb, h, ldb, B6, ldm, ldm);

 stra_sgemm(A6, ldm, B6, ldm, p6, ldm, ldm, strsn_blsz);

 //p7 = (a -c) * (e + f);

 sgems(a, lda, c, lda, A7, ldm, ldm);

 sgema(e, ldb, f, ldb, B7, ldm, ldm);

 stra_sgemm(A7, ldm, B7, ldm, p7, ldm, ldm, strsn_blsz);

 //r = p5 + p4 - p2 + p6;

 sgema(p5, ldm, p4, ldm, A1, ldm, ldm);

 sgems(A1, ldm, p2, ldm, A2, ldm, ldm);

 sgema(A2, ldm, p6, ldm, r, ldc, ldm);

 //s = p1 + p2;

 sgema(p1, ldm, p2, ldm, s, ldc, ldm);

67

 //t = p3 + p4;

 sgema(p3, ldm, p4, ldm, t, ldc, ldm);

 //u = p5 + p1 - p3 - p7;

 sgema(p5, ldm, p1, ldm, A1, ldm, ldm);

 sgems(A1, ldm, p3, ldm, A2, ldm, ldm);

 sgems(A2, ldm, p7, ldm, u, ldc, ldm);

#ifdef MY_MALLOC

#ifdef EN_FREE //free space

 //free space

 free_li((char*)B7, sizeof(float) * ldm * ldm);

 free_li((char*)A7, sizeof(float) * ldm * ldm);

 free_li((char*)B6, sizeof(float) * ldm * ldm);

 free_li((char*)A6, sizeof(float) * ldm * ldm);

 free_li((char*)B5, sizeof(float) * ldm * ldm);

 free_li((char*)A5, sizeof(float) * ldm * ldm);

 free_li((char*)A4, sizeof(float) * ldm * ldm);

 free_li((char*)A3, sizeof(float) * ldm * ldm);

 free_li((char*)A2, sizeof(float) * ldm * ldm);

 free_li((char*)A1, sizeof(float) * ldm * ldm);

 free_li((char*)p7, sizeof(float) * ldm * ldm);

 free_li((char*)p6, sizeof(float) * ldm * ldm);

 free_li((char*)p5, sizeof(float) * ldm * ldm);

 free_li((char*)p4, sizeof(float) * ldm * ldm);

 free_li((char*)p3, sizeof(float) * ldm * ldm);

 free_li((char*)p2, sizeof(float) * ldm * ldm);

68

 free_li((char*)p1, sizeof(float) * ldm * ldm);

#endif

#else

 free(p1);

 free(p2);

 free(p3);

 free(p4);

 free(p5);

 free(p6);

 free(p7);

 free(A1);

 free(A2);

 free(A3);

 free(A4);

 free(A5);

 free(B5);

 free(A6);

 free(B6);

 free(A7);

 free(B7);

#endif

 }

}

//utility.c

#include <stdio.h>

#include <time.h>

69

#include "config.h"

#include "misc.h"

#ifdef MY_MALLOC

unsigned int malloc_current = 0;

unsigned int malloc_base=0;

unsigned int malloc_high=0;

char* malloc_li(unsigned int size)

{

 char *ret;

 ret = (char*)malloc_current;

 if((malloc_current + size) > malloc_high)

 {

 printf("Error: Malloc(), not enough memory.\r\n");

 printf("size: %d, current: 0x%x \r\n", size, malloc_current);

 return 0;

 }

 else

 {

 malloc_current += size;

#ifdef PRT_MALLOC

 xil_printf("malloced: %d, current: 0x%x \r\n", size, malloc_current);

#endif

 return ret;

 }

}

int free_li(char *p, unsigned int size)

70

{

 if((malloc_current - size) < malloc_base)

 {

 printf("Error: free_li(), reached bottom.\r\n");

 printf("size: %d, current: 0x%x \r\n", size, malloc_current);

 return -1;

 }

 else

 {

 malloc_current -= size;

 p = 0;

#ifdef PRT_MALLOC

 xil_printf("freed: %d, current: 0x%x \r\n", size, malloc_current);

#endif

 return 0;

 }

}

#endif

void init_mtxs(float *DDR_A_mtx, float *DDR_B_mtx, float *DDR_C_mtx, unsigned int mtx_sz)

{

 unsigned int i, j;

 printf("START Initialize DDRAM\r\n");

 // Initialize DDRAM

 for (i=0; i<mtx_sz; i++) {

 for (j=0; j<mtx_sz; j++) {

#ifndef DEBUG

 DDR_A_mtx[i*mtx_sz+j] = (float)(i*j+1)/(float)23;

 DDR_B_mtx[i*mtx_sz+j] = (float)(i*j+3)/(float)31;

71

 DDR_C_mtx[i*mtx_sz+j] = (float)0.0;

#else

 DDR_A_mtx[i*mtx_sz+j] = (float)((i*j+1)%2)/(float)10.0;

 DDR_B_mtx[i*mtx_sz+j] = (float)((i*j+3)%3)/(float)10.0;

 DDR_C_mtx[i*mtx_sz+j] = (float)0.0;

#endif

 }

 }

 printf("END Initialize DDRAM\r\n");

}

//get the current time in seconds

double clock_it(void)

{

 clock_t start;

 double timeInSec;

 start = clock();

 timeInSec = (double)(start) / CLOCKS_PER_SEC;

 return timeInSec;

}

//three for loops implementation of Matrix-Matrix Multiplication

void thr_for_loop(float *DDR_A_mtx, float *DDR_B_mtx, float *DDR_C_mtx, unsigned int mtx_sz)

{

 unsigned int i,j,k;

 float sum;

 for (i=0; i<mtx_sz; i++) {

72

 for (j=0; j<mtx_sz; j++) {

 sum=0.0;

 for (k=0; k<mtx_sz; k++) {

 sum+= DDR_A_mtx[i*mtx_sz+k] * DDR_B_mtx[k*mtx_sz+j];

 }

 DDR_C_mtx[i*mtx_sz+j]=sum;

 }

 }

}

/*

 * Blocking implementation of MM Multiplication.

 * Caculate block by bock to increase cache hit rate.

 */

void blocking_mm(float *DDR_A_mtx, float *DDR_B_mtx, \

 float *DDR_C_mtx, unsigned int mtx_sz,\

 unsigned int B)

{

 unsigned int i, j, k, jj, kk;

 float sum;

 B = B < mtx_sz ? B : mtx_sz;

 for (jj=0; jj<mtx_sz; jj=jj+B) {

 for (kk=0; kk<mtx_sz; kk=kk+B) {

 for (i=0; i<mtx_sz; i=i+1) {

 for (j=jj; j<min(jj+B,mtx_sz); j++) {

 sum=0.0;

 for (k=kk; k<min(kk+B,mtx_sz); k++) {

 sum+=DDR_A_mtx[i*mtx_sz+k] *
DDR_B_mtx[k*mtx_sz+j];

 }

 DDR_C_mtx[i*mtx_sz+j]+=sum;

73

 }

 }

 }

 }

}

int cmp_mtx(float *A, float *B, unsigned int mtx_sz)

{

 int i,j;

 int test_size;

 test_size = TEST_SIZE < mtx_sz ? TEST_SIZE : mtx_sz;

 for (i=0; i<test_size; i=i+1) {

 for (j=0; j<test_size; j=j+1)

 {

 if((A[i*mtx_sz+j] - B[i*mtx_sz+j]) < 1)

 continue;

 else

 return i*mtx_sz+j;

 }

 }

 return -1;

}

//print matrix

void printm(float *A, int lda, int n)

{

 float x;

 int i,j;

 for(i=0; i < n; i++)

 {

74

 for(j=0; j < n; j++)

 {

 x = *(A + i*lda + j);

 printf("\t%.2f",x);

 }

 printf("\n");

 }

 printf("\n");

}

void resetm(float *A, unsigned int mtx_sz)

{

 unsigned int i,j;

 for (i=0; i<mtx_sz; i=i+1) {

 for (j=0; j<mtx_sz; j=j+1)

 {

 A[i*mtx_sz+j] = 0;

 }

 }

}

75

REFERENCE

[1] John L. Hennessy and David A. Patterson , Computer Architecture: A Quantitative

Approach, 4th ed. San Francisco, CA: Morgan Kaufmann, 2006, pp. 288-305.

[2] K. Goto and R. A. van de Geijn, “Anatomy of high-performance matrix

multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, Article 12, 2008

[3] Thomas H. Cormen, Charles E. Leiserson and Clifford Stein, Introduction To

Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001, pp. 632-646.

[4] Don Coppersmith and Shmuel Winograd, "Matrix multiplication via arithmetic

progressions", Journal of Symbolic Computation, vol. 9, no. 3, pp. 251-280, 1990

[5] Volker Strassen, “Gaussian Elimination is not Optimal,” Numer. Math., vol. 13, pp.

354-356, 1969

[6] Mengqi Jiang, Yunquan Zhang, Gang Song and Yucheng Li. “Research on High

Performance Implementation Mechanism of GOTOBLAS General Matrix-matrix

Multiplication,” Computer Engineering, vol. 34, no. 7, pp. 84-86, 2008

[7] Zhonglong Lu, Cheng Zhong and Hualin Huang, “Non-recursive Parallel

Computation for Matrix Multiplication on Multi-core Computers,” Journal of Chinese

Computer Systems, vol. 32, no. 5, pp. 860-866, 2011

[8] (2012, March 23). [Online]. Available: http://en.wikipedia.org/wiki/OpenMP

[9] (2012, March 29). [Online]. Available:

http://en.wikipedia.org/wiki/Automatically_Tuned_Linear_Algebra_Software

[10] (2012, March 29). Intel® Math Kernel Library Reference Manual [Online].

Available:

http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/index.htm

76

[11] (2012, April 01). Quick-Reference Guide to Optimization with Intel® Compilers

version 12 [Online]. Available:

http://software.intel.com/sites/products/collateral/hpc/compilers/compiler_qrg12.pdf

[12] S. F. Beldianu and S. G. Ziavras, “Multicore-based Vector Coprocessor Sharing for

Performance and Energy Gains,” ACM Transactions on Embedded Computing Systems,

Accepted for publication.

[13] S. F. Beldianu, "Vector Coprocessor Sharing Techniques for Multicores:

Performance and Energy Gains", PhD Dissertation, New Jersey Institute of Technology,

May 2012

	High-performance matrix multiplication on Intel and FGPA platforms
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Brute-Force Implementation
	Chapter 3: Basic Block-Based Implementation
	Chapter 4: Goto’s Implementation
	Chapter 5: Strassen’s Implementation
	Chapter 6: MKL Implementation
	Chapter 7: Acceleration Using Vector Co-Processor
	Chapter 8: Performance Comparisons
	Chapter 9: Conclusions
	Appendix: C Source Code
	Reference

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

