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ABSTRACT 

HYDROGEN STORAGE IN Pt/CARBON NANOTUBE SHEETS 

 

by 

An-Yu Ma 

Three types of self-assembled carbon nanotube (CNT) sheets, for example, carboxylic 

functionalized multi-walled CNTs (MWNTs-COOH), pure multi-walled CNTs (MWNTs), 

and pure single-walled CNTs (SWNTs), were prepared as substrates by ambient 

environment vacuum filtration of suspensions of the nanotubes. To enhance hydrogen 

storage on the CNTs, platinum particles were deposited on the three types of CNT sheets 

using two processes: electrodeposition (ED) using a DC power source and 

electrochemical deposition under cyclic voltammetry (CV). To verify platinum deposition 

on the surface of the CNT sheets, a Scanning Electron Microscope (SEM) was used to 

obtain images, and Energy Dispersive X-ray (EDX) spectroscopy was used to determine 

the percentage of platinum particles coated on the CNT sheets. Hydrogen was produced 

and stored on the surface-modified CNT and pristine CNT sheets by cyclic voltammetry 

in alkaline electrolytic solution (6 N KOH). The hydrogen storage capacity in the 

electrochemically treated samples was evaluated using temperature-programmed 

desorption (TPD) measurement. 
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CHAPTER 1 

INTRODUCTION 

 

Hydrogen is a promising energy carrier, clean and renewable, which can be used for fuel 

cell applications. To produce large amounts of pure hydrogen remains a significant 

challenge for building a full hydrogen economy. A more critical problem to surmount is 

how to safely and efficiently store this hydrogen [1]. Carbon nanotubes are potentially a 

good candidate material for reversibly storing hydrogen via adsorption or absorption (see 

Figure 1.1) on the tube walls. To enhance the storage capacity, dispersed catalytic metals 

(for example, platinum) on the adsorption medium such as, carbon nanotubes have also 

been used in order to optimize the loading capacity [2].  

In this chapter, three sections are presented. Section 1.1 describes the basic 

concepts of hydrogen storage. Section 1.2 describes the process of using carbon 

nanotubes as the absorption medium, and the method used to coat a selected catalytic 

transition metal, platinum, onto the carbon nanotubes. Chemical binding of hydrogen to 

the transition metal by the Kubas interaction mechanism will also be elaborated on in this 

section. The mechanism of hydrogen “spillover” via metal particles and migration onto 

adjacent surface of the adsorption medium is also explained. Section 1.3 describes the 

experimental outline of the whole thesis. 
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1.1 Concepts Involved in Hydrogen Storage 

Developing sustainable energy sources is one of the current challenges facing the world 

because fossil fuels widely used today generate energy economically, but are responsible 

for environmental pollution as well as global warming. Therefore, finding an alternative 

energy source is now a worldwide goal for researchers [3, 4].  

Currently, hydrogen is the most attractive energy source because of its relative 

ease of production, light mass, and high energy conversion efficiency [5, 6]. Hydrogen 

can be produced from coal, natural gas and water. The latter is the most environmentally 

friendly source, which meets almost all the requirements to substitute fossil fuels [7]. 

Water contains both elements or components of a power source because when the 

hydrogen and oxygen produced from water are efficiently recombined in an 

electrochemical fuel cell, electrical power is generated. Actually, using hydrogen as an 

energy carrier is not a new idea. In 1874, Jules Verne, the well-known French author 

wrote that “Water will be the coal of the future.” in his book: “The Mysterious Island” 

[8]. 

Therefore, one of the key technological challenges for fuel cells is how to design 

a safe, reliable, compact, cost-effective and efficient medium for hydrogen storage [9]. 

Hydrogen is the lightest of all elements. That means to store enough hydrogen (for 

reference, the US Department of Energy goal is 5.5 wt % of gravimetric capacity, namely 

the usable hydrogen weight over the total weight of the storage medium) requires either 

large volumes or high pressures. Generally speaking, hydrogen can be stored in three 

different forms (Figure 1.1): pressurized gas in high pressure tanks, cryogenic liquid in 

insulated tanks, and in advanced materials where it is either physically (by van der Waals 
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interactions of the order of 5 kJ/mol) or chemically (direct chemical interaction of greater 

than 100 kJ/mol) absorbed in a porous medium (e.g., carbon nanostructures or 

metal-organic frameworks) or chemically bonded in intermetallic, complex and chemical 

hydrides from which it can be obtained by dissociation at relatively low temperatures [9]. 

In an ideal hydrogen storage medium, adsorption energies should be in the 30-80 kJ/mol 

range. Storage of hydrogen as compressed gas or as liquid hydrogen is not safe and not 

practical, particularly for transportation and mobile applications. Solid-state storage 

materials are therefore the focus of current research and development. Among advanced 

materials, metal hydrides and porous carbon are the most attractive for hydrogen storage 

[10]. However, a suitable medium that meets all the criteria for hydrogen storage remains 

elusive.  

 

 

Figure 1.1 Hydrogen storage approaches. 
(Sourced from US Department of Energy site http://www.hydrogen.energy.gov/pdfs/doe_h2_storage.pdf ) 

(Accessed: Nov. 3
rd

, 2011) 

 

 

http://www.hydrogen.energy.gov/pdfs/doe_h2_storage.pdf
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1.2 Using Carbon Nanotubes as Media for Hydrogen Storage 

Due to the large surface area to volume ratios nano-porosity, and light weight, 

carbon-based materials like carbon nanotubes (CNTs) have been considered to be an 

ideal medium for the reversible storage of hydrogen. [11, 12]. Since the early research by 

Dillon and co-workers [13] showed a possible 5 to 10 weight % hydrogen storage 

capacity for single-walled carbon nanotubes (SWNTs), a lot of attention was focused on 

CNTs as a safe hydrogen storage medium. Song et al. [14, 15] reported that multi-walled 

carbon nanotubes (MWNTs) have large electrochemical hydrogen storage capacity 

(above 200 mAh/g), and Dai et al. [16] also claimed that a purified single-walled carbon 

nanotube electrode has a maximal reversible electrochemical discharge capacity of 316 

mAh/g. Lombardi et al. [17] also observed reversible hydrogen storage capacity of 

MWNTs both in alkaline (6 M KOH) and acidic (0.3 M H2SO4) electrolytic solutions.  

However, hydrogen storage in carbon nanotubes remains well below the 10 

weight % observed by Dillon et al. [18] because of weak binding energies of hydrogen on 

the CNT backbone and therefore still has a long way to go before it can be implemented 

in applications. In order to improve physisorption, catalytic metal particles (e.g., platinum) 

have been deposited on CNT substrates. Coating nanoparticles onto CNTs can form a 

new class of hybrid nanomaterials with unique properties that have potential applications 

both as a hydrogen storage medium and as a hydrogen fuel cell electrode [18]. Transition 

metals (e.g., palladium) can dissolve and dissociate hydrogen molecules which then 

spillover to the porous storage medium [20]. Hydrogen atoms adsorbed in metals can 

spillover to be absorbed on porous materials or frameworks. Zuettel et al. [19] showed 

that the electrochemical hydrogen storage capacities of an electrode containing 10-40% 
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MWNTs with Pd powder achieved a storage capacity of 110 mAh/g. The mechanism of 

the enhanced capability of hydrogen storage after metallic catalysts are decorated on 

surface of CNTs is because of two approaches shown in Figure 1.2.  

First is the Kubas mechanism where hydrogen is adsorbed by a non-dissociative 

weak chemisorption by electron donation and back-donation processes, a reaction weaker 

than covalent bonds (strong chemisorption) but stronger than van der Waals forces (weak 

physisorption). The Kubas interaction provides just enough binding force to attract 

hydrogen molecules on metals, and can release hydrogen under the right conditions of 

heat and pressure. Preventing metal aggregation and finding a suitable receptor medium 

are challenges for hydrogen storage via the Kubas mechanism. Scientists from Rice 

University reported [20] that a single metal on the matrix of metallacarborane, a molecule 

that combines boron, carbon, and metal atoms in a cage-like structure, can bind up to 5 

hydrogen molecules with a binding energy (ca. 0.4 eV/H2) through the Kubas interaction. 

Second is the spillover mechanism where hydrogen molecules dissociate to 

hydrogen atoms on the surface of metal particles and then spills over to the acceptor or 

support medium. However, spillover is controversial since it is still lacks of evidence for 

formation of C-H bonds through this mechanism [21]. A research group in the University 

of Michigan [22] has suggested two methods to induce hydrogen spillover. One is 

directly doping dissociation metals (Pt, Pd, Ru, and Ni) on the adsorbent carbon materials 

and metal-organic-framework (MOF) supports for preventing aggregation of metals. A 

second approach is by creating bridges (for example, by water molecules) between the 

dissociation metals and the adsorbent. 
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Figure 1.2 The hydrogenation mechanism of “spillover” where the hydrogen molecules 

are first absorbed and then dissociated from metal particles (e.g., Pt particles), then form 

covalent C-H bond by chemisorption or weak bonding through physisorption. 

 

 

1.3 Contents of the Thesis 

In this thesis, five chapters are presented. Chapter 1 introduces the basic concepts of this 

project. It briefly discusses the important issues of hydrogen storage, the trend to develop 

a better storage material for transportation of hydrogen and the role of carbon nanotubes 

as a potential medium for hydrogen storage. The important mechanisms of spillover and 

Kubas interaction to increase hydrogen storage by the addition of catalytic metals have 

been described. Chapter 2 explains the coating method by electrodeposition (ED) to 

deposit catalytic platinum particles on three different types of carbon nanotubes (MWNT 

sheets, MWNT-COOH sheets and SWNT sheets). The details of CNT sheet fabrication 

are also described in this section.  Chapter 3 discusses the procedure to deposit platinum 

particles on the working electrode CNTs sheets using electrochemical cyclic voltammetry 

(CV). Chapter 4 describes the electrochemical hydrogen storage process using pristine 

and platinum-coated CNTs as substrates. In the last chapter, the results are briefly 

summarized and recommendations for future work are provided. 
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The experimental outline of this project is diagrammatically outlined in Figure 1.3. 

This flow chart covers the process from the starting raw materials - the CNTs powders, 

the fabrication of CNT sheets (Ch. 2), surface modification of the CNT sheets using 

electrodeposition (Ch. 2) and cyclic voltammetry (Ch. 3), to the use of pristine and 

Pt-coated-CNT sheets as hydrogen storage media or substrates (Ch. 4). 

 

 

   Carbon Nanotubes (CNTs)
(SWNT, MWNT, MWNT-COOH)

Hydrogen Storage

Filtration

NO YES

Pt Deposition

 CNT
Sheet

 CNT
Sheet

  CV method
Pt/CNT Sheet

  ED method
Pt/CNT Sheet

 

Figure 1.3 The experimental outline of hydrogen storage from raw materials to form 

CNT sheets and then use it as the medium, with and without platinum deposition, to store 

hydrogen. 
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CHAPTER 2 

ELECTROCHEMICAL DEPOSITION OF PLATINUM PARTICLES ON 

CARBON NANOTUBE SHEETS 

 

In order to decorate carbon nanotube (CNT) sheets with platinum particles, an 

electrodeposition process was used. In this chapter the technique employing a DC power 

source and a CNT sheet as the cathode is described. Three different types of CNT sheets 

made from SWNTs, MWNTs and MWNTs functionalized with –COOH groups, have 

been prepared and used as the cathode to form Pt-decorated nanocomposite substrates for 

hydrogen storage. Deposition of Pt on the CNT sheets was confirmed by field-emission 

scanning electron microscopy (FE-SEM), and confirmed and the weight percentages 

measured by Energy Dispersive X-ray (EDX) spectroscopy.  

 

2.1 Overview 

Ultrasonication employing a horn sonicator was used to disperse CNTs to form 

suspensions together with about 1% by weight of surfactants (e.g., Triton X-100) [23]. 

The CNT suspensions were then filtered under vacuum to produce films of nanotubes on 

polytetrafluoroethylene (PTFE) -coated filter paper from which they were peeled off to 

obtain free standing nanopaper [24, 25]. 
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2.2 Experiments 

2.2.1 Fabricating Carbon Nanotubes Sheets 

Materials: SWNTs were purchased from Cheap Tubes (SKU# 0101), and MWNTs and 

MWNTs-COOH were purchased from NanoLab, Inc. Sodium dodecyl sulfate (SDS, 

Sigma Aldrich) was used as surfactant. A 45 mm diameter PTFE membrane from 

Millipore) was used as the filter paper during fabrication. 

Equipment: The horn-sonicator (Ultrasonic processor, Cole-Parmer Instruments, Model 

CPX130) was used to obtain the CNTs suspension. 

Procedure: The three different types of carbon nanotubes sheets have been prepared by 

procedures developed in our group based on those of Rinzler et al. and Baughman et al. 

These CNTs were used as-received without further purification. The protocol of 

fabrication of CNT sheets was as follows: For making the CNT papers or substrates used 

in this work, we first weighed 50 mg CNTs and then dispersed it in 50 ml of 0.5 wt% 

surfactant, sodium dodecyl sulfate (SDS) in aqueous solution. The horn-sonicator 

(Ultrasonic processor, Cole-Parmer Instruments, Model CPX130- Figure 2.1) was used to 

form the CNT suspensions. After ultrasonicating for 30 minutes with the power set at 

AMP50% of an ON/OFF pulse interval (30 seconds ON and 10 seconds OFF), the 

solution was then poured into the vacuum filtration system (Figure 2.1). In the stainless 

steel manifold filtration system, a 47 mm diameter of polytetrafluoroethylene (PTFE) 

membrane filter paper was pre-wetted in ethanol solution. During the filtration, 200mL 

warm water (ca. 90 C) was added twice, and methanol was poured once to rinse away 

extra SDS surfactant. After thorough washing the CNT sheet was allowed to dry at room 
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temperature for approximately 2 hours under vacuum. The CNT sheet was then peeled 

and ready to use as substrate for Pt deposition. Digital photographs of the CNT sheets are 

shown in Figure 2.3.  

Horn Sonicator Manifold Filtration
 

Figure 2.1 Fabrication of Carbon Nanotube sheets: horn sonicator to mix dispersed CNT 

in SDS aqueous solution (left) and filtration to harvest CNT sheets (right). 

 

2.2.2 Electrochemical Deposition of Platinum on CNT sheets 

Materials: Three as-prepared CNTs, SWNT, MWNT and MWNT-COOH sheets, were 

used as substrates. Platinum (IV) Chloride (>= 99.99% metals basis, Sigma-Aldrich) was 

used as- received. Platinum wire (CHI115) was purchased from CH Instrument, TX. 

Instrument and apparatus: DC power supply HY1803D (Tekpower, Montclair CA). 

Scanning electron microscope (VP 1530 Zeiss LEO) equipped with an EDX analyzer was 

used to obtain the images of deposition and perform quantitative analyses, respectively. 

Procedure: The source of platinum particles was using as received platinum (IV) chloride 

(PtCl4, Sigma-Aldrich) without further modification. A home-made CNT sheet (ca. 5.1 

cm
2
) was connected to the negative side of the DC power supply while platinum wire was 

connected as counter electrode to the positive side of the power supply. The power of 
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potential voltage was setup at 5 volts and then applied charging for 2 hours. The 

electrolytes solution was prepared using 1mM PtCl4 aqueous solution. In order to remove 

extra platinum particles tangling on the surface of the CNT sheet after electrodeposition 

process, The Pt/CNT substrate was gently washed by de-ionized water several times. The 

CNT sheet was then dried under ambient environment before further used for hydrogen 

storage. The setup for electrodeposition of platinum particles on the CNT sheet is shown 

in Figure 2.2. 

 

 CNT
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Pt
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Pt
4+

Pt
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Pt
4+

Pt
4+

Pt
4+Pt

4+

Pt
4+

Volt

P
t

W
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Figure 2.2 A schematic diagram showing the set up for electrochemical deposition of Pt 

on a CNT sheet. 
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2.3 Results 

 

After the deposition process, the Pt/MWNT-COOH sheets were cut into small pieces for 

SEM (scanning electron microscope) imaging and EDX (energy dispersive x-ray) 

spectroscopy. Figure 2.4 is a high resolution SEM image of a Pt/MWNT-COOH sheet. A 

lower resolution SEM image is shown on Figure 2.5. The presence of Pt is confirmed by 

the EDX spectrum from the sample shown in Figure 2.6. Besides showing the presence of 

C and Pt in the sampling area, the EDX spectrum also displayed relatively strong signals 

from K and O [26]. The oxygen peak is likely to be from the –COOH functional groups 

on the CNTs and K peak is due to the presence of K2PtCl6 impurity in PtCl4. The 

quantitative data shown in Table 2.1 indicate the presence of 1.7 at wt% of Pt in the 

sample.  

 

Figure 2.3 Digital photographs of cut pieces of as-prepared MWNT, MWNT-COOH and 

SWNT sheets. 
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Figure 2.4 High resolution SEM image of MWNT-COOH sheet after Pt 

electrodeposition. Arrows point to some of the Pt nanoparticles with about 20-50 nm 

diameter. 

 

 

 

Figure 2.5 Lower resolution SEM image of Pt-decorated MWNT-COOH sheet showing 

a large Pt from which EDX data shown in Table 2.1 were obtained. 
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Figure 2.6 EDX spectrum from Pt-decorated MWNT-COOH sheet. 

 

 

 

Table 2.1 EDX results in wt% and atomic wt% of the elements. 

Element Weight% Atomic wt % 

C 67.36 86.16 

O 10.06 9.66 

K 7.66 3.01 

Pt 14.92 1.71 
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CHAPTER 3 

ELECTROCHEMICAL DEPOSITION OF PLATINUM PARTICLES ON 

CARBON NANOTUBE SHEETS BY CYCLIC VOLTAMMETRY 

 

This chapter describes a different approach for electrodeposition of platinum particles on 

the surface of carbon nanotube sheets. This technique involves using a potentiostat under 

cyclic voltammetric conditions. Through cyclic voltammetry (CV), the experimental 

setup was used to evaluate the efficiency of coating platinum particles on carbon 

nanotube (CNT) substrates compared with electrodeposition (ED) using a power source 

discussed in the previous chapter. These surface modified CNT substrates are used to run 

the experiments of electrochemical hydrogen storage of hydrogen, which will be 

described in next chapter entitled “Hydrogen Storage Application”. Scanning electron 

microscope (SEM) images were taken to examine the existence, morphology, and 

homogeneity of platinum particles on the CNT sheets. Energy-dispersive X-ray (EDX) 

spectroscopy measurements were used to analyze the elements on the modified 

substrates.  
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3.1 Overview 

3.1.1 Applications of Carbon Nanotube Sheets 

Porous carbon materials have attracted interest for applications in many different areas, 

such as gas sensor, gas storage, catalyst-support, and electrochemical devices [27]. 

Different methods to synthesize and form macroscopic sizes of CNT paper or thin films 

(sometimes called buckypapers) are continuing to be developed to produce a larger area 

(e.g., d = 10 cm) and more flexible to fold in desirable shapes [28].  Multi-walled carbon 

nanotube (MWNT) papers or thin films of CNTs have been reported for making gas 

sensors (e.g., H2 sensor) using Pd-decorated-MWNT paper [29].   

To reach the ability to transfer electrons for applications, the supporting substrate 

should be highly electrically conductive; hence, the highly conductive CNTs can be a 

good candidate to act as a new substrate for metal catalysts to from new metal/CNT 

composites [30]. There are many new developments that suggest using carbon materials 

as supporting backbone for catalysts as electrodes, either in anode or cathode, to improve 

fuel cell performance. For anodic material in lithium-ion batteries, metal-oxide/CNTs 

nanocomposite (i.e., TiO2/CNTs) has been investigated as potential anode materials 

through electrochemical procedure in a cyclic voltammetry experiment [31]. In one  of 

the applications, direct methanol fuel cells (DMFCs) used CNT supports as Pt/CNT 

composites in order to solve the slow reaction rate of the cathodic oxygen reduction 

reaction (ORR) [32]. Many investigations have focused on fabrication of novel metal 

(e.g., Ag, Au, Pt)-decorated-CNTs [33]. However, it is a challenge to produce metal/CNT 

working electrodes by depositing metals on CNTs substrates [34]. Hussein et al. reported 

using multi-walled carbon nanotubes to fabricate buckypapers, and then using the 
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buckypaper as substrate to deposit platinum nanoparticles catalysts as biocathodes for 

glucose biofuel cells [35]. The goal was to reduce expensive platinum consumption, and 

still maintain catalytic activities. Using CNTs as supporting substrate can also reduce the 

occurrence of catalyst agglomeration that improves the effectiveness of biofuel cells. 

Nanocomposites of Pt/CNTs were used as oxygen reduction reaction (ORR) cathodes, 

and the conductivity was measured in a three-electrode electrochemical cell using a 

potentiostat/galvanostat apparatus and cyclic voltammetry techniques. 

 

3.1.2 Electrochemical Deposition Using Cyclic Voltammetry 

Electrodepositon is a process that is widely used. Electrodeposition can be performed by 

different techniques, such as electrolytic deposition, electrophoretic deposition, etc. In 

this study electrochemical deposition was carried out by cyclic voltammetry using a 

potentiostat-galvanostat.  

Electrochemical cyclic voltammetry is a standard method for characterization of 

solution-based metal deposition [36]. Electrochemical deposition can also be performed 

using cyclic voltammetry. Schilling and co-workers demonstrated electrochemical 

deposition preparation of a composite of multi-walled carbon nanotubes and 

iron-nitrogen compounds on a glassy carbon electrode through a potential deposition 

technique by running controlled cyclic voltammograms in a defined potential range [37]. 

Cyclic voltammetry (CV) is a potentiodynamic electrochemical method to 

investigate redox (reduction and oxidation) reactions. A cyclic voltammetry experiment 

comprises of three electrodes: a working electrode, a counter electrode, and a reference 

electrode. The working electrode potential varies linearly with time while the reference 

http://en.wikipedia.org/wiki/Voltammetry
http://en.wikipedia.org/wiki/Electrochemistry
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electrode maintains a constant potential. The current from the signal source to the 

working electrode is conducted by the counter electrode. The electrolytic solution plays 

the role of providing ions to the electrodes during the redox reactions [38, 39]. The 

cyclic voltammetry cycle starts by adding potential voltages to the working electrode. 

Cyclic voltammetry then scans from the initial potential to the set one by using a chosen 

scan rate [40]. When a set potential is reached, the working electrode potential is reversed 

[41, 42]. Cyclic voltammetry is now widely used in obtaining qualitative information 

about electrochemical processes. For example, the presence of intermediates in oxidation 

reactions and reduction reactions as well as the reversibility of a reaction can be 

determined by CV measurements. Furthermore, a system’s electron stoichiometry, an 

analyte’s diffusion coefficient, and the formal reduction potential can be determined by 

using CV technique.  

Cyclic voltammetry can also be used for electrochemical deposition (ECD). 

Electrochemical deposition is a valuable method to create nanostructures. Stroeve’s 

group in UC Davis reported fabrication of a nanocable using ECD to grow Te on the 

surfaces of Au nanotubes for 14 hours approaching layer-by-layer deposition [43]. Cyclic 

voltammetry can be used to perform both deposited under direct potential control and 

monitor/characterized the electrochemical responses of Au nanoparticles on SWNT/SiO2 

surface [44]. Nowadays, there are many evolutions in nanomaterials to find new carbon 

materials (such as, carbon nanotubes and graphene) for better applications. Composition 

of polypyrrole, one of the comducting polymers with widely attention for many 

applications, on single-layer of sulfonated graphene sheets was achieved using a 

potentialstat-galvanost and the evaluation of the ECD performance was also using the 
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same electrochemical workstation by the cyclic voltammetry technique [45]. Hence, 

electrochemical deposition is a very useful procedure to deposit metals on a highly 

conducting substrate, and cyclic voltammetric technique can help achieve ECD. 

In this chapter, three types of carbon nanotubes sheets fabricated as described in 

the previous chapter, were used as the supporting substrate to electrochemically deposit 

platinum particles on the nanotube surface. 

 

3.2 Experiments 

Materials: Three types of CNT sheets, SWNTs, MWNTs and MWNTs-COOH, were used 

as substrates. Platinum (IV) Chloride (PtCl4, >= 99.99% metals basis, Sigma-Aldrich) 

was used as received as the electrolyte for platinum deposition. Platinum wire (CHI115) 

counter electrode and Ag/AgCl standard electrode were purchased from CH Instruments, 

Austin, TX. 

Equipment: Electrochemical processes were performed with a computer-controlled CHI 

832C analyzer/workstation detector system (CH Instruments, Austin TX) using cyclic 

voltammetry technique. Images and analysis of percentage elements were obtained from 

a Field Emission Scanning Electron Microscope Energy Dispersive X-ray spectroscopy - 

LEO 1530 VP FE-SEM/EDX at NJIT and Hitachi S-4800 FE-SEM at Rutgers University, 

Newark. 

Procedure: Experiment was performed using a three-electrode setup carried out by cyclic 

voltammetry using a CHI 832C workstation. As-prepared CNTs (SWNT, MWNT and 

MWNT-COOH) sheets cut into half (ca. semi-circle, 5.1 cm
2
) were used as the working 

electrode. A platinum wire served as the counter electrode. Silver chloride electrode 
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(Ag/AgCl), a silver wire coated with silver chloride thin layer, was used as the reference 

electrode. The electrolyte was 1mM PtCl4 aqueous solution prepared by dissolving 10 mg 

PtCl4 in 30 mL de-ionized water. Figure 3.1 illustrates the setup of the cyclic 

voltammetry experiment.  

In the analyzer (CHI 832C workstation), a scan rate of 10 millivolt per second was 

selected for two hours duration of cyclic voltammetry to deposit platinum particles on the 

CNTs, SWNT, MWNT, and MWNT-COOH, substrates. The Pt/CNT paper was then 

washed with de-ionized water several times to thoroughly remove additional platinum 

particles dangling on the surface. After washing, the Pt/CNT substrate was dried at 

ambient temperature overnight. 
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Figure 3.1 Schematic showing the three-electrode method of electrochemical deposition 

of Pt on the CNT sheet working electrode using cyclic voltammetry. A Pt wire is the 

counter-electrode and Ag/AgCl is the reference electrode.  
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3.3 Results 

Figure 3.2 shows the cyclic voltammetry data during Pt deposition on different types of 

carbon nanotubes. After cyclic voltammetry, the morphology and compositions of the 

three different Pt/CNT substrates were evaluated using scanning electron microscopy 

(SEM) and energy-dispersive x-ray spectroscopy (EDX or EDS).  The nanocomposite 

sheets were cut into small pieces (ca. 0.04 cm
2
) to investigate the distribution and 

homogeneity of platinum particles attached to the surface of three different types of 

CNTs sheets using SEM imaging and EDX analysis. The image and quantitative EDX 

analysis of the Pt/MWNT-COOH sheet shown in Figure 3.3 were obtained using a LEO 

1530 VP FE-SEM microscope with EDX. In comparison for different types of 

nanocomposite on CNT-sheets, the SEM images were obtained using a Hitachi SEM 

microscope in Figure 3.4. The images for Pt/SWNT (Fig 3.4a) and Pt/MWNT-COOH 

(Fig 3.4b) display the cluster form of platinum particle aggregating on the surface of the 

carbon nanotubes, but the images in Fig 3.4c and 3.4d (in different magnitude) display a 

well dispersion homogeneous structure of particles distribute well on the top of the 

MWNT sheet. 
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Figure 3.2 Cyclic voltammetry scans for Pt deposition on three types of CNT-sheets 

shown in the figure. 
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Figure 3.3 Low resolution SEM image of Pt/MWNT sheet (top), and the EDX spectrum 

(bottom) from the indicated location on the SEM image. 

 

Table 3.1 Weight% and atomic weight % of the elements from the EDX spectrum.   

Element Weight% Atomic% 

C 27.04 47.70 

O 25.03 33.15 

K 32.18 17.44 

Pt 15.75 1.71 
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Figure 3.4 SEM images of electrochemically deposited Pt on SWNTs (a), Pt on 

MWNT-COOH (b), and Pt on MWNTs(c) and (d). 

 

 

(a) 

(d) (c) 

(b) 
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CHAPTER 4 

INVESTIGATION OF HYDROGEN STORAGE 

 

The ultimate goal of this project was to develop suitable materials for hydrogen storage. 

In this chapter, as-prepared pristine and modified CNT-sheets were used to evaluate their 

potential as hydrogen storage materials.  

Carbon nanotubes sheets were prepared using single-walled, multi-walled, and 

carboxyl functionalized multi-walled nanotubes (Chapter 2). CNT sheets prepared were 

modified by deposition of platinum particles using electrodeposition employing a power 

source and by cyclic voltammetry, as discussed in previous chapters.  In order to 

determine electrochemical hydrogen adsorption cyclic voltammetry (CV) was conducted 

on both surface-modified CNTs substrates as well as pristine ones in an alkaline 6 N 

KOH(aq) solution. Tested samples were then examined by temperature-programmed 

desorption (TPD) to determine whether or not hydrogen was stored on catalyst-modified 

and pristine CNT-sheets during cyclic voltammetry.  

 

4.1 Overview 

 

The potential of carbon nanotubes to store hydrogen has been investigated for almost two 

decades. In this section, the hydrogen storage capacities of different materials besides 

CNTs are briefly discussed in sect. 4.1.1, the cyclic voltammetry method to 

electrochemically store hydrogen in CNTs is discussed in sect. 4.1.2, and TPD 

measurements on electrochemically charged CNT sheets are discussed in sect. 4.1.3. A 

summary listing hydrogen storage experimental and theoretical results on different types 
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of CNTs and graphene is provided in Table 4.1. 

 

4.1.1 Candidate materials for hydrogen storage 

Scientists and researchers have continued to search for new hydrogen storage materials 

since the best source has not been found yet. Different materials besides CNTs have been 

investigated for hydrogen storage. For example, Luzan et al. reported a 0.75 wt% for the 

maximal hydrogen storage capacity of a zinc-based metal-organic framework (MOF) [46], 

and Sakintuna et al. reported a competitive hydrogen storage capacity up to 7.6 wt% for a 

group of magnesium-based hydrides [47]. 

Carbon-based materials, such as carbon nanotubes (CNTs) and graphene, are also 

popular materials in many studies. Guo et al. investigated different thicknesses of 

single-walled carbon nanotube (SWNT) substrates for electrochemical hydrogen storage 

[48]. Zhang et al. investigated electrochemical hydrogen storage in pure multi-walled 

carbon nanotubes (MWNTs) with different diameters [49]. Lee et al. theoretically 

showed that the gravimetric capacity of hydrogen for a calcium-decorated zigzag 

graphene nanoribbon (ZGNR) is 5 wt% [50]. 

To enhance hydrogen storage capacity in CNTs, extra steps were taken to modify 

the surface of hydrogen storage media. As mentioned in Ch. 1, transition metals are now 

deposited on either CNTs or other substrates in order to enhance the hydrogen storage 

capacity. Yildirim and Ciraci reported 8 wt% of hydrogen adsorption in 

titanium-deposited single-walled carbon nanotubes in their theoretical work [51]. Yang et 

al. reported an electrochemical discharge capacity of 1404 mAh/g for a SWNT electrode 

with a coating of 8 wt.% Ni nanoparticles, which corresponded to 5.27 wt% hydrogen 
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storage [52]. Some research group deposited alkali metals (e.g., potassium) rather than 

transition metals (e.g., platinum, palladium and titanium) onto the surface of CNTs. Chen 

et al. claimed hydrogen adsorption of lithium-and potassium-doped carbon nanotubes 

ranging from 14 wt% to 20 wt% when the temperature was raised from room temperature 

to 400°C at ambient pressure [53]. Later work [54, 63] however showed only 2.5 wt%. of 

hydrogen storage  in these materials. 

 

4.1.2 Hydrogen storage measurement methods 

Liu et al. reported mixing purified MWNT with KOH powder in order to deposit 

potassium on the nanotubes [54]. Most common electrochemical method to store 

hydrogen in CNTs is putting the CNT substrate as the working electrode in KOH aqueous 

solution followed by electrochemical reaction using cyclic voltammetry [55]. Nilsson’s 

group from Stanford University exposed Pt/SWNT samples to hydrogen in a chamber 

and measured the hydrogen adsorption by changes in electrical conductivity of the 

SWNTs [56]. 

 

4.1.3 Measurement of hydrogen storage 

When it comes to characterize the gas phase hydrogen sorption properties, three 

techniques, volumetric methods, gravimetric methods and temperature-programmed 

desorption (TPD), have been widely used [57].  

In volumetric methods, also known as the Sieverts method, the hydrogen sorption 

or uptake is measured by monitoring the drop in hydrogen pressure in a system of a fixed, 

known volume, with desorption being monitored by an increase in pressure. Reilly et al. 
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were the early group using the volumetric technique to detect hydrogen adsorption in 

alloys [58]. Zacharia et al. used a Sieverts apparatus to explore hydrogen storage 

capacities of Pd- and V-doped CNTs [59]. 

In gravimetric methods, the hydrogen uptake is measured by monitoring the mass 

of the sample following a step change in the hydrogen pressure. Benham et al. used a 

fully computer-controlled gravimetric system to assess hydrogen adsorption [60]. 

Temperature-programmed desorption (TPD), the technique employed in this 

project in collaboration with the group of Prof X. Wang of Chem. Eng. NJIT, is used to 

determine the quantity of hydrogen desorbed following the application of a thermal ramp. 

The reason that research groups prefer TPD is the small sample sizes that can be used, 

typically in the region of a few mg. Panella et al. used thermal desorption spectroscopy 

(TDS, also known as TPD) in their study to investigate hydrogen physisorption and 

determine the quantitative amounts of hydrogen stored in SWNTs [61]. 

 

Table 4.1 Summary of different catalysts and media used for hydrogen storage together 

with corresponding wt% of hydrogen adsorbed theoretically and experimentally.  

 

Catalyst Media H2 adsorption References 

Ca graphene nanoribbon 5.00 wt%* [49] 

Ti graphene nanoribbon 8.00 wt%* [50] 

Ti SWNT 8.00 wt%* [51] 

K SWNT 1.80 wt% [61] 

Cu SWNT 2.90 wt% [62] 

Li SWNT 2.50 wt% [63] 

 

*Theoretical estimates 
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4.2 Experiments 

 

Materials: Carbon nanotube sheets prepared from SWNT, MWNT and MWNT-COOH 

were prepared by methods described in chapters 2 and 3. The following three sets of 

nanotube sheets for use as working electrodes were fabricated: Pristine CNT sheets, 

Pt-deposited-CNT sheets using cyclic voltammetry (abbr. Pt/CNT-CV), and 

Pt-deposited-CNT sheets using electrodeposition (abbr. Pt/CNT-ED). Ag/AgCl was used 

as the reference electrode and a platinum wire was used as the counter electrode in the 

cyclic voltammetry experiments. Potassium hydroxide pellets were purchased from 

Fisher Scientific (CAS# 1310-58-3) and dissolved in deionized water to prepare the 

electrolyte solution. 

Procedures: Hydrogen storage experiments were performed using a three-electrode setup 

with three different types of CNTs sheets comprising of Pt-coated and uncoated SWNTs, 

MWNTs and MWNT-COOH’s. The experimental setup was the same as that used in the 

previous chapter for Pt deposition except that the electrolyte used was 6 N KOH(aq) 

prepared by dissolving 10.099 g KOH in 30 mL de-ionized water. Figure 4.1 shows the 

CV setup used for carrying out electrochemical hydrogen storage. 

The scan rate was set at 5 millivolt per second for two hours duration in the 

potentiostat-galvanostat workstation to investigate the capability of hydrogen storage of 

the nanotube sheets under cyclic voltammetry. The scan rates for three substrates, 

Pt/MWNT-COOH-ED, MWNT-COOH and MWNT, were variable under the set 

conditions and had to be adjusted so that the CV could be run smoothly. After the CV 

runs the substrates were washed with de-ionized water and dried at ambient temperature. 

Temperature-programmed desorption (TPD) measurements using an AutoChem 2920 II 
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system (Figure 4.1c) were then carried out on the substrate to determine the hydrogen 

adsorbed on the samples. The sample weights were MWNT-COOH (0.0021g), 

MWNT-COOH in KOH (0.0116g), Pt/ MWNT-COOH by CV in KOH (0.0107g), and Pt/ 

MWNT-COOH by ED in KOH (0.0100g). After 10 mL/min He flow was introduced to 

purge the samples for 30 minutes, the samples were heated up to 550 C at 10 C /min 

under He flow to detect the hydrogen released. 

 

  

 

Figure 4.1 Panels (a) and (b) show set up for electrochemical charging of CNT sheet 

working electrodes with hydrogen - (a) Depicts overview of the experiment carried out in 

a portable hood showing the computer monitor, analyzer-workstation and electrochemical 

cell, and (b) Depicts close-up view of the analyzer- CHI 832C workstation and 

electrochemical cell. Panel (c) shows the AutoChem 2920 II used for the TPD 

measurements. 

 

(a)

A) 

(b)

A) 

(c)

A) 
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4.3 Results   

CV data were recorded in 6 N KOH aqueous solution without any pretreatment (e.g., 

purging gas) at room temperature. The data for three sets of carboxyl functionalized 

MWNT sheets: As-prepared MWNT without platinum catalyst (MWNT-COOH), 

deposited Pt on MWNT using cyclic voltammetry (Pt/MWNT-COOH CV), deposited Pt 

on functionalized MWNT using by electrodeposition (Pt/MWNT-COOH ED), are shown 

in Figure 4.2. The platinum particle sizes are smaller under ED (ca. 20-50 nm shown in 

Fig 2.4) than those deposited using CV (ca. 100nm in clusters shown in Fig 3.4b). SEM 

images from Pt deposited on MWNT-COOH by both ED and CV methods showed that 

the particles were much larger than optimum sizes of 6 nm for typical catalytic particles. 

Hence in Fig. 4.2, the CNT sheet with Pt catalyst deposited by CV did not demonstrate 

sharp CV peaks due to the following redox reactions in KOH solution which generate 

hydrogen: 

 

Reduction:      2K
+
 + 2e

−
  2K       (4.1) 

Oxidation:      2OH
−
  2OH + 2e

−
  O2 + H2    (4.2) 

 

However a reduction or cathodic CV peak only is observed for the CNT sheet 

with catalyst deposited by ED indicating that a net cathodic reaction occurs when smaller 

size Pt particles are present on the working electrode. In Figures 4.3 and 4.4, CV 

measurements using unfunctionalized MWNT and SWNT sheets with and without 

catalyst deposited by CV and ED methods did not show either cathodic or anodic CV 

peaks. Figure 4.5 showed that pristine MWNT-COOH without catalyst coated only 
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displays redox reactions, whereas both pristine MWNT and SWNT sheets do not display 

redox reactions. In Figure 4.6, Pt/MWNT-COOH (ED) showed clear electrochemical 

reaction compared with similarly Pt coated, unfunctionalized MWNT and SWNT sheets 

indicating as above that the –COOH group functionalized MWNT sheets are the most 

reactive. –COOH group functionalized SWNT sheets, however, were not tested in this 

work. In Figure 4.7, Pt/MWNT-COOH (CV) as well as similarly Pt coated MWNT and 

SWNT sheets did not show redox peaks. 

In summary these results show that substantial redox reactions occur only 

on –COOH functionalized MWNT sheets. Therefore TPD measurements were carried out 

on the three types of MWNT-COOH sheets that were Pt coated by ED, Pt coated by CV 

and uncoated, relative to a control sample without Pt coating and electrochemical 

treatment in 6 N KOH solution. The TPD results shown in Figure 4.8 and 4.9, and Table 

4.2 do indeed confirm hydrogen storage in the samples with weight percentages below 

1% showing an increase in adsorption with Pt coating and decrease in Pt particle. Since 

the Pt particle sizes obtained here are an order of magnitude below optimum catalyst 

values, it is expected that a substantial increase in hydrogen adsorption would occur with 

reduction in Pt size. 
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Figure 4.2 CV scans in 6 N KOH using MWNT-COOH sheets as working electrodes: 

Pristine MWNT-COOH (black), Pt/MWNT-COOH CV (blue), and Pt/MWNT-COOH 

ED (red). 

0 
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Figure 4.3 CV scans in 6 N KOH using MWNT sheets as working electrodes: Pristine 

MWNT (black), Pt/MWNT-COOH CV (blue), and Pt/MWNT ED (red). 

 

0 
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Figure 4.4 CV scans in 6 N KOH using SWNT sheets as working electrodes: Pristine 

SWNT (black), Pt/SWNT CV (blue), and Pt/SWNT ED (red).   

 

 

0 
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Figure 4.5 Comparison of CV scans from three types of pristine CNT-sheets, 

MWNT-COOH (black), MWNT (red) and SWNT (blue) in 6 N KOH. 

 

0 
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Figure 4.6 Comparison of CV scans from three types of ED deposited Pt CNT sheets in 

KOH, MWNT-COOH (black), MWNT (red) and SWNT (blue). 
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Figure 4.7 Comparison of CV scans from three types of CV deposited Pt- CNT sheets in 

KOH, MWNT-COOH (black), MWNT (red) and SWNT (blue). 
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Figure 4.8 Comparison of TPD scans from ED (red) and CV (blue) Pt-coated and 

uncoated (green) MWNT-COOH sheets relative to MWNT-COOH sheet that had not 

been electrochemically treated or coated (black). 
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Table 4.2 Weight % of hydrogen on different MWNT-COOH substrates calculated from 

the TPD data.  

 

Sample 
H2 Storage Amount 

(mol H2/g CNT) 
wt% H2 

MWNT-COOH 0 0.00 

MWNT-COOH in KOH 0.92 10
-3

 0.18 

Pt/MWNT-COOH (CV) in KOH 1.50 10
-3

 0.30 

Pt/MWNT-COOH (ED) in KOH 2.33 10
-3

 0.47 

 

 

 

 
 

Figure 4.9 Comparison of weight % hydrogen adsorption on MWNT-COOH substrates 

by CV and ED methods, without Pt deposition, and without either Pt deposition or 

electrochemical treatment (as reference background). 
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CHAPTER 5 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

In summary, three different types of carbon nanotubes, single-walled, multi-walled, 

carboxyl functionalized multi-walled carbon nanotubes, were made into sheets. These 

different types of CNT sheets were coated with transition metal platinum catalysts. Two 

electrochemical methods, cyclic voltammetry (CV) and electrodeposition (ED), were 

used to deposit Pt particles on the SWNT, MWNT, and MWNT-COOH sheets. SEM 

images were examined for the existence and homogeneity of the platinum particles 

attached to the carbon nanotube (CNT) substrates. EDX spectra were used to analyze the 

elemental composition on the substrates. After deposited Pt, CNTs sheets went for 

hydrogen storage experiment by placing the Pt/CNTs nanocomposite substrates in 6 N 

KOH aqueous solutions and carrying out cyclic voltammetry. Temperature-programmed 

desorption (TPD) measurements were then used to determine the weight % of hydrogen 

adsorbed.   

SEM images in Ch. 2 of Pt/MWNT-COOH by ED showed smaller size of 

platinum particles (ca. 20-50 nm) while SEM images in Ch. 3 showed that the platinum 

particles in Pt/MWNT-COOH by CV had a larger average size (ca. 50-100 nm) with a lot 

of agglomerated clusters. From the TPD measurements, Pt coated CNT substrates using 

both methods showed better hydrogen storage capacity than the pristine CNT, which 

showed not only that using transition metal as catalyst improved hydrogen storage 

capability, but the data also indicated that this project was on the right path. The 

hydrogen capacity of Pt/MWNT-COOH by ED was better than that of Pt/MWNT-COOH 



42 
 

 
 

by CV based on the TPD data. This suggests that the smaller the nanoparticle size the 

better the hydrogen storage capability. However, the overall hydrogen uptake remains 

below 1 weight % indicating that further improvements are necessary.      

The US Department of Energy (DOE) announced a 6.0 wt% target for on-board 

hydrogen storage for automobiles in 2010 and a 9.0 wt% target by 2015. None of the 

more conventional storage methods (compression, liquefaction, or storage as metal 

hydrides) can meet these targets [64]. However, emerging materials such as MOFs, boron 

nanotubes, and carbon nanotubes or graphene modified as nanocomposites by metal 

deposition or infiltration into porous networks, could potentially provide this level of 

storage capability. To improve the performance of electrochemical hydrogen storage, 

future studies on CNTs to improve performance are proposed as follows: 

(1) Decrease catalyst particle size to near 5 nm using pulsed electrochemical 

deposition or sputtering, and optimize CNT sheet thickness.  

(2) Using different types of functional groups, for example, amine functional group, 

NH2 on the sidewall of the CNTs. 

(3) Evaluate transition metals other than Pt, such as Ti, and also a non-transition 

metal such as Ca, deposited on the CNTs. 

(4) Use both TPD and electrochemical discharge methods to obtain a more accurate 

percentage of hydrogen stored. 

  

Once a material with high electrochemical hydrogen uptake is found, 

measurements on the material as a function of temperature and pressure using direct 

hydrogen adsorption techniques can be carried out. 
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