Spring 1-1-2020

MET 302-002: Analysis and Design of Machine Elements II

Nabil Kabakibi

Follow this and additional works at: https://digitalcommons.njit.edu/saet-syllabi

Recommended Citation
https://digitalcommons.njit.edu/saet-syllabi/109

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in School of Applied Engineering and Technology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
New Jersey Institute of Technology
Department of Engineering Technology
MET 302 Analysis & Design of Machine Elements II

COURSE NUMBER
MET 302

COURSE NAME
Analysis & Design of Machine Elements II

COURSE STRUCTURE
(3-0-3) (lecture hr/wk - lab hr/wk – course credits)

COORDINATOR/INSTRUCTOR
Dr. A. Sengupta/ Nabil Kabakibi

COURSE DESCRIPTION
A continuation of MET 301, including analysis and design of power screws, brakes, clutches, belts, chain drives, gears, gear trains, bearings, and other machine elements.

PREREQUISITE(S)
MET 301

COREQUISITE(S)

REQUIRED, ELECTIVE OR SELECTED ELECTIVE
REQUIRED MATERIALS

COMPUTER USAGE

COURSE LEARNING OUTCOMES (CLO)
By the end of the course students should be able to:

1. Design a helical spring (to determine standard wire diameter, mean helix radius, minimum volume of spring material and number of active coils) if maximum stress, static load and deflection are given.
2. Calculate permissible values of maximum and minimum loads, if a helical spring is carrying fluctuating load.
3. Calculate the stress in a bolt when it is designed to carry an impact load.
4. Determine the pitch of a power screw to raise a given load at a given speed with a given power consumption.
5. Determine the torque a cone clutch can exert, the engaging force required for steady operation and the friction power for a given speed.
6. Determine angle of contact between lining and drum of a band brake exerting certain amount of torque, if the maximum pressure between the lining and the drum and the coefficient of pressure are given.
7. Find the length of leg of a system of fillet welds used to weld a bracket/beam to a support, if the bracket/beam is loaded (steady & fluctuating) eccentrically.
8. Find the permissible load for a riveted joint if the resultant shearing stress for the most highly stressed rivet is given.
9. Evaluate load carrying capacity of 120º, 180º and 360º central partial journal bearings.
9. Compute rating life of a ball bearing subjected to steady load and variable load.
10. Find the contact ratio for a spur gear pair if diametral pitch and pressure angle are specified.

11. Find the helix angle of a worm gear set if worm and wheel pitch diameters are given.

12. Find the value of the diametral interference between the shaft and the hub when they are press fitted.

13. Evaluate the maximum stress in the material of a disk fly wheel and the kinetic energy delivered due to fluctuation of speed.

CLASS TOPICS

Springs, Screws, Belts, Clutches, Brakes and Chains, Welded Connections, Riveted Connections, Lubrication, Ball Bearings, Spur Gears, Helical, Bevel and Worm Gears, Shrink fit, Disk Flywheel

STUDENT OUTCOMES

The Course Learning Outcomes support the achievement of the following MET Student Outcomes and TAC of ABET Criterion 9 requirements

Student outcome a - an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly-defined engineering technology activities

Course Learning Outcome – evaluate load carrying capacity of 120º, 180º and 360º central partial journal bearings.

Student outcome b - an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies

Course Learning Outcome – determine the pitch of a power screw to raise a given load at a given speed with a given power consumption.

Student outcome f - an ability to identify, analyze, and solve broadly-defined engineering technology problems

Course Learning Outcome – determine the torque a cone clutch can exert, the engaging force required for steady operation and the friction power for a given speed.

Student outcome m - technical expertise having added technical depth in mechanical design, solid mechanics, and electro-mechanical devices and controls.

Course Learning Outcome – determine angle of contact between lining and drum of a band brake exerting certain amount of torque, if the maximum pressure between the lining and the drum and the coefficient of pressure are given.

Grading Policy

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>15%</td>
</tr>
<tr>
<td>Tests</td>
<td>54%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>31%</td>
</tr>
</tbody>
</table>
New Jersey Institute of Technology
Department of Engineering Technology
MET 302 Analysis & Design of Machine Elements II

Note: Grading Policy may be modified by Instructor for each Section in the Course

Note: Cannot pass course if you having failing grades on tests and final exam.

There are three tests during the semester. The lowest grade will be dropped. However, if you achieve an A for all three tests, you will not be excused from the final. There will be no makeup tests – if you miss one test, then that is the test you will drop.

ACADEMIC INTEGRITY

NJIT has a zero-tolerance policy regarding cheating of any kind and student behavior that is disruptive to a learning environment. Any incidents will be immediately reported to the Dean of Students. In the cases the Honor Code violations are detected, the punishments range from a minimum of failure in the course plus disciplinary probation up to expulsion from NJIT with notations on students' permanent record. Avoid situations where honorable behavior could be misinterpreted. For more information on the honor code, go to http://www.njit.edu/academics/honorcode.php

STUDENT BEHAVIOR

- No eating or drinking is allowed at the lectures, recitations, workshops, and laboratories.
- Cellular phones must be turned off during the class hours – if you are expecting an emergency call, leave it on vibrate.
- No headphones can be worn in class.
- Unless the professor allows the use during lecture, laptops should be closed during lecture.
- During laboratory, if you are finished earlier, you must show the professor your work before you leave class.
- Class time should be participative. You should try to be part of a discussion.

MODIFICATION TO COURSE

The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be notified in class of any changes to the Course outline.

PREPARED BY
Nabil Kabakibi

COURSE COORDINATED BY
Dr. A. Sengupta

CLASS HOURS
Monday & Wednesday 8:30 AM – 9:50 PM CKB 214

OFFICE HOURS:
By appointment: nkabakib@njit.edu
HOMEWORK - IMPORTANT
Homework is due the week following the date they are assigned (see syllabus), and must be given to the instructor.

GRADING LEGEND

<table>
<thead>
<tr>
<th>GRADE</th>
<th>NUMERIC RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 to 100</td>
</tr>
<tr>
<td>B+</td>
<td>85 to 89</td>
</tr>
<tr>
<td>B</td>
<td>80 to 84</td>
</tr>
<tr>
<td>C+</td>
<td>75 to 79</td>
</tr>
<tr>
<td>C</td>
<td>70 to 74</td>
</tr>
<tr>
<td>D</td>
<td>60 to 69</td>
</tr>
<tr>
<td>F</td>
<td>0 to 59</td>
</tr>
</tbody>
</table>
COURSE OUTLINE

<table>
<thead>
<tr>
<th>WK.</th>
<th>DATE</th>
<th>TOPICS</th>
<th>SECTIONS</th>
<th>ASSIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/22 1/27</td>
<td>Springs</td>
<td>4-1 thru 4-12, 4.1, 4, 9, 10, 12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/29 2/3</td>
<td>Springs - Cont. Screws</td>
<td>4-17 5-1 thru 5-9</td>
<td>- - - 5.2, 3, 4, 9, 16</td>
</tr>
<tr>
<td>3</td>
<td>2/5 2/10</td>
<td>Belts, Clutches, Brakes, and Chains</td>
<td>6-1 thru 6-8</td>
<td>6.1, 3, 8, 10, 11</td>
</tr>
<tr>
<td>4</td>
<td>2/12 2/17</td>
<td>Belts, Clutches, Brakes, and Chains, (Cont.) Test 1</td>
<td>6-9 thru 6-18</td>
<td>6.13, 15, 27, 28</td>
</tr>
<tr>
<td>5</td>
<td>2/19 2/24</td>
<td>Welded Connections</td>
<td>7-1 thru 7-12</td>
<td>7.2, 3, 5, 8, 9</td>
</tr>
<tr>
<td>6</td>
<td>2/26 3/2</td>
<td>Riveted Connections</td>
<td>7-13 thru 7-18</td>
<td>7.15, 17, 19, 20, 27</td>
</tr>
<tr>
<td>7</td>
<td>3/4 3/9</td>
<td>Lubrication</td>
<td>8-1 thru 8-10</td>
<td>8.1, 2, 3, 5, 7</td>
</tr>
<tr>
<td>8</td>
<td>3/11</td>
<td>Lubrication (Cont.)</td>
<td>8-11 thru 8-17</td>
<td>8.10, 15, 19, 25</td>
</tr>
</tbody>
</table>

SPRING BREAK 3/15-3/22

9	3/23 3/25	Ball and Roller Bearings	9-1 thru 9-15	9.1, 5, 6, 9
10	3/30 4/1	Spur Gears	10-1 thru 10-16	10.3, 5, 6
11	4/6 4/8	Spur Gears (Cont.)	10-18 thru 10-22	10.10, 13, 25
12	4/13 4/15	Helical, Bevel and Worm Gears Test 3	11-1 thru 11-8	11.4, 12, 16, 19, 21
13	4/20 4/22	Impact Stress Curved Beams Thursday Classes meet	12.7 to 12.10 12.14 to 12.16	12.20, 21, 22, 29
15	5/4	Review for the final Exam		--
*	TBD	Final Exam / “TBA by department”		All Chapters