Spring 1-1-2020

MNET 303-102: Advanced Techniques in CAD/CAM

ShaQueel Dyer

Follow this and additional works at: https://digitalcommons.njit.edu/saet-syllabi

Recommended Citation
https://digitalcommons.njit.edu/saet-syllabi/115

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in School of Applied Engineering and Technology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
COURSE NUMBER MNET 303

COURSE NAME Advanced Techniques in CAD/CAM

COURSE STRUCTURE 2-2-3 (lecture hr/wk - lab hr/wk – course credits)

COURSE COORDINATOR/INSTRUCTOR Dr. S. Lieber/Mr. S. Dyer

COURSE DESCRIPTION Applications including hands-on experience with CAD/CAM systems. Emphasis is on understanding how displayed objects are represented and manipulated on the computer. Laboratory experiences contribute to an understanding of the advantages and limitations of CAD/CAM systems.

PREREQUISITE(S) None

COREQUISITE(S) None

REQUIRED, ELECTIVE OR SELECTED ELECTIVE Elective

COMPUTER USAGE Software: *Solidworks*.

COURSE LEARNING OUTCOMES(CLO) By the end of the course students should be able to:
1. Develop CAD models with Parametric CAD software.
2. Develop CAM models with CAM software.
3. Apply knowledge of Manufacturing and Inspection processes to CAD/CAM.
4. Conduct Engineering Analysis with CAD/CAM.
5. Prepare Engineering documents/reports.

CLASS TOPICS Castings and Forging process, CAD sketch and extrude, Cutting Operations (Mill, Wire EDM, Drill), CAD Mirror & Revolve, Helical Sweep, Pattern, CAM Milling/Drilling, CAM Turning, Inspection Methods, CAD Assembly, Geometric Dimensioning & Tolerancing, CAD 3D Annotation, Part and Assembly Drawing Formats/Templates, Working with STEP Files, Sheet Metal Modeling, Additive Manufacturing, CAD Blend and Shell:

CAD/CAM Project:
Project 1: Each student will describe the manufacturing processes needed to fabricate an existing modeled part. A Project Report will be submitted.

Project 2: Each student will model the parts for an assembly. Students will prepare engineering drawings for parts and the assembly. Students will conduct engineering evaluation of fit and function. A Project Report will be submitted.

STUDENT OUTCOMES

The Course Learning Outcomes support the achievement of the following MET Student Outcomes and TAC of ABET Criterion 9 requirements:

Student Outcome a - an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly-defined engineering technology activities

Related CLO – 1-4

Student outcome b - an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies;

Related CLO – 3-4

Student outcome c - an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes;

Related CLO – 3-4

Student Outcome d - an ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives.

Related CLO – 1-4

Student outcome f - an ability to identify, analyze, and solve broadly-defined engineering technology problems

Related CLO – 3-4

Student Outcome g - an ability to communicate effectively regarding broadly-defined engineering technology activities

Related CLO – 5

Student Outcome m - technical expertise having added technical depth in mechanical design, solid mechanics, and electro-
New Jersey Institute of Technology
Department of Engineering Technology
MNET 303 Advanced Techniques in CAD/CAM

mechanical devices and controls.

Related CLO - 1-4

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>30 %</td>
</tr>
<tr>
<td>Project 1 & 2</td>
<td>20 %</td>
</tr>
<tr>
<td>Two Quizzes</td>
<td>30 %</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20 %</td>
</tr>
</tbody>
</table>

Note: There are two quizzes during the semester. There will be no makeup quizzes.

GRADING POLICY

ACADEMIC INTEGRITY

NJIT has a zero-tolerance policy regarding cheating of any kind and student behavior that is disruptive to a learning environment. Any incidents will be immediately reported to the Dean of Students. In the cases the Honor Code violations are detected, the punishments range from a minimum of failure in the course plus disciplinary probation up to expulsion from NJIT with notations on students' permanent record. Avoid situations where honorable behavior could be misinterpreted. For more information on the honor code, go to http://www.njit.edu/academics/honorcode.php

STUDENT BEHAVIOR

- No eating or drinking is allowed at the lectures, recitations, workshops, and laboratories.
- Cellular phones must be turned off during the class hours – if you are expecting an emergency call, leave it on vibrate.
- No headphones can be worn in class, unless allowed by the professor.
- Unless the professor allows the use during lecture, laptops should be closed during lecture.
- During laboratory, if you are finished earlier, you must show the professor your work before you leave class.
- Class time should be participative. You should try to be part of a discussion.
The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be notified in class of any changes to the Course outline.

Mr. S. Dyer

Dr. S. Lieber

Friday 5:45 PM – 9:50 PM 2302 GITC Building

By appointment:

Homework sets are due one week after they are assigned. Late penalty is minus 25% each week. Assignments more than one week late will not be accepted.

Homework must be submitted in the format provided by the professor.

Projects are due on the dates indicated. No late projects will be accepted.

Projects should be submitted in the format provided by the professor.

<table>
<thead>
<tr>
<th>GRADE</th>
<th>NUMERIC RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 to 100</td>
</tr>
<tr>
<td>B+</td>
<td>85 to 89</td>
</tr>
<tr>
<td>B</td>
<td>80 to 84</td>
</tr>
<tr>
<td>C+</td>
<td>75 to 79</td>
</tr>
<tr>
<td>C</td>
<td>70 to 74</td>
</tr>
<tr>
<td>D</td>
<td>60 to 69</td>
</tr>
<tr>
<td>F</td>
<td>0 to 59</td>
</tr>
</tbody>
</table>
MNET 303 - COURSE OUTLINE

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Homework Assignment</th>
</tr>
</thead>
</table>
| **1** January 24 | Description of Castings & Forgings
Introduction to Solid Modeling (Solidworks)
- Introduction (Chapter 1)
- Parametric Modeling Fundamentals (Chapter 2) | 1. Chapter 2 Tutorial
2. Chapter 2: 3, 4 |
| **2** January 31 | Description of Cutting Operations (Mill, Wire EDM, Drill)
Solid Modeling:
- Constructive Solid Geometry Concepts (Chapter 3)
- Idler Arm Part | **Project 1 Assigned**
1. Chapter 3 Tutorial
2. *Bearing* (Chapter 14 p. 14-6)
3. Idler Arm Tutorial |
| **3** February 7 | Description of Turning Operations (Screw Threads)
Solid Modeling:
- Revolve, Helical Sweep, Pattern
- Thumb Screw | 1. Thumb screw Tutorial
2. Start U-Bracket (Chapter 7)
3. Cap Screw (Chapter 14 p. 14-7 with Thread and Relief) |
| **4** February 14 | Symmetrical Features in Design (Chapter 11) | 1. Pulley (Chapter 11, p. 11-1 thru 11-17)
2. Finish U-Bracket (Chapter 7)
3. Base-Plate (Ch. 14, p. 14-6)
4. Collar (Ch. 14, p. 14-4) |
| **5** February 21 | **Quiz #1**
Description of Inspection Methods
Solid Modeling:
- Assembly (Chapter 14) | 1. **Complete Project 1**
2. Shaft Support Assembly (14-1 thru 14-28) |
| February 28 | **Project 1 Submitted**
Dimensioning/Tolerancing & GD&T Part 1
Solid Modeling:
- Part Drawings & Associative Functionality (Chapter 8) | 1. **Project 2 Assigned**
2. Chapter 8 Tutorial
3. Pulley Drawing (11-18 thru 11-32) |
| **7** March 6 | Dimensioning/Tolerancing & GD&T Part 2
Solid Modeling:
- Reference Geometry & Auxillary Views (Chapter 9) | 1. Chapter 9 Tutorial
a. Create Part Drawing with Overall Dimensions
2. GD&T Homework |
| **8** March 13 | Dimensioning/Tolerancing & GD&T Part 3
Solid Modeling:
- Assembly Drawings | 1. Shaft Support Assembly Drawing (14-29 thru 14-37)
2. Shaft Hanger Tutorial
a. Create Part Drawing with Overall Dimensions |
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Homework Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPRING BREAK 3/15-3/22</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>March 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid Modeling:</td>
<td>1. Sheet Metal Designs</td>
</tr>
<tr>
<td></td>
<td>• Sheet Metal Part 1</td>
<td>(Chapter 13)</td>
</tr>
<tr>
<td>10</td>
<td>April 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quiz #2</td>
<td>1. Support Bracket Tutorial</td>
</tr>
<tr>
<td></td>
<td>• Sheet Metal Part 2</td>
<td>a. Create Part Drawing with Overall Dimensions</td>
</tr>
<tr>
<td></td>
<td>GOOD FRIDAY APRIL 10th NO CLASS</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>April 17</td>
<td>1. Chapter 10 STL Tutorial</td>
</tr>
<tr>
<td></td>
<td>Additive Manufacturing (Ch. 10)</td>
<td>2. Dryer Housing (Chapter 12)</td>
</tr>
<tr>
<td></td>
<td>• STL File generation Tutorial (10-12 thru 10-25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid Modeling:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Blend/Shell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dryer Housing (Chapter 12)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>April 24</td>
<td>1. MasterCAM Intro. Tutorial</td>
</tr>
<tr>
<td></td>
<td>Master Cam Tutorials</td>
<td>2. Complete Project 2</td>
</tr>
<tr>
<td>13</td>
<td>May 1</td>
<td>1. Lathe Tutorial</td>
</tr>
<tr>
<td></td>
<td>Master Cam Tutorials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lathe</td>
<td></td>
</tr>
</tbody>
</table>
| 14 | May 5 (Tuesday) | **Submit Project 2** | Cotter Pin Tutorial
| | **Submit Project 2** | 1. Create Part Drawing with Overall Dimensions |
| | Solid Modeling: | |
| | • Family Table | |
| 15 | TBD | **Final Exam** |