New Jersey Institute of Technology Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Spring 2019

ENE 360-002: Water and Wastewater Engineering

Lucia Rodriguez-Freire

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

Rodriguez-Freire, Lucia, "ENE 360-002: Water and Wastewater Engineering" (2019). *Civil and Environmental Engineering Syllabi*. 113. https://digitalcommons.njit.edu/ce-syllabi/113

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

ENE 360 Water and Wastewater Engineering – Spring 2019 Section: 002

INSTRUCTOR: Dr. Lucia Rodriguez-Freire

Office #: Colton 266
Irfreire@njit.edu

Phone number: 973-596-2448

CLASS MEETINGS: Monday, Wednesday 10-11:20 am

Central King Building 310

OFFICE HOURS: Tuesday, 2 – 4 pm

Wednesday, 12 – 1 pm And by appointment

REQUIRED TEXT:

Mihelcic, J.R., Zimmerman, J.B., (2014) Environmental Engineering: Fundamentals, Sustainability, Design, 2nd Edition (ISBN 978-1-118-74149-8) John Wiley and Sons, Inc.

PREREQUISITES:

ENE 262: Introduction to Environmental Engineering

Junior standing

COURSE DESCRIPTION:

This course provides training in the methods used for water pollution control. Topics include the chemical, physical, and biological processes that occur in waste treatment design and in receiving waters; modeling schemes to determine chemical loadings and removals in various bodies of water; and water and wastewater treatment processes used for water pollution control. **Course Objectives and Expected Learning Outcomes:**

- 1. Students will learn to calculate and predict physical, chemical and biological changes that
- affect water quality and treatment requirements
- 2. Students will apply fundamentals mechanisms to unit operations and processes in water and wastewater treatment with emphasis on problem interpretation, formulation and solution
- 3. Students will incorporate engineering tools for problem solving and communication through the application of social, regulatory, and political context to environmental and water quality analysis.

POLICIES AND PROCEDURES:

Lectures:

- It's important that you read the assignment (text and/or notes) prior to class. We will try to spend class time summarizing important points from the readings, working examples.
- It is required that students attend class. Information will be provided that will be critical to student performance
- Please be on time for lectures, turn off your cell phone and refrain from talking in class, arriving late, leaving class in the middle of a lecture or doing any other activity that could be disruptive to the class.

Homeworks will be due at the beginning of the class period. You are strongly encouraged to work in groups and to consult with the instructor if questions arise for homework assignments. However, everyone is required to submit his or her own solutions to the homework.

Exams can cover any material presented in the class. Missed exams may not be made up except for special circumstances such as for health reasons, the instructor must be notified of an absence prior to the exam.

Term paper Students will team in 3-4 people groups to work together on the project. Each group will prepare a brief literature review report consisting of 5 pages maximum (excluding cover page, abstract, references and tables/figures), single-spaced. The objective of this literature review is to evaluate current and future challenges in a selected topic or topics impacting water quality, water or wastewater treatment, and/or pollution control. Example of topics to consider might include: Emerging contaminants, membrane processes, water reuse, advance oxidation processes....The paper will include the following sections:

- 1) Project Title and Student names
- 2) Project Abstract (200 word limit)
- 3) Background and Significance (Introduction) of the Topic you have selected.
- 4) Objective of your paper.
- 5) Theoretical Framework
- 6) Analyses and Discussion (which should include some calculations); this section can be organized in different specific subtopics.
- 7) Conclusions.
- 8) References (you will have to cite any references from which you obtained information, data, equations, and other reference material). Students are expected to provide a minimum of 5 citations.
- 9) An Appendix section should be included that includes figures and table.

Presentation Each group will provide a brief presentation on your paper topic of 7 minutes (with the intent to have about 3 minutes for Questions and Answers). Students are encouraged to use slides (e.g. Power Point) as aids to organize and illustrate the presentation.

NJIT Honor Code will be upheld, and any violations will be brought to the immediate attention of the Dean of Students. http://www.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf

GRADING:

-		
•	Homework	(20%)
•	Class Projects	(25%)
•	Midterm Exam	(25%)
•	Final Exam	(25%)
•	Participation	(5%)

The following percentages are guarantee to receive at least the indicated grade:

- A: 90-100%
- B+: 85-89.99%
- B: 80-84.99%
- C+: 75-79.99%
- C: 70-74.99%
- D+: 65-69.99%
- D: 60-64.99%
- F: < 60%

The grade of Incomplete ("I") may be given in rare instances where a student, and for documented (by the Dean of Students) reasons, could not complete parts of the work of the course.

Tentative Course Schedule

Any modifications will be notified to the students at least a week on advance

Any modifications will be notified to the students at least a week on advance			
Class Date	Topics	Student Learning Outcomes	Reading Assignments
Jan. 23	Course OverviewIntroduction to Water and Wastewater Engineering	Learn about the main components of a water treatment plant and a wastewater treatment plant	
Jan. 28	Environmental Sustainability	 Describe the water regulatory environment Define sustainability, sustainable development, and sustainable engineering Apply Life Cycle Assessment tools for engineering design 	Chapter 1
Jan. 30	Units/Measurements; Environmental Standards	Calculate concentrations in different media/units	Chapter 2
Feb. 4	Chemical Processes 1: Stoichiometry, Concentrations, Acid-Base Reactions	Balance chemical reactions Estimate the pH and speciation in an aqueous solution	Chapter 3
Feb. 6	Chemical Processes 2: Gas-liquid equilibrium, Precipitation reactions	Apply Henry's law for gas-liquid equilibrium Predict and quantify solid precipitation	Chapter 3
Feb. 11	Chemical Processes 3: Redox Chemistry and Thermodynamics,	Balance redox reactions Define and calculate reduction- oxidation potential, and the energy of a reaction	Chapter 3
Feb. 13	Chemical Processes 4: Reaction Kinetics, Sorption Processes	Calculate reaction kinetics Plot and interpret adsorption isotherms	Chapter 3
Feb. 18	Physical Processes 1: Mass and Energy Balances, Reactor design	Effectively apply the law of conservation of mass for mass balances Distinguish between different reactors Calculate reactor volume and retention time	Chapter 4
Feb. 20	Physical Processes 2: Reactor design (cont.), Mass Transport <u>Term paper topic due</u>	 Differentiate and employ the mass transport processes Define different kind of energies, and apply to energy balances Apply Fick's law and Stoke's law to solve environmental engineering problems 	Chapter 4
Feb. 25	Biological Processes 1: Biological Reactions, Kinetics	Describe an ecosystem and its function and structure	Chapter 5

Feb. 27	Biological Processes 2: Biogeochemical Cycles	 Apply thermodynamics to biological growth Describe and apply different biological kinetic models Calculate population changes and growth rate Define and calculate BOD, COD, and ThOD Describe Water, Carbon and Nitrogen biological cycles Design of biological reactors Review session	Chapter 5
Mar. 6	MIDTERM EXAM	Chapter 1-5	
Mar. 11	Environmental Risk Assessment 1 Relationship between concentration, exposure, dose and risk.	Describe environmental risk Distinguish between chemical concentration, exposure, and dose Calculate acceptable concentration and acceptable risk	Chapter 6
Mar. 13	Environmental Risk Assessment 2 Risk minimization	 Describe the relationship between bioaccumulation, bioconcentration, food web cycles, and toxicity Learn and evaluate mechanisms for risk minimization 	Chapter 6
Mar. 18-20	Spring Break		
Mar. 25	Water Quality and Quantity 1: Resources, Availability, Usage and Demand Distribution, Collection,	 Describe the components of the major hydrological cycles Delineate a watershed and estimate runoff Calculate mass loading of pollutants to a watershed Estimate water and wastewater flow rates 	Chapter 7
Mar. 27	Water Quality and Quantity 2: Water Quality, Wetlands, Groundwater	Use mass balances to calculate changes in water quality Apply Darcy's law to estimate velocity of groundwater and groundwater pollutants	Chapter 7
Apr. 1	Water Treatment 1: Water Standards, Water Treatment Plant <u>First draft paper due</u>	Identify the major physical, chemical and biological constituents and relate them with drinking water quality standards Distinguish major components of a water treatment plant	Chapter 8
Apr. 3	Water Treatment 2: Coagulation and Flocculation and Hardness Removal	Define coagulation and hardness removal processes Calculate coagulants loads Design flocculation and coagulation units	Chapter 8
Apr. 8	Water Treatment 3: Sedimentation, Filtration, Adsorption,	Apply Stoke and Newton's laws to design a sedimentation basin	Chapter 8

	T	0 8:0 :11.4	
		Distinguish between different	
		membrane treatments	
		Calculate energy requirement for	
		filtration units	
		Define indicator microorganisms	
	Water Treatment 4:	Calculate disinfection rates using	
Apr. 10	Disinfection, Ion Exchange	Chick's law	Chapter 8
	Distriction, for Exeriange	Define adsorption and ion exchange	
		processes	
		Identify the major physical, chemical	
	Wastewater and Stormwater 1: Collection Systems, Wastewater	and biological constituents and relate	
		them with wastewater quality	
Apr. 15		standards	Chapter 9
, , , , , , ,	Treatment Plants,	Distinguish major components of a	Griapior o
	Preliminary and Primary Treatment	wastewater treatment plant	
		Apply mass balances to design grit	
		chamber and flow equalization basin	
	Wastewater and	Calculate organic and nutrients loads	
	Stormwater 2: Secondary	and removals	01 1 0
Apr. 17	Treatment Biological	Integrate mass balances with	Chapter 9
	Processes, Nutrient	biological growth kinetics to the design	
	Removal	of biological treatment units	
		Describe and quantify the differences	
		between aerobic, anoxic, and	
		anaerobic biological processes	
	Wastewater and Stormwater 3: Solid-Waste Management	2. Define methanogenesis and calculate	
A = = 00		methane production in anaerobic	Chantar 0
Apr. 22		processes	Chapter 9
		Describe the processes for sludge	
		management 4. Differentiate between bio-solids types	
		and their application	
		and their application	
		Estimate removal rates in lagoons and	
	Wastewater and	wetlands	
Apr. 24	Stormwater 2: Alternative	Calculate wet-weather flows based on	Chapter 9
7,511.21	Wastewater Treatment	inflow and infiltration	Griapior o
	Options		
		Understand state-of-the-art	
	New Technologies:	technologies for water and wastewater	
	Advance Oxidation	treatment	Coloratitia
Apr. 29	Processes, Anaerobic	2. Re-define the major challenges in	Scientific
	Treatment, Water Reuse	water quality and supply	papers/reviews
	Torm Bonor Due	3. Discuss the needs and requirements	
	<u>Term Paper Due</u>	for water reuse: public perception	
May 1	Student presentations		
May 6	Student presentations	Review session	
May	Final Exam	Chapter 6-9	
L	l	I .	I

Outcomes Course Matrix - ENE 360 Water and Wastewater Engineering

Strategies, Actions and Assignments	ABET Student Outcomes (1-7)	Program Educational Objectives	Assessment Measures
Student Learning Outcome 1: I	Make calculations rela	ated to reactor design	
Calculate reactor volume and retention time	1,2	1,2	Homework and exam
balance chemical reaction	1,2	1,2	Homework and exam
Student Learning Outcome 2: I			
Discuss and review new technologies, advance oxidation, anaerobic treatment, water reuse	4,7	1, 2	Class discussion, and homework

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

- <u>1 Engineering Practice</u>: Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.
- <u>2 Professional Growth:</u> Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.
- <u>3 Service</u>: Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

- 1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives

- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Revised: 2/13/18