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ABSTRACT 

MOXON BASED RFID TAG READER AND GPS ANTENNA 

by 

Haojiong Liu 

Modern communication applications at UHF frequencies require antennas with wide band, 

high forward gain, low backward radiation, high cross-polarization, small size and low 

manufacture cost.  The Moxon antenna based on a two element Yagi-Uda antenna over the 

ground reflector is one of the most favorite antennas for HAM operators which can 

produce outstanding front to back ratio of radiated power, good match over the desired 

band and relatively low elevation height.    

A sequence of topologies has been proposed from a single vertical element to two 

vertical elements of the Moxon arms, until the lately patented Broadband Circularly 

Polarized Moxon Based Antennas for UHF satellite communications (SATCOM).  The 

logic was to obtain the best possible performance based on Fano-Chu limits for electrically 

small antenna with maximum radiating elements in a given volume.  This dissertation is an 

extension of this configuration to cover Radio Frequency IDentification (RFID) (850 

MHz-1050 MHz) and Global Positioning System (GPS) (centered at 1227 MHz and 1575 

MHz) bands.  Prototype antennas are built based on HFSS-11 simulations and 

experimental measurements yielded satisfactory results.  Various design parameters of the 

proposed complex antenna are optimized to obtain a significant size reduction and much 

improved performance than the commercial counterpart antennas. 
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1 

CHAPTER 1  

INTRODUCTION 

Antenna is commonly described as a transducer that converts electric currents/EM waves 

to EM waves/electric currents depending on being used in a transmitting/receiving mode.  

Modern applications of antennas encompass various functions, communication systems, 

radars, RFID, GPS are just few of the whole array of that is being used today.  Various 

constraints and specifications arise depending on the needs of the particular application.  

Here, we focus on optimizing gain and bandwidth for reduced physical dimensions of the 

RFID tag reader and GPS antenna utilized in circular polarization excitation.   

This work is an extension of the previously developed SATCOM antenna [1] based 

on Moxon antenna [2] to RFID and GPS frequency bands. 

1.1 Antenna for Radio Frequency IDentification 

Radio Frequency IDentification (RFID) is a wireless non-contact system use of radio 

frequency electromagnetic fields to probe remote tags to retrieve/change data for 

identification and tracking through a tag reader [3].  A basic RFID system consists of two 

elements, reader and tags.  The reader is a scanner unit and the tags are sets of remote 

transponders which could either be passive or active.  Every tag includes an antenna and a 

microchip transmitter with internal read/write memory.  Tags could be classified as passive 

tags with no internal battery or as active tags with a battery.  RFID technology has several 

standardized bands of operation.  Ultra-high frequency (UHF, 815-860 MHz) band allows 
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longer communication ranges and smaller tags especially in sensor network applications.  

RFID antennas are usually designed based on several factors [4], such as operating 

frequency band, tag’s reading distance from the reader, tag’s known orientation to the 

reader, tag’s arbitrary orientation to the reader, polarization of the reader antenna.  Higher 

gain of the RFID Tag reader antenna is critical in increasing the physical range between the 

tag reader and the tag.  Circular polarization of the tag reader antenna improves the overall 

reception due to tag antennas which are mostly linearly polarized. 

1.2 Antenna for Global Positioning System 

Global Positioning System (GPS) [5] is a space-based satellite navigation system that can 

provide location and time information.  GPS system operates in dual frequency bands at L1 

(1227.60 10.23  MHz) and L2 (1575.42 10.23  MHz) bands.  L1 band is used for civilian 

purposes whereas L2 band is encrypted for demanding applications that require better 

accuracy and altitude information and primarily used by military.  There are many 

important parameters such as gain, efficiency, radiation pattern and bandwidth that should 

be considered carefully for a successful GPS reception in terms of the signal to noise ratio 

performance at the receiver.  A radiation pattern with a broad front lobe is required to 

obtain uniform coverage of necessary satellites.  The radiation patter also should have a 

sharp slope for low elevation angles to avoid multipath and tropospheric effects.  A high 

cross-polarization will also help to provide discrimination between the direct and reflect 

signals to eliminate the multipath effects.   

This thesis is divided into five chapters.  Chapter 1 introduces the basic idea of 

antenna for RFID and GPS applications.  Chapter 2 describes the principle of the Moxon 



3 

 

 

antenna (two element Yagi-Uda antenna).  Chapter 3 includes the definition of electrically 

small antenna, the physical limitations for electrically small antenna and some 

miniaturization techniques.  Chapter 4 is the procedure of simulation and results for the 

simulation and prototypes that have been built.  It also contains some comparison between 

the antennas designed in the thesis and some other antennas that already in the practice.   

Chapter 5 summarizes conclusions. 
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CHAPTER 2 

MOXON (TWO ELEMENT YAGI-UDA) ANTENNA 

2.1 Introduction 

Yagi-Uda antenna is a kind of directional antenna consist one driven element (usually a 

dipole) and additional parasitic elements (reflector and one or more directors).  The 

reflector element is longer than the driven dipole and the director elements are shorter than 

the driven dipole.  Direction of radiation is from the reflector towards the driven element 

and the director(s).  Yagi-Uda antenna is popular because of its highly directional 

properties and high gain.  However, this high gain can only be achieved in a narrow range 

of the specified bandwidth. 

2.2 Yagi-Uda Antenna: Two Elements 

A two element Yagi-Uda antenna consist two parallel dipoles with a distance d  apart.  

One connected to the source and the other shorted.  The geometry is shown in Figure 2.1. 

[6]  
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Figure 2.1  An array of two parallel dipoles, one driven, and one parasitic [6]. 

The mesh equations for this array are 

1 1 11 2 12

1 21 2 220

V I Z I Z

I Z I Z

 

 
    (2.1) 

and 

2 12

1 22

I Z

I Z
       (2.2) 

Since the array factor is given by 

cos2

1

( ) 1 jkdI
e

I

        (2.3) 
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One can obtain that the shape of the pattern is dominated by the spacing d /  and 

by –
12Z /

22Z .  It is also known that if the lengths of the two dipoles are near first resonance, 

the phase of the mutual impedance as a function of d /  can be ignored because it is quite 

insensitive to the value of 2
1l /  and 2

2l / .  So that the phase of 
2I /

1I , is controlled by the 

phase of 
22Z  as shown in (2.2). 

From the derivation of two parallel dipoles, the mutual impedance 
12Z  can be 

obtained with equation (2.4) and (2.5): 

Figure 2.2  Two parallel Dipoles [6]. 
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/
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
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   (2.4) 
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l
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
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    

   (2.5) 
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Where (0, y, z+
2 ) is the position of a point on the axis of dipole 2 with the central 

point of dipole 2 at the arbitrary position (0, y, z) in the YZ-plane, and dipole 1 is centered 

at the origin.   

22Z  can also be obtained using King-Middleton second-order solution (2.6) and 

(2.7): 

4 4

0 0

( , ) ( ) ( )

n

m

mn

m n

a a
R kl a kl

  

     (2.6) 

4 4

0 0

( , ) ( ) ( )

n

m

mn

m n

a a
X kl b kl

  

     (2.7) 

Where a /  is the normalized radius, 
mna  and 

mnb  are expansion coefficients. 

Since the goal is to obtain an end-fire pattern with this two element Yagi-Uda 

antenna, if 2
1l /  is given, one can seek if there are combinations of d /  and 2

2l / which 

will enhance end-fire radiation.   

As the input impedance often desired to be pure real, it is needed to adjust the ratio 

of 2
1l / .  From (2.1), 

2

1 2 12
11 12 11

1 1 22

IN

V I Z
Z Z Z Z

I I Z
         (2.8) 

The imaginary part of 
11Z  and the imaginary part of - 2

12Z / 
22Z  has to cancel each 

other.  For a two element Yagi-Uda antenna, a forward optimum and a rearward optimum 

cannot be achieved at the same spacing.  Examples of forward radiation and rearward 

radiation are shown in Figure 2.3: 
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Figure 2.3  (a) H-Plane Power Patterns for Two-Element Yagi-Uda Arrays (forward) [6]. 

 

Figure 2.3  (b) H-Plane Power Patterns for Two-Element Yagi-Uda Arrays (rearward) [6]. 

Moxon antenna [1] is an extension of the two element Yagi-Uda array where linear 

dipole is bent over the reflector (ground).  Such a combination results in higher forward 

gain, weak back lobe radiation and uniform impedance over a sufficient bandwidth. 



9 

CHAPTER 3 

ELECTRICALLY SMALL ANTENNA 

 3.1 Electrically Small Antenna 

Electrically small antenna has been an attractive feature for numerous applications where 

the largest dimension of the antenna is no more than one-tenth of the wavelength [7].  

However, this constraint could be relaxed further to maximum physical dimensions of less 

than half a wavelength.  It is almost always desirable to have a smaller antenna without 

compromising the performance.  Electrically small antenna has various applications in HF 

and VHF bands for tactical radios for mobile use, SATCOM antennas on broad of vehicles, 

helicopters and ships are just few worth to mention.  Performance limitations such as gain 

and efficiency become obvious as antenna dimensions get smaller followed by impedance 

match over the desired frequency band.  Most applications are embedded in the 

environment with a finite ground plane resulting in back lobe radiation as well as reduced 

cross-polarization.  Considering above parameters Moxon antenna [1] has been very 

popular among the HAM operators worldwide.  Moxon antenna is known for its compact 

size and its directive properties due to the presence of the ground plane.  Keeping in mind 

the physical constraints placed as Fano-Chu limits for electrically small antennas [8]-[9] 

resulting in electrically small antenna with maximum radiating elements in a given 

volume.   
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3.2 Physical Limitations of Omnidirectional Antenna 

Electrically small antennas pose a major problem in regard to their electrical performance 

[10].  The radiation resistance of these antennas decreases rapidly with decreasing size but 

have a large reactive component, that makes the matching very difficult and inefficient due 

to the significant impedance of large reactive component in the system that contributes to 

system loss.  As a consequence, the antenna performance parameters such as radiation 

efficiency, S/N-ratio, and bandwidth tend to deteriorate to unacceptable levels. 

The limitations of omnidirectional antennas are estimated based on the following 

three criteria: 

- Maximum gain (G) for a given complexity of the antenna structure,  

- Minimum Q,  

- Maximum ratio of G/Q. 

3.2.1 Field of a Vertically Polarized Omnidirectional Antenna 

Consider the field of a vertically polarized omnidirectional antenna lies totally within a 

spherical surface of a radius a.  Under the spherical coordinate system ( , ,R   ), with an 

arbitrary current  distribution and antenna structure, the three non-vanishing field 

components can be expressed in terms of a complete set of orthogonal, spherical waves, 

propagating radially outward.  For a vertically polarized omnidirectional antenna, only TM 

modes exit. 

1

1

(cos ) ( )

( )
( 1) (cos )

1
(cos ) [ ( )]

n n n

n

n
R n n

n

n n n

n

H A P h kR

h kR
E j A n n P

kR

d
E j A P Rh kR

kR dR



















  









   (3.1) 
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where (cos )nP   is the Legendre polynomial of order n, 1(cos )nP   is the first 

associated Legendre polynomial, ( )nh kR  is the spherical Hankel function of the second 

kind, 2 /k      , /   is the wave impedance of a plane wave in free space and 

1/   is the velocity of a plane wave in free space.  
nA  is a complex coefficients that can 

be determined from the boundary conditions if the antenna structure is given.  In the 

equations, the time factor j te   is omitted. 

 

Figure 3.1  Schematic diagram of a vertically polarized omnidirectional antenna [10]. 
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3.2.2 Far Field Characteristics 

In the far field, the asymptotic field becomes 

1

12( 1) (cos )
njkR

n n

n

e
E A P

kR

H E



 












 




   (3.2) 

by the definition of directivity gain,  

2
1

12
2

2 2 2

0 0

( 1) (cos )
4

( )
( 1)sin
2 1

n

n n

n

n

n

A P
E

G
n nE d d A

n



 







  





 






  
   (3.3) 

The denominator is obtained from the orthogonality of the associated Legendre 

polynomials: 

2
1

0

2 ( 1)
[ (cos )] sin

2 1
n

n n
P d

n



  



    

and  

1 1

0
[ (cos )] '(cos )sin 0n nP P d



      for 'n n   

In the equatorial plane, / 2  ,  

1(0) 0nP   for n even and 

1

1 2

1 2

!
(0) ( 1)

1
2 ( !)

2

n

n
n

n
P

n





 


 for n odd 

Thus all the even n terms have no contribution to the radiation field along the 

equator plane.  To obtain a high directivity gain in the equatorial plane, it is necessary to 

have  

0nA   for n even 
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While all the 
nA  for odd n terms have the same phase angle.  Consider all 

nA  to be 

positive real numbers for odd n and zero for even n, the directivity gain on the equatorial 

plane can be rewritten as  

1

12

2

[ ( 1) (0)]
( )

( 1)2

2 1

n

n n

n

A P
G

n n
A

n















    (3.4) 

3.2.3 Equivalent Circuits for Antenna 

The complete equivalent circuit for the antenna is given in Figure 3.2.   

 

Figure 3.2  Equivalent circuit for a vertically polarized omnidirectional antenna [10]. 
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The circular box is a coupling network that represents the space inside the 

geometrical sphere is shown in Figure 3.1.  The input terminal represents the source of the 

antenna.  Because of the orthogonal properties of the spherical waves, there will be no 

coupling between any two of the spherical waves outside the sphere.   That means the total 

energy, electric or magnetic is equal to the sum of energies of each spherical wave 

component.  In that case, it is possible to replace the space outside the sphere by a number 

of independent equivalent circuits, each with a pair of terminals connected to the box 

which represents the inside of the sphere.  The number of the terminals is N+1 while N is 

the number of spherical waves used in describing the field outside the sphere. 

The current, voltage, and impedance of the equivalent circuits are: 

4 ( 1)
4 ( ) '

2 1

4 ( 1)
4

2 1

( ) '/

n
n n

n
n n

n n n

A n n
V j h

k n

A n n
I h

k n

Z j h h

 




 




 













    (3.5) 

where ka  , ( )n nh h  , ( ) ' ( )n n

d
h h

d
  


 . 

The impedance 
nZ  can also be written as a continued fraction: 

1

2 1 1

2 3
...

n

n
Z

nj
nj

j







 







    (3.6) 

This function represents a cascade circuit of series capacitances and shunt 

inductances terminated with a unit resistance.  This circuit is shown in Figure 3.3. 
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Figure 3.3  Equivalent circuit of 
nZ  [10]. 

The capacitances and inductances are proportional to the ratio of the radius of the 

sphere to the speed of light.  To approximate the equivalent circuit of 
nZ  use simple RLC 

circuit that has the same frequency behavior of the operating frequency, 
nR ,

nC and 
nL  can 

be calculated by (3.7):  
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where 
2

[ ( ) ' ( ) ']n n n n n nX j j n n h    


  , 
nj  and 

nn  are the spherical Bessel 

functions of the first and second kind. 

The average power dissipation in 
nZ and the average electric energy stored in 

nZ  

can be obtained. 
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Define 
nQ  as 
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Assume there is no conduction loss in the antenna structure, there will be no 

electrical energy stored besides the form of travelling wave and the average magnetic 

energy stored beyond the terminals is equal to the average electric energy stored at 

operating frequency. 

Now, define a quantity Q at the input terminals: 

2ω times the mean electric energy stored beyond the input terminal

power dissipated in radiation
Q   

In this case, if this Q is low, the input impedance of the antenna varies slowly with 

frequency, that means the antenna is potentially wideband.  If it is high, the bandwidth of 

the antenna is equal to the reciprocal of Q. 

Now, Q can be written as: 
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     (3.11) 

where 
nQ  is given in (3.10) 

3.2.4 Criterion I: Maximum Gain 

Whenever the antenna’s structure is given, it is always demanded that the antenna can yield 

the possible maximum gain.  Differentiating the gain in the equatorial plane, [Eq.  (3.4)], 

with the respect to the coefficient 
nA  and setting the derivative to zero,  
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Noticed that there are as many equations of this form as the number of terms in the 

nA  series, therefore, 
nA  can be solved in terms of the first coefficient 

1A  as 
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Remember that 0nA   for n even, the corresponding gain and Q of the antenna will 

lead to 

1
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N
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where N is an odd integer indicate the order of the series, which represented the 

complexity of the source distribution, and  

1 22 1
[ (0)]

( 1)
n n

n
a P

n n


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
     (3.15) 

Except for the first few terms, 

4 /na       (3.16) 

Under this criterion, the gain has no relationship with the size of the antenna.  It 

indicates that an extremely high gain can be achieved by an infinite small antenna.    

However, in Equation (3.14), the denominator has approximately equal amplitudes 

while the numerator is an ascending series of ( 1) / 2N   terms.  For any given value of 

2 /a  , 
nQ  increases with n at a rapid rate.  When 2 /a   greater than N, Q is of the 
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order of unity or less, indicating that the antenna potentially a broadband system.  When 

2 /a   smaller than N, Q will rises rapidly as 2 /a   decreases.  The transition occurs at  

2 /a N         (3.17) 

corresponding gain is  

2 2 4a a
G



  
        (3.18) 

This gain is called the normal gain for omnidirectional antenna, and it is equal to 

the gain obtained from a current distribution of uniform amplitude and phase along a line 

of length 2a.   

In Figure 3.4, curve I shows the normal Q for the omnidirectional antenna.  Curve II 

shows a gain twice the normal gain.  It is obvious that in order to make it happened, twice 

as many as terms are needed, and a high Q is required.  The slop of curve II indicates the 

difficulty of getting additional gain as the normal gain increases. 
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Figure 3.4  Q for omnidirectional antenna.  Criterion: Max Gain with fixed number of 

terms.  I normal gain.  II twice the normal gain [10]. 

3.2.5 Criterion II: Minimum Q 

Differentiating Q function with respect of 
nA , 

2 2( 1) ( 1)

2 1 2 1
n n n n

n n n n
Q A A Q

n n

 


 
    

nQ ’s will have different values when varies 2 /a   are given.  Hence the equation 

above can be satisfied when there is only one term under the summation sign.  The Q of 

antenna is equal to the 
nQ  of the term used.  Since 

1Q  has the smallest amplitude, it can be 
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concluded that the infinitesimally small dipole has the potentially broadest bandwidth of 

all antennas.  The gain of an infinite small antenna is 1.5. 

3.2.6 Criterion III: Maximum G/Q 

In most cases, it is impossible to give an infinite large Q in order to obtain a huge gain, and 

a gain of 1.5 is also not acceptable.  Hence a compromise between maximum gain and 

minimum Q is required.  So, the maximum ratio of the gain to Q is considered.  The 

problem is to find a proper combination of 
nA ’s  for maximum G/Q. 

Form Equations (3.4) and (3.11) 
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With the same method used before,   
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The corresponding values of G, Q and the ratio G/Q are: 

2

2

[ / ]

/

n n

n n

a Q
G

a Q




    (3.21) 

2

/

/

n n

n n

a Q
Q

a Q




    (3.22) 

/ /n nG Q a Q     (3.23) 
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n n


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
. 

In above equations, consider 
nQ  to be unity whenever its actual value is equal to or 

less than unity.  Since the series in (3.21) and (3.22) converge rapidly as N increases, the 
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gain approaches asymptotically the value of 4 /a   which is the normal gain proven before.   

Curves of G/Q are shown in Figure 3.5.  As in practical, it is always broadband is always 

wanted, that means Q is required to be low, so it is this physical limitation, among others, 

which limits the gain of antennas to the approximate value of 4 /a  . 

For horizontally polarized omnidirectional antenna, the analysis follows that of the 

vertically polarized antenna, and for circularly polarized antenna, it is a combination of 

both vertically polarized antenna and horizontally polarized antenna.  The results for 

horizontal polarized antenna and circularly polarized antenna stay the same with the 

vertically polarized one.  The conclusion is that in order to obtain a gain higher than the 

normal gain, it is a must to sacrifice the bandwidth under the most favorable conditions.   
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Figure 3.5  G/Q of omnidirectional antenna.  Criterion: Max G/Q [10]. 

3.3 Other Limitations for Electrically Small Antennas 

There are many other limitations for the electrically small antenna.  In practical, the 

performance of antenna designed on the free space basis always will be affected by the 
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objects in the neighborhood.  Objects nearby will give additional scattered radiation 

because of the induced current and also will distract the original current on the antenna 

structure.  For bandwidth, it was interpreted freely as the reciprocal of the Q factor.  But in 

real, the bandwidth can be increased by choosing a proper matching network. 

3.4 Main Miniaturization Techniques Effect on the Performance [11] 

In order to obtain better performance, there are several methods can be used in the real 

practice. 

- Loading antenna with lumped elements.  As we know that electrically small 

antenna will have a small radiation resistance and a strong reactive part of the 

impedance, it is logical to loading them reactively.  A matching network will 

usually necessary to match the radiation resistance to the transmission line.  

The effect of loading antenna with lumped element will be, if the added 

element has losses, the efficiency will decreased, and if the added element is 

lossless, the antenna’s quality factor will be enhanced which means the 

bandwidth will be reduced.   

- Makes some parts of the antenna could be treated as virtual ground plane or 

equivalent short circuits may help to reduce the physical size. 

- Optimizing the geometry of the antenna.  This method contains geometrical 

loading with notches, slots… bend and curvature.  Due to the current 

concentration, the efficiency will decrease and the bandwidth will be decreased 

due to frequency sensitivity of the technique. 



24 

 

Overall conclusion is that if the equivalent volume is filled with maximum number 

of radiating elements containing currents with uniform distributions, the antenna gain will 

be maximized. 

This concept has been extended to Moxon antennas for SATCOM application [1]. 
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CHAPTER 4 

SIMULATION, EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Simulation Procedures and Results 

Moxon antenna is known for its compact size and its directive properties due to the 

presence of the ground plane; a sketch of the bent dipole antenna is shown in Figure 4.1 [1].  

The length of the one arm of the dipole is L+W, and the arm is bended towards the ground 

from L distance away from the center of the dipole.  The bottom of the dipole is H away 

from the ground plane.  The bent dipole is fed with a input from the center.  A circularly 

polarization can be achieved by placing two bent dipole antennas perpendicular to each 

other shown in Figure 4.2, one in x-z plane and the other in y-z plane and feeding though a 

hybrid quadrature coupler.  

 

Figure 4.1  Moxon antenna [1]. 
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Figure 4.2  Two perpendicular Moxon antennas for circularly polarization radiation [1]. 

The first topology studied was a single vertical element Moxon antenna, and then 

two vertical elements Moxon antenna.  After that, widened strip arm elements were 

investigated to understand its effects on increase of the bandwidth.  This idea was based on 

Fano-Chu limits which indicate that more metallization in the radiating configuration that 

fill the volume would yield higher gain for electrically small antenna.  Further, widening 

the strips lead to further improvement in the performance confirmed by Fano-Chu limits 

for electrically small antenna with maximum radiating elements in a given volume. 

Furthermore, splitting the tapered bow tie elements [12] increased the volume filled with 

radiating elements improved overall performance.  Finally, bends at the tip of the tapered 

sections parallel to the ground pushing to optimized performance.  During the simulation, 

great attention was paid on finding the effects on overall performance of each physical 

parameter of the antenna in terms of its dimensions and shape.  
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4.1.1 Simulation of RFID Antenna 

The purpose of RFID antenna simulation was to obtain wider bandwidth, lower return loss, 

higher gain and better cross-polarization.  

The operating frequency was first designed to be centered at 950 MHz, and then, 

every parameter of the antenna was carefully optimized separately to find its effect on the 

overall performance in terms of low frequency resonant point, high frequency resonant 

point, bandwidth, return loss S11 and gain of right hand circular polarization (RHCP).  A 

summary is given at the end of this section.  Ultimately, an optimized bent bow tie Moxon 

antenna for RFID at frequency range 850 MHz to 1050 MHz was obtained. The 

configuration of the optimized bent bow tie Moxon RFID antenna is given in Figure 4.3. 

 

Figure 4.3  Bent bow tie antenna for RFID. 
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The total horizontal length of the antenna is 99.9 mm, the height from the top of the 

antenna to the ground plane is 40.0 mm, the bottom of the antenna to the ground plane is 

18.0 mm, the cross section area (feeding area) is 1 mm×1 mm.  

The results of return loss (S11), RHCP gain and radiation pattern at center frequency 

950 MHz is given in Figure 4.4-4.6. 

 

Figure 4.4  S11 of RFID antenna. 
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Figure 4.5  Gain of RHCP and radiation pattern at 950 MHz. 

 

Figure 4.6  Radiation Pattern at 950 MHz. 

From Figure 4.4, the optimized RFID antenna has a wide bandwidth from 850 MHz 

to 1100 MHz with a low return loss under -8 dB.  From Figure 4.5, the gain for RHCP is 

about 6.75 dB and the cross polarization is about 15.35 dB.  The antenna has no back 

scattering lobe and it has 80 degrees forward beam width with 3.5 dB due to infinite ground 
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plane consideration which requires much less computational effort compared to finite 

ground plane. 

4.1.2 Simulation of GPS Antenna 

For a GPS antenna, one of the cirtical requirements is design it at the proper frequency 

bands.  GPS antenna has a dual band of operation; which are centered at 1227.60 10.23  

MHz and 1575.42 10.23  MHz.  High gain, low return loss, high cross-ploarization are 

also desired requirements for the GPS antenna. 

First, the effect of every optimization parameter on overall performance was 

investigated as was done for the simulation of the RFID antenna.  Most of the parameters 

behave same as for RFID antenna, but because the dimension of GPS antenna is smaller 

than RFID antenna, some parameters changed their behaviors, as shown the summary 

listed at the end of this section.  Then, lower resonant frequency was set arround 1225 MHz 

while the higher resonant frequecy was set around 1570 MHz.  The optimized results was 

very hard to obtain because the size of the GPS antenna was too small, even slight change 

of dimension will cause huge change in the overall performance.  An optimized GPS 

antenna was finally obtained with two resonance points at 1228.0 MHz and 1575.2 MHz, 

which almost matches the ideal central operation frequencies of L1 and L2 bands. 

 The configuration of bent bow tie GPS antenna is given below: 
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Figure 4.7  Bent bow tie antenna for GPS. 

The total horizontal length of the antenna is 72.7 mm, the height from the top of the 

antenna to the ground plane is 30.0 mm, the bottom of the antenna to the ground plane is 

15.3 mm, the cross section area (feeding area) is 1 mm×1 mm.  

The results of S11, RHCP gain and radiation pattern at operation frequencies 1227 

MHz and 1575 MHz are given in Figure 4.8-4.12. 
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Figure 4.8  S11 of RFID antenna. 

 

 

Figure 4.9  Gain of RHCP and radiation pattern at 1227 MHz. 
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Figure 4.10  Radiation Pattern at 1227 MHz. 

 

 

Figure 4.11  Gain of RHCP and radiation pattern at 1575 MHz. 
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Figure 4.12  Radiation Pattern at 1575 MHz. 

From Figure 4.8, the optimized antenna has wide bandwidth from 1217.4 MHz to 

1237.8 MHz (20.4 MHz) and from 1528.1 MHz to 1607.8 MHz (79.7 MHz) for the two 

operation frequencies with a low return loss under -8 dB.  From Figure 4.9 and Figure 4.11, 

the Gain for RHCP is about 6.65 dB at 1227 MHz and 8.26 dB at 1575 MHz, the cross 

polarization is about 14.65 dB at 1227 MHz and 17.0 dB and 1575 MHz, which are 

satisfactory requirements for a successful GPS antenna.  Due to infinite ground plane 

considerations, the antenna has no back scattering lobe and it has 80 degrees forward beam 

width with 3.5 dB at 1227 MHz and 4.4 dB at 1575 MHz. 

4.1.3 Optimization Parameters of the RFID Antenna 

In order to clearly show the behavior of each optimization parameter’s effect on the overall 

performance of the RFID antenna and GPS antenna, every parameter was numbered and 

shown in Figure 4.13 
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Figure 4.13  Antenna layout with optimization parameters numbered from 1 to 15. 

The optimization parameters and their effect on the performance are outlined below 

for the RFID tag reader antenna: 
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No 1: Horizontal wedge position. 

Away from the axis: Low resonance point stays in frequency but drops down in S11, 

high resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

Closer to the axis: Low resonance point stays in frequency but goes up in S11, high 

resonance point moves lower in frequency and goes up in S11.  Total bandwidth decreases. 

No 2: Horizontal wedge angle. 

Bigger: Low resonance point stays in frequency but drops down in S11, high 

resonance point moves lower in frequency and goes up in S11.  Total bandwidth decreases. 

Sharpen: Low resonance point moves higher in frequency but goes up in S11, high 

resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

No 3: Vertical length (vertical section only). 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

decreases. 

Shorter: Low resonance point movers higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and goes up in S11.  Total bandwidth 

increases. 

No 4: Length of the first bend. 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and goes up in S11.  Total bandwidth increases. 
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Shorter: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

decreases. 

No 5: Outer angle of the first bend. 

Bigger: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

decreases, 

Sharpen: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and goes up in S11.  Total bandwidth 

increases. 

No 6: Outer angle of the vertical section. (In our case is 90 degrees) 

It was observed that design was insensitive to the angular radiation. 

No 7: Inner angle of the vertical section. 

Bigger: Low resonance point moves lower in frequency but drops down in S11, high 

resonance point moves lower in frequency and drops down in S11.  Total bandwidth stays. 

Sharpen: Low resonance point moves higher in frequency but goes up in S11, high 

resonance point moves higher in frequency and goes up in S11.  Total bandwidth stays. 

No 8: Horizontal length (horizontal section only, no tip). 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

decreases. 
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Shorter: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and goes up in S11.  Total bandwidth 

increases. 

No 9: Outer angle of the horizontal section. 

Bigger: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 

Sharpen: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

No 10: Length of the bottom bend. 

Longer: Low resonance point stays in frequency but goes up in S11, high resonance 

point moves higher in frequency and drops down in S11.  Total bandwidth increases. 

Shorter: Low resonance point stays in frequency but drops down in S11, high 

resonance point moves lower in frequency and goes up in S11.  Total bandwidth decreases. 

No 11: First bend angle (vertical plane bend). 

Bigger: Low resonance point moves higher in frequency but goes up in S11, high 

resonance point moves higher in frequency and goes up in S11.  Total bandwidth decreases. 

Smaller: Low resonance point moves lower in frequency but drops down in S11, 

high resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

increases. 
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No 12: Top to ground height. 

Higher: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

Lower: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and goes up in S11.  Total bandwidth decreases. 

No 13: Half gap length. 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

Shorter: Low resonance point moves lower in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 

No 14: Length of the tip. 

Longer: Low resonance point moves lower in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 

Shorter: Low resonance point moves higher in frequency but goes up in S11, high 

resonance point moves higher in frequency and goes up in S11.  Total bandwidth increases. 

No 15: Outer angle of the tip. 

Bigger: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 
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Sharpen: Low resonance point moves lower in frequency but drops down in S11, 

high resonance point stays in frequency and goes up in S11.  Total bandwidth increases. 

4.1.4 Optimization Parameters of the GPS Antenna 

No 1: Horizontal wedge position. 

Away from the axis: Low resonance point moves higher in frequency but goes up in 

S11, high resonance point moves higher in frequency and drops down in S11.  Total 

bandwidth increases. 

Closer to the axis: Low resonance point moves lower in frequency but drops down 

in S11, high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 

No 2: Horizontal wedge angle. 

Bigger: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 

Sharpen: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

No 3: Vertical length (vertical section only). 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

decreases. 
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Shorter: Low resonance point movers higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and goes up in S11.  Total bandwidth 

increases. 

No 4: Length of the first bend. 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and goes up in S11.  Total bandwidth decreases. 

Shorter: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

No 5: Outer angle of the first bend. 

Bigger: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

decreases, 

Sharpen: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and goes up in S11.  Total bandwidth increases. 

No 6: Outer angle of the vertical section. (In our case is 90 degrees) 

It was observed that design was insensitive to the angular radiation. 

No 7: Inner angle of the vertical section. 

Bigger: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 
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Sharpen: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

No 8: Horizontal length (horizontal section only, no tip). 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

decreases. 

Shorter: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and goes up in S11.  Total bandwidth 

increases. 

No 9: Outer angle of the horizontal section. 

Bigger: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 

Sharpen: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

No 10: Length of the bottom bend. 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

increases. 
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Shorter: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and goes up in S11.  Total bandwidth 

decreases. 

No 11: First bend angle (vertical plane bend). 

Bigger: Low resonance point moves higher in frequency but goes up in S11, high 

resonance point moves higher in frequency and goes up in S11.  Total bandwidth decreases. 

Smaller: Low resonance point moves lower in frequency but drops down in S11, 

high resonance point moves lower in frequency and drops down in S11.  Total bandwidth 

increases. 

No 12: Top to ground height. 

Higher: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

Lower: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves lower in frequency and goes up in S11.  Total bandwidth decreases. 

No 13: Half gap length. 

Longer: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

Shorter: Low resonance point moves lower in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 
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No 14: Length of the tip. 

Longer: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 

Shorter: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and goes down in S11.  Total bandwidth 

increases. 

No 15: Outer angle of the tip. 

Bigger: Low resonance point moves higher in frequency but drops down in S11, 

high resonance point moves lower in frequency and goes up in S11.  Total bandwidth 

decreases. 

Sharpen: Low resonance point moves lower in frequency but goes up in S11, high 

resonance point moves higher in frequency and drops down in S11.  Total bandwidth 

increases. 

4.2 Experimental Procedure and Results 

Prototype antennas were built based on the simulations.  Layout of RFID and GPS antenna 

are shown in Figure 4.14 and Figure 4.15. 
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Figure 4.14  Layout of bent bow tie antenna for RFID. 
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Figure 4.15  Layout of bent bow tie antenna for GPS. 

Antennas are fed by a hybrid quadrature coupler.  Return loss is tested by vector 

network analyzer.  The prototype antenna under test is shown in Figure 4.16.  
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 Figure 4.16  (a) Return loss test setup for RIFD antenna.   

 

Figure 4.16  (b) Return loss test setup for GPS antenna.   
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Figure 4.16  (c) Return loss test setup for RIFD antenna.   
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Figure 4.16  (d) Return loss test setup for GPS antenna.   

Return loss test results for RFID and GPS antennas are shown in Figure 4.17 and 

Figure 4.18 
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Figure 4.17  Return loss test results for RFID antenna. 

 

Figure 4.18  Return loss test results for GPS antenna. 
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 In Figure 4.17, the return loss at the center frequency 950 MHz is about -28 dB, and 

it shows the return loss in the whole band from 850 MHz to 1050 MHz is lower than -20 dB. 

In Figure 4.18, the return loss at the center frequency 1386.5 MHz is about -18 dB, and the 

return loss over the whole band is lower than -15 dB.  The test results show that the whole 

design is very successful. 

4.3 Comparison with Other Antennas 

In order to show that the new designed bent bow tie antenna for RFID and GPS 

applications is worthy and advanced, a comparison between the new designed RFID and 

GPS antenna and the antennas for RFID or GPS application in the market is shown in 

Tables 4.1 and 4.2. 

Table 4.1  Comparison of RFID tag Reader Antennas 

Name Dimensions 

(cm) 

Frequency 

range 

(MHz) 

Gain 

(dB) 

Front-to- 

Back ratio 

(dB) 

Beam width 

New Bent Bow 

Tie RFID 

Antenna 

10.0×10.0

×2.2 

850-1050 6.75 15.35 80 degrees at 3.5 

dB 

IA33A 

INTELLITAG 
25.9×25.9

×3.8 

902-928 7 18 65 degrees at 3 

dB 

AvalLAN 

wireless 6 dBi 

indoor antenna 

15.0×15.0

×4.0 

890-960 6.5 12  

Laird Tech 

S8656-X, 

Special 

Application 

Antennas 

19.2×19.2

×2.4 

865-870 6  80 degrees at 3 

dB 

Poynting Patch 

A 0025 Antenna 
24.5×23.5

×4 

860-960 7   
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Additional comparison of VSWR and S11 between new bent bow tie RFID antenna 

and Poynting Patch A 0025 antenna are shown in Figure 4.19 and Figure 4.20. 

Table 4.2  Comparison of GPS Antennas 

Name Dimensions 

(cm) 

Frequency range (MHz) Gain 

(dB) 

L1 L2 L1 L2 

New Bent Bow 

Tie GPS 

Antenna 

7.3×7.3×
1.5 

1217.4-123

7.8 (20.4) 

1528.1-160

7.8 (79.7) 

6.65 8.26 

ALLICOM 

SB240 Marine 

GPS Antenna 

12.0×12.0

×20.65 

 1575.42±10 4  

GPS SOURCE 

L1/L2 DARG 

ANTENNA 

6.6×6.6×
2.4 

1212.6-124

2.6 (30) 

1560.5-159

0.5 (30) 

4 7 

GPS SOURCE 

RUGGEDIZED 

L1/L2 GPS 

PASSIVE 

ANTENNA 

6.6×6.6×
2.4 

1217.5-123

7.8 (20.3) 

1565-1586 

(21) 

5 5 

Data from the above Tables 4.1 and 4.2 suggest that comparable gain performance 

has reached for almost half size in dimensions for RFID antenna, and for GPS antenna, 

with comparable size, better gain has been obtained.  Further experimental characterization 

is still in progress.  The proposed antenna yields excellent bandwidth and impedance match 

over that bandwidth.  

http://www.gpsantennanavigationsystem.com/SB240.htm
http://www.gpsantennanavigationsystem.com/SB240.htm
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Figure 4.19  VSWR measurement for new bent bow tie RFID antenna (green) and 

Poynting Patch A 0025 antenna (blue).   

 

Figure 4.20  S11 measurement for new bent bow tie RIFD antenna (green) and Poynting 

Patch A 0025 antenna (blue). 
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CHAPTER 5 

CONCLUSIONS 

Moxon based RFID and GPS antennas were proposed, Extensive numerical simulations 

based on optimization of various parameters on the antenna structure were carried out to 

achieve higher gain, wide band impedance match, high cross-polarization and low profile. 

Prototype antennas were built and tested confirming good agreements between simulation 

and experimental results. Furthermore, prototype antennas were compared with 

commercial counterparts and were observed that RFID tag reader antenna was almost 4 

times smaller in physical dimensions for the comparable gains. Also the bandwidth of the 

prototype antenna was significantly wider. In case of GPS antenna the overall gain was 

observed to increase for the comparable dimensions. 

Further investigation of how to improve the performance of the antenna can be 

done by adding more vertical arms, making more bends along the horizontal part or adding 

folded elements [12]. 
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