Fall 2020

CS 370-101: Intro to Artificial Intelligence

Theodore Nicholson

Follow this and additional works at: https://digitalcommons.njit.edu/cs-syllabi

Recommended Citation

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Computer Science Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Artificial Intelligence
Syllabus

Instructor

Instructor: Theodore L. Nicholson
Office: GITC 4414
Office Hours: Wednesday 3:00-5:00 pm
Email: theodore.l.nicholson@njit.edu

Course Description

This course introduces concepts, approaches and techniques of artificial intelligence, and focuses on materials that are fundamental and have a broad scope of applications. Topics include Problem Solving, Search, Knowledge and Reasoning, Logical Agents, First-Order Logic and Inference, Uncertain Knowledge and Reasoning, Quantifying Uncertainty, Probabilistic Reasoning, Perception, Pictorial Knowledge Representation, and Search in Frequency and Spatial Domains. Additional topics include Machine Learning, Neural Computation, Evolutionary Computation, and Robotics.

Textbook

Grading Scheme

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm</td>
<td>40%</td>
</tr>
<tr>
<td>Project I</td>
<td>10%</td>
</tr>
<tr>
<td>Project II</td>
<td>30%</td>
</tr>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
</tbody>
</table>

Topics (Tentative)

1. Introduction
 ○ AI Fundamentals: Knowledge & Search, Cognitive Science, Turing Test, Ancient Philosophers (Logic)
 ○ Programming Languages: Lisp, Prolog, C/C++, Java, Matlab
 ○ Related Fields: Machine Learning, Neural Networks, Evolutionary Computation, Computer Vision
 ○ AI History: Symbolism (Expert Systems) vs. Connectionism (MP model, Perceptron, BP Algorithm)
2. Problem Solving
Intelligent Agent: Sensors, Actuators, Agent Program
Solving Problems by Searching: problem-solving agent
Blind Search Strategies: Breadth-first Search, Depth-first Search (completeness, optimality, complexity)
Informed Search Strategies: Greedy Best-first Search, A* Search (completeness, optimality, complexity)

3. Knowledge and Reasoning - Logical Agents
 Knowledge Base, Models, and Knowledge-Based Agents
 Propositional Logic Knowledge Representation Language, Syntax and Semantics
 Logical Reasoning: Entailment and Inference (soundness, completeness)
 Propositional Theorem Proving: Validity, Satisfiability, Reduction to Absurd
 MP Inference Rule, Resolution Inference Rule, Horn Form, CNF

4. Knowledge and Reasoning - First-Order Logic
 Propositional Logic vs. First-Order Logic: objects, relations (unary, n-ary), functions
 First-Order Logic: Syntax and Semantics (predicates, variables, quantifiers)
 First-Order Logic Knowledge Representation Language, Model, Interpretation
 First-Order Logic Knowledge Base

5. Knowledge and Reasoning - Inference in First-Order Logic
 Universal Instantiation, Existential Instantiation
 Substitution and Unification
 Generalized MP Rule, Soundness of GMP
 Resolution Inference Rule, CNF
 Logic Programming - Prolog

6. Uncertain Knowledge and Reasoning - Quantifying Uncertainty
 Acting under Uncertainty
 Probability (model, atomic event, conditional), Random Variables (propositional, discrete, continuous)
 Syntax and Semantics: probability distribution, joint probability distribution
 Inference by Enumeration, Normalization
 Independence, Conditional Independence, and Bayes’ Rule

7. Uncertain Knowledge and Reasoning - Probabilistic Reasoning
 Representing Knowledge in an Uncertain Domain
 Bayesian Networks
 Optimal Feature Representation Methods and Search
 Optimal Feature Classification Methods and Search

8. Perception - Pictorial Knowledge Representation
 Digital Image Fundamentals
 Image Formation
 Digital Image Formats/Protocols (JPEG, PNG, TIFF, PGM, PPM)
 Digital Video Fundamentals (CAV; NTSC/PAL/SECAM; S-Video)

9. Perception - Search in Frequency Domain
 FT/FFT
 Lowpass and Highpass Filtering
 Convolution, Correlation, and Autocorrelation Theorems
 Pictorial Information Search using FFT Features

10. Perception - Search in Spatial Domain
 Geometric Feature Representation
 Edge Detection (Canny, Zero-crossing, LOG, Prewitt, etc.)
 Line and Curve Detection (Hough Transform)
 Pictorial Information Search using Geometric Features

11. Learning - Machine Learning
- Inductive Learning
- Decision Tree Learning
- Unsupervised Learning
- Supervised Learning

12. Neural Computation (optional)
- Multilayer Perceptrons and BP Algorithm
- Radial-Basis Function Networks

13. Evolutionary Computation (optional)
- Genetic Algorithms (GA)
- Evolutionary Strategy (ES)
- Evolutionary Programming (EP)

14. Robotics (optional)
- Sensors and Vision
- Path Planning
- Moving and Control

Cheating Policy

Cheating on a programming assignment results in zero credit for all students involved. Programming assignments may **NOT** be solved in collaboration, unless specifically stated in the assignment. Cheating on an exam will result in an “F” in the course. You may discuss problems with each other. Where does discussion end and cheating start? You may **NOT** copy lines of code from anybody or anywhere. You may **NOT** use code in your assignments that you did not write. As a general rule: If you don't understand the code and can't explain the code, you can't use the code.

Please familiarize yourself with the [NJIT Honor Code](#). Violations of the honor code will be dealt with seriously and reported immediately to the Dean of Students.

Late Policy

To receive full credit all programming assignments must be handed in on time at the beginning of class. Assignments will not be accepted after the due date.

Prerequisites

CS 114 and (Math 226 or CS 241)