Spring 2019

ENE 360-002: Water and Wastewater Engineering

Lucia Rodriguez-Freire

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation
https://digitalcommons.njit.edu/ce-syllabi/113

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
ENE 360 Water and Wastewater Engineering – Spring 2019
Section: 002

INSTRUCTOR: Dr. Lucia Rodriguez-Freire
Office #: Colton 266
lrfreire@njit.edu
Phone number: 973-596-2448

CLASS MEETINGS: Monday, Wednesday 10-11:20 am
Central King Building 310

OFFICE HOURS: Tuesday, 2 – 4 pm
Wednesday, 12 – 1 pm
And by appointment

REQUIRED TEXT:

PREREQUISITES:
ENE 262: Introduction to Environmental Engineering
Junior standing

COURSE DESCRIPTION:
This course provides training in the methods used for water pollution control. Topics include the
chemical, physical, and biological processes that occur in waste treatment design and in
receiving waters; modeling schemes to determine chemical loadings and removals in various
bodies of water; and water and wastewater treatment processes used for water pollution control.

Course Objectives and Expected Learning Outcomes:
1. Students will learn to calculate and predict physical, chemical and biological changes that
affect water quality and treatment requirements
2. Students will apply fundamentals mechanisms to unit operations and processes in water
and wastewater treatment with emphasis on problem interpretation, formulation and
solution
3. Students will incorporate engineering tools for problem solving and communication through
the application of social, regulatory, and political context to environmental and water
quality analysis.

POLICIES AND PROCEDURES:
Lectures:
• It’s important that you read the assignment (text and/or notes) prior to class. We will try
to spend class time summarizing important points from the readings, working examples.
• It is required that students attend class. Information will be provided that will be critical to
student performance
• Please be on time for lectures, turn off your cell phone and refrain from talking in class,
arriving late, leaving class in the middle of a lecture or doing any other activity that could
be disruptive to the class.
Homeworks will be due at the beginning of the class period. You are strongly encouraged to work in groups and to consult with the instructor if questions arise for homework assignments. However, everyone is required to submit his or her own solutions to the homework.

Exams can cover any material presented in the class. Missed exams may not be made up except for special circumstances such as for health reasons, the instructor must be notified of an absence prior to the exam.

Term paper Students will team in 3-4 people groups to work together on the project. Each group will prepare a brief literature review report consisting of 5 pages maximum (excluding cover page, abstract, references and tables/figures), single-spaced. The objective of this literature review is to evaluate current and future challenges in a selected topic or topics impacting water quality, water or wastewater treatment, and/or pollution control. Example of topics to consider might include: Emerging contaminants, membrane processes, water reuse, advance oxidation processes….The paper will include the following sections:

1) Project Title and Student names
2) Project Abstract (200 word limit)
3) Background and Significance (Introduction) of the Topic you have selected.
4) Objective of your paper.
5) Theoretical Framework
6) Analyses and Discussion (which should include some calculations); this section can be organized in different specific subtopics.
7) Conclusions.
8) References (you will have to cite any references from which you obtained information, data, equations, and other reference material). Students are expected to provide a minimum of 5 citations.
9) An Appendix section should be included that includes figures and table.

Presentation Each group will provide a brief presentation on your paper topic of 7 minutes (with the intent to have about 3 minutes for Questions and Answers). Students are encouraged to use slides (e.g. Power Point) as aids to organize and illustrate the presentation.

NJIT Honor Code will be upheld, and any violations will be brought to the immediate attention of the Dean of Students. http://www.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf

GRADING:

- Homework (20%)
- Class Projects (25%)
- Midterm Exam (25%)
- Final Exam (25%)
- Participation (5%)

The following percentages are guarantee to receive at least the indicated grade:

- A: 90-100%
- B+: 85-89.99%
- B: 80-84.99%
- C+: 75-79.99%
- C: 70-74.99%
- D+: 65-69.99%
- D: 60-64.99%
- F: < 60%
The grade of Incomplete ("I") may be given in rare instances where a student, and for documented (by the Dean of Students) reasons, could not complete parts of the work of the course.

Tentative Course Schedule

Any modifications will be notified to the students at least a week on advance.

<table>
<thead>
<tr>
<th>Class Date</th>
<th>Topics</th>
<th>Student Learning Outcomes</th>
<th>Reading Assignments</th>
</tr>
</thead>
</table>
| Jan. 23 | Course Overview
• Introduction to Water and Wastewater Engineering | 1. Learn about the main components of a water treatment plant and a wastewater treatment plant | |
| Jan. 28 | Environmental Sustainability | 1. Describe the water regulatory environment
2. Define sustainability, sustainable development, and sustainable engineering
3. Apply Life Cycle Assessment tools for engineering design | Chapter 1 |
| Jan. 30 | Units/Measurements; Environmental Standards | 1. Calculate concentrations in different media/units | Chapter 2 |
| Feb. 4 | **Chemical Processes 1:** Stoichiometry, Concentrations, Acid-Base Reactions | 1. Balance chemical reactions
2. Estimate the pH and speciation in an aqueous solution | Chapter 3 |
| Feb. 6 | **Chemical Processes 2:** Gas-liquid equilibrium, Precipitation reactions | 1. Apply Henry’s law for gas-liquid equilibrium
2. Predict and quantify solid precipitation | Chapter 3 |
| Feb. 11 | **Chemical Processes 3:** Redox Chemistry and Thermodynamics, | 1. Balance redox reactions
2. Define and calculate reduction-oxidation potential, and the energy of a reaction | Chapter 3 |
| Feb. 13 | **Chemical Processes 4:** Reaction Kinetics, Sorption Processes | 1. Calculate reaction kinetics
2. Plot and interpret adsorption isotherms | Chapter 3 |
| Feb. 18 | **Physical Processes 1:** Mass and Energy Balances, Reactor design | 1. Effectively apply the law of conservation of mass for mass balances
2. Distinguish between different reactors
3. Calculate reactor volume and retention time | Chapter 4 |
| Feb. 20 | **Physical Processes 2:** Reactor design (cont.), Mass Transport
Term paper topic due | 1. Differentiate and employ the mass transport processes
2. Define different kind of energies, and apply to energy balances
3. Apply Fick’s law and Stoke’s law to solve environmental engineering problems | Chapter 4 |
<p>| Feb. 25 | Biological Processes 1: Biological Reactions, Kinetics | 1. Describe an ecosystem and its function and structure | Chapter 5 |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Assignments</th>
<th>Chapters</th>
</tr>
</thead>
</table>
| Feb. 27 | **Biological Processes 2: Biogeochemical Cycles** | 1. Calculate population changes and growth rate
3. Define and calculate BOD, COD, and ThOD
4. Describe Water, Carbon and Nitrogen biogeochemical cycles
4. Design of biological reactors. | Chapter 5 |
| Mar. 4 | **Review session** | | |
| Mar. 6 | **MIDTERM EXAM** | | |
| Mar. 11 | **Environmental Risk Assessment 1** | 1. Describe environmental risk
2. Distinguish between chemical concentration, exposure, and dose
3. Calculate acceptable concentration and acceptable risk. | Chapter 6 |
| Mar. 13 | **Environmental Risk Assessment 2** | 1. Describe the relationship between bioaccumulation, bioconcentration, food web cycles, and toxicity
2. Learn and evaluate mechanisms for risk minimization | Chapter 6 |
| Mar. 18-20 | **Spring Break** | | |
| Mar. 25 | **Water Quality and Quantity 1: Resources, Availability, Usage and Demand Distribution, Collection,** | 1. Describe the components of the major hydrological cycles
2. Delineate a watershed and estimate runoff
3. Calculate mass loading of pollutants to a watershed
4. Estimate water and wastewater flow rates | Chapter 7 |
| Mar. 27 | **Water Quality and Quantity 2: Water Quality, Wetlands, Groundwater** | 1. Use mass balances to calculate changes in water quality
2. Apply Darcy’s law to estimate velocity of groundwater and groundwater pollutants | Chapter 7 |
| Apr. 1 | **Water Treatment 1: Water Standards, Water Treatment Plant** | 1. Identify the major physical, chemical and biological constituents and relate them with drinking water quality standards
2. Distinguish major components of a water treatment plant | Chapter 8 |
| Apr. 3 | **Water Treatment 2: Coagulation and Flocculation and Hardness Removal** | 1. Define coagulation and hardness removal processes
2. Calculate coagulants loads
3. Design flocculation and coagulation units | Chapter 8 |
<p>| Apr. 8 | Water Treatment 3: Sedimentation, Filtration, Adsorption, | 1. Apply Stoke and Newton’s laws to design a sedimentation basin | Chapter 8 |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Subtopics</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Apr. 10 | Water Treatment 4: Disinfection, Ion Exchange | 1. Define indicator microorganisms
2. Calculate disinfection rates using Chick’s law
3. Define adsorption and ion exchange processes | Chapter 8 |
| Apr. 15 | Wastewater and Stormwater 1: Collection Systems, Wastewater Treatment Plants, Preliminary and Primary Treatment | 1. Identify the major physical, chemical and biological constituents and relate them with wastewater quality standards
2. Distinguish major components of a wastewater treatment plant
3. Apply mass balances to design grit chamber and flow equalization basin | Chapter 9 |
| Apr. 17 | Wastewater and Stormwater 2: Secondary Treatment Biological Processes, Nutrient Removal | 1. Calculate organic and nutrients loads and removals
2. Integrate mass balances with biological growth kinetics to the design of biological treatment units | Chapter 9 |
| Apr. 22 | Wastewater and Stormwater 3: Solid-Waste Management | 1. Describe and quantify the differences between aerobic, anoxic, and anaerobic biological processes
2. Define methanogenesis and calculate methane production in anaerobic processes
3. Describe the processes for sludge management
4. Differentiate between bio-solids types and their application | Chapter 9 |
| Apr. 24 | Wastewater and Stormwater 2: Alternative Wastewater Treatment Options | 1. Estimate removal rates in lagoons and wetlands
2. Calculate wet-weather flows based on inflow and infiltration | Chapter 9 |
2. Re-define the major challenges in water quality and supply
3. Discuss the needs and requirements for water reuse: public perception | Scientific papers/reviews |
| May 1 | Term Paper Due | | |
| May 6 | Student presentations | | Review session |
| May | Final Exam | | Chapter 6-9 |
Outcomes Course Matrix – ENE 360 Water and Wastewater Engineering

<table>
<thead>
<tr>
<th>Strategies, Actions and Assignments</th>
<th>ABET Student Outcomes (1-7)</th>
<th>Program Educational Objectives</th>
<th>Assessment Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Learning Outcome 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:
- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

1. **Engineering Practice**: Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2. **Professional Growth**: Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3. **Service**: Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Revised: 2/13/18