New Jersey Institute of Technology Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Spring 2019

CE 210-004: Construction Materials & Procedures

Fadi Karaa

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

Karaa, Fadi, "CE 210-004: Construction Materials & Procedures" (2019). *Civil and Environmental Engineering Syllabi*. 111. https://digitalcommons.njit.edu/ce-syllabi/111

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Dr. F. Karaa Spring 2019

CE 210-004: CONSTRUCTION MATERIALS & PROCEDURES

Class Hours

Tue Thu 11:30 AM- 12:50 PM FMH 319 (First Day of Classes January 22, 2019)

Office Hours (Colton 274)

Thu 4:00 PM- 5:30 PM and Wed 4:30 PM- 6:00 PM or by e-mail or appointment at (973) 642-4198 or karaa@njit.edu

REQUIRED TEXT

Halpin, Daniel W. and Senior, Bolivar A., Construction Management, 5th Edition Wiley, and ISBN: 9781119256809. This textbook is referred to as DH in the lecture readings and other references below.

OTHER REFERENCE

Other files are assigned electronically as supplemental readings and will be e-mailed to class participants. These are denoted in course outline as Efiles.

Prerequisites: HUM 101

COURSE DESCRIPTION AND OBJECTIVES:

This course is a general comprehensive course on construction management and engineering in the Civil and Environmental Engineering Department at NJIT. It provides a broad understanding of the construction environment, the engineering and construction project management process and development process, with particular emphasis on planning, scheduling and cost management, which are key pillars of successful construction management. Also, the various tools and techniques and their interactions in the cost-effective development of constructed facilities, will be covered with practical illustrations and complemented by hands-on exercises and case studies.

LEARNING OUTCOMES

This course covers the environment, planning and management issues related to the modern approach of construction management. Using the cases and background materials, and methodologies covered, you should be able to:

- Analyze the feasibility of a construction project within resource constraints.
- Understand the basic structure of the construction industry, its environment, its various sectors and its overall relationship to the US and global economy.
- Devise the best organizational structure capable of carrying out the project.
- Understand engineering economic principles and apply the concepts of life-cycle management of a constructed project from the owner's perspective (feasibility, financing, rate of return, contract management, quality control).

- Define the role of the general contractor, and understand the perspective of the GC as a business (estimating, bidding, project financing, cash flow management, materials and operations management).
- Understand the components of modern Professional Construction Management, and its relationships to other project participants as a form of project delivery.

COURSE OUTLINE (Subject to updating throughout semester)

Week	Dates	Textbook/Reading	Assignment (*)	Topics
1	22, 24	DH Chapter 1,2	As posted in Moodle	History and Basic
	Jan			Concepts of
				Construction; Bid
				Package Development
2	29, 31	DH Ch. 2 (ctd.), 3, 4	As posted in Moodle	Development Cycle for
	Jan			Projects (ctd.), Contracts
3	5, 7	DH Ch 5, 6		Alternative Project
	Feb			Delivery Systems/
				Legal Aspects/ Taxes
4	12, 14	Chapter 6(ctd),	As posted in Moodle	Impact of
	Feb	E-File		Taxes/Depreciation of
				Assets- Project
				Organization Structures
5	19, 21	DH Ch 7; DH Ch 8	MS project WBS Model	Project Planning WBS);
	Feb			Project Scheduling (1)
6	26, 28	DH Ch 8 (ctd.);	Problem 8.2, Bonus	Quiz 1/
	Feb		Assignment figure 8.26	Project Scheduling (2);
			MS Project generalized	
			relationships	
7	5, 7	DH Ch 10	Resource Leveling and	Resource-Related and
	Mar		Time-Cost Trade-Off	Linear Scheduling;
- 0	10.11	DIT CL 0	problems	Computer applications
8	12, 14	DH Ch 9	PERT Problem	Construction Materials
	Mar			(Part I)/ PERT
	17.04	CDDING DECEC		Advanced Scheduling
	17-24 Mar	SPRING RECESS		
9	26, 28	DH Ch 11	Future and Present	Mid-Term/ Present and
9	20, 20 Mar	DITCHTI	Values; Lifecycle	Future Values; Lifecycle
	Iviai		costing	Costing;
10	2, 4	DH Ch13	Problem Project	Project Funding
10	Apr	Direction	Funding	1 Toject I unumg
11	9, 11	DH Ch 13 (ctd.)	1 anang	Project Funding Case
11	Apr	D11 C11 10 (Ctd.)		110ject 1 anding Case
11	16, 18	Handout, Dh Ch. 19;	TBA	Construction Materials
	Apr			and Properties (Part 2);
	r			Building Systems**
12	23, 25	Engineering Ethics	Ethics Assignment I	Engineering Code of
	Apr	Handouts and Case	0 - 1	Ethics - Knowledge and
				Case
13	30 Apr,	DH Ch 17, Ch 15	Problem: Equipment	Overview of Cost
	2 May		Balance Planning	Estimating;

			Ethics Case	Productivity Based
				Estimating ; Equipment
				Productivity - Heavy
				Construction
14	7, 9	Study Period		
	May	,		
15	10- 16	Finals		
	May			

Final Exam Period: May 10-16.

*Actual Assignments may differ from list and can be changed by Instructor during Semester.

GRADING:

The overall term grade will be based on the following elements:

Paper/Project Case Study: 17.5%

Quiz 1: 10% Homework: 20%

Class Participation/attendance: 10%

Mid-Term: 17.5%

Final: 25%

Field Trip Reports

Each student will submit two (2) reports, which can be 2 Parts of the same project on self-conducted field trips according to the following schedule:

- 1. Project Administration: In this first part, you will establish for a construction project of your choice, or a section of the class field trip project:
 - a- The project background, scope, budget, staging and key milestones.
 - b- Understanding of the contract and project delivery system, relationships between parties, progress measurement/payment, change order management.
 - c- Description of the Construction Methods and Materials, and an engineering evaluation of a key project component (e.g. foundation design, etc.)
 - d- A Preliminary Work Breakdown Structure. Part 1 is due March 5 at 5PM.
- 2. Project Planning, including:
 - a- A detailed Work Breakdown Structure for all building systems and work elements
 - A MS Project CPM Schedule integrated with a cost estimate to enable cost/schedule integration.
 Part 2 is due April 30 at 5PM.

Outline and Content Elements for Each (Part of) the Field Trip Reports:

- 1. *Introduction:* Identify the project, its location and the type of construction. Give the dates of your visitation. Identify the Owner, Contractor, and Architect-Engineer.
- 2. *Field Investigation:* Describe the project in detail based on your field visitation. Report on the present stage of construction. Report on the labor, equipment, and materials on the job. Report on production rates. Report any discussions with personnel (see note below).
- 3. Engineering Evaluation: Present your own evaluation of the equipment, materials, and procedures being used on the project based on your knowledge from CE 210. Suggest alternatives that might improve job progress and efficiency. Discuss any environmental and safety aspects of the project.
- 4. *Appendix:* (If any) Present applicable codes, manufacturer's literature, news articles, web links, etc.
- 5. *Figures and Photographs:* These or sketches are strongly recommended. Refer to all figures and photos in the body of the report.

Note: Make certain that you do not disrupt the ongoing construction activities during your visit. Always check first with the person-in-charge, usually the project superintendent, upon your arrival. Be courteous and remember, construction managers are busy people.

<u>Report Format and Grading</u>: The report should be word processed on 8.5 x 11 in. bond paper and electronic file submitted on Moodle. Correct grammar and spelling are required. Grading will be based on (1) Technical content, (2) Communication effectiveness including organization, grammar, spelling, clarity, and neatness. Suggested length of the text portion of each of the 2 Parts of the report is at least 4 pages.

NJIT Honor Code: the NJIT Honor Code will be upheld; any violations will be brought to the immediate attention of the Dean of Students.

Outcomes Course Matrix - CE 210-004 - Construction Materials & Procedures

		Program	
Strategies, Actions	ABET Student	Educational	Assessment
and Assignments	Outcomes (1-7)	Objectives	Measures
Student Learning Outc			
		lding construction n	nanagement and construction
management and organ	nization.		
Introduce the United	4	1, 2, 3	Homework, quizzes and
States system of			exams
delivery of engineering			
and construction			
services			
Introduce equipment	7	1	Homework, quizzes and
labor and methods used			exams
in heavy and building			
construction			
Student Learning Outc	ome 2: Apply the pr	ocess of job site pla	nning, scheduling and
construction productivi	ity estimating.		
Introduce critical path	1, 2	1	Homework, quizzes and
method scheduling			exams
Introduce methods	1, 2	1	Homework, quizzes and
used to calculate and			exams
estimate excavation			
equipment productivity			
Student Learning Outc	ome 3: Discuss cons	struction contracts i	in the context of the United
Sates legal system.			
Introduce the United	4	1, 3	Homework, quizzes and
States legal system and			exams
contracts			
Present the NCEES	4	1, 3	Homework, quizzes and
model rules of			exams
professional conduct			
Introduce the role of	4	1, 2. 3	Homework, quizzes and
OSHA and			exams
construction site safety			
Student Learning Outc	ome 4: Observe and	report on construc	tion project site visits.
Visit construction sites	3	1, 2	Field reports.
and observe the project			•
status and operations at			
the site.			
Introduce engineering	7	1, 2	Homework, quizzes and
economics and its role			exams.
in selection of			
alternatives.			

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

- <u>1 Engineering Practice</u>: Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.
- <u>2 Professional Growth:</u> Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.
- 3- Service: Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

- 1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Revised: 2/13/18

Spring 2019 Academic calendar

January	22	Tuesday	First Day of Classes
January	26	Saturday	Saturday Classes Begin
January	28	Monday	Last Day to Add/Drop a Class
January	28	Monday	Last Day for 100% Refund, Full or Partial Withdrawal
January	29	Tuesday	W Grades Posted for Course Withdrawals
February	4	Monday	Last Day for 90% Refund, Full or Partial Withdrawal - no refund for partial withdrawal after this date
February	18	Monday	Last Day for 50% Refund, Full Withdrawal
March	11	Monday	Last Day for 25% Refund, Full Withdrawal
March	17	Sunday	Spring Recess Begins - No Classes

Scheduled -	
University Open	

			Offiversity Open
March	24	Sunday	Spring Recess Ends
April	8	Monday	Last Day to Withdraw
April	19	Friday	Good Friday - No Classes Scheduled - University Closed
May	7	Tuesday	Friday Classes Meet
May	7	Tuesday	Last Day of Classes
May	8	Wednesday	Reading Day 1
May	9	Thursday	Reading Day 2
May	10	Friday	Final Exams Begin
May	16	Thursday	Final Exams End
May	18	Saturday	Final Grades Due
TBA			Commencement