Fall 2019

ME 430-101: Introduction to Computer Aided Design

Swapnil Moon

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation
https://digitalcommons.njit.edu/mie-syllabi/116

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
COURSE OUTLINE

Prerequisites: CIS 101, Math 222

Instructor: Dr. Swapnil Moon
Office: MEC 333 CD
Phone: 201-665-2223
E-mail: swapnil.moon@njit.edu

Office Hours: Wednesday 11:45 – 1:00 & Tuesday 12:15 - 3:00

Textbook: Instructor’s Lecture Notes
ISBN 0-07-286845-7

Course Description: This is a course introducing basic concepts of CAD (Computer Aided Design) and structural and thermal as applied to Mechanical Engineering design problems. Topics include geometric modeling, computer graphics, projections, database, mechanism design, structure and thermal FEA (Finite Element Analysis), optimization for design models. The laboratory component involves use of current CAD software packages for mechanical design.

Grading Scheme & Policies:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Work – Assignments</td>
<td>35%</td>
</tr>
<tr>
<td>Project</td>
<td>20%</td>
</tr>
<tr>
<td>Mid-Term Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
<tr>
<td>E-Portfolio</td>
<td>5% (Bonus)</td>
</tr>
</tbody>
</table>

Ground Rules:

1. Attending class, completing assignments on time, and keeping up with the class material is important for success in this course and in college. Generally, late or missed assignments will not be accepted except for legitimate (pre-approved when possible) reasons as determined by the instructor. Examples of legitimate reasons are: illness, death in family, etc. The method of handling late or missed work is determined by the instructor.

2. Missing more than 4 classes will lead to an ‘F’ grade in the course. Exceptions will only be made for cases of excused absences supported by relevant documentation submitted to and verified by the office of Dean of Students.

3. Leaving early will be marked as an absence, if due to any issues you are not able to attend the listed class duration please register for a different section.

4. ANY FORM OF CHEATING ON ASSIGNMENTS OR EXAMS WILL RESULT IN AN ‘F’ FOR THE COURSE. This includes looking at another person’s exam or copying another person’s work for exams or assignments.

5. NJIT honor code will be used for all situations that involve cheating, copying, misrepresentation of student work, and misrepresentation of
student information and any violations will be brought to the immediate attention of the Dean of Students (visit http://www.njit.edu/academics/honorcode.php).

6. Weekly assignments are to be turned in by the due date and must include the statement “This assignment represents my work and is not the result of copying or using any other persons work.” The statement must be signed by the student submitting the work.

7. The part file for the assignment is required to be submitted to get credit for the assignment. Non submission of the part file will lead to a loss of grade for the assignment.

8. Weekly assignments are due on the first meeting of the class for the week (Monday or the appropriate first day of class for the particular section) BEFORE the start of Lecture. Assignments turned in after the lecture starts are counted as late.

9. Assignments that are more than 2 weeks late will not be accepted.

10. Point deduction – Late Assignments: 1-Week-20%, 2-Weeks-30%

11. At least 60% of the homework has to be submitted for a passing grade.

12. Not submitting the final project will lead to an ‘F’ in the course.

13. For using your smart phone devices during the lecture you are requested to please step out of the class, otherwise you would be asked to leave for the day.

14. Attendance, attitude, class participation and effort can and will be used to change borderline grades up or down.

15. For special allowances associated with disabilities student must approach the Disability Resource Center.

16. For any modifications or deviations from the syllabus throughout the course of the semester, instructor will consult with students and the students must agree to.
<table>
<thead>
<tr>
<th>Week Number</th>
<th>TOPICS</th>
<th>ASSIGNMENTS</th>
</tr>
</thead>
</table>
| 1) | Course Introduction, Product Life Cycle and Roles of CAD in Design Process (Synthesis and Analysis)
Structure of Software GUI and Basic & Advanced Types of Protrusion | **Creo Parametric**: Base Support, Card Holder & Helical Extension Spring. |
| 2) | CAD/CAM Hardware – CAD/CAM Systems – Hardware Configurations (Mainframe, Workstation and PC Configurations).
Graphics Displays hardware in Computer Graphics | **Creo Parametric**: Hammer Handle, Cam, Razor Handle & Clip. |
| 3) | CAD/CAM Hardware – Hardware Integration and Networking.
| 5) | Dimensioning & Tolerancing Techniques Multi-view Projections & Auxiliary View Type of Sectional Views
Assembly Design Modeling – Assembly Constraints | **Creo Parametric**: Roller Chain Assembly, Roller Chain Assembly Detailed Drawing & Bicycle Chain Assembly. |
| 7) | Optimization
Mechanism Design – Kinematics and Dynamics Analyses in CAD. | **SolidWorks**: Landing Gear Assembly, Detailed Drawing of Housing Cover & Assembly drawing of Landing Gear. |
| 8) | **Mid-term Exam I**
Curves Representation – Analytical and Free Form Curves: Bzier, B-Spline & NURBS | **SolidWorks**: Support Bracket – Sheet Metal |
| 9) | Mechanism Design – Type of Joints and Degree of Freedom in Mechanism Design | **SolidWork**: Car Wheel Assembly.
Creo Parametric: Crankshaft Balancing and Optimization & Plastic Advisor Analysis of Card Holder. |
| 10) | Introduction to Plastic Injection Machines. | **Creo Parametric**: Slider Crank Mechanism, Eccentric Mechanism & Valve Cam Mechanism. |
| FEA – P-Method and H-Method, Steps in FEA Modeling, Convergence Techniques | |
| Matrices of Geometric Transformation – Translation, Scaling, Reflection & Rotation | Creo MANUFACTURE: Plate Milling and Drilling Using Expert Machinist. | Start to create parts for Final Project |

Homework related to the lectures will be assigned, collected and graded.

The laboratory will be in MEC-219, and will have hands-on sessions to cover the basics and advanced features of Creo Parametric, Simulate & SolidWorks.