Spring 2019

CE 432-102: Structural Steel Design

Raj Navalurkar

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

https://digitalcommons.njit.edu/ce-syllabi/102
New Jersey Institute of Technology

CE 432 - Structural Steel Design
Section: 102
Spring 2019

Instructor: Prof. Raj Navalurkar, Rajendra.navalurkar@parsons.com

CE 432 - Section 102 Monday 6-9:05PM Room 320 Central King Building

Prerequisite: CE 332. A working knowledge of structural analysis including determinate and indeterminate beams and frames is essential. The development of current design procedures for structural steel elements and their use in multistory buildings, bridges, and industrial buildings.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Pages</th>
<th>Problems (To be assigned in class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Steel Design, Concepts, Specifications and Applied Loads</td>
<td>Chapter 1,2 Page 1-40</td>
<td>To be assigned in class</td>
</tr>
<tr>
<td>2</td>
<td>Tension Members</td>
<td>Chapter 3 Page 41-108</td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td>Compression Members</td>
<td>Chapter 4 Page 109-188</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Beams</td>
<td>Chapter 5 Page 189-298</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Review & Qui (2 hrs.)</td>
<td>Open Book/ Open Note</td>
<td></td>
</tr>
<tr>
<td>7,8</td>
<td>Beam Design and Analysis</td>
<td>Chapter 5 Page 189-298</td>
<td></td>
</tr>
<tr>
<td>9,10</td>
<td>Beam Columns</td>
<td>Chapter 6 Page 299-376</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Review & Quiz (2 hrs.)</td>
<td>Open Book/ Open Note</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Simple Connections</td>
<td>Chapter 7 Page 377-476</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Eccentric Connections</td>
<td>Chapter 8 Page 477-592</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Plate Girders</td>
<td>Chapter 10 Page 665-717</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Final Exams (2.5 hrs.)</td>
<td>Open Book/ Open Note</td>
<td></td>
</tr>
</tbody>
</table>
GRADING:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework and Attendance</td>
<td>10%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>60%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

*The NJIT Honor Code will be upheld and any violations will be brought to the immediate attention of the Dean of Students.
*Students will be consulted with by the instructor to any modifications or deviations from the syllabus throughout the course of the semester.

Department of Civil and Environmental Engineering

CE 432 – Structural Steel Design

Description:

Design of tension members, beams, columns, beam columns, connections and plate girders.

Prerequisites: CE 332-Structural Analysis

Textbook (s) Materials Required:

and AISC Steel Construction Manual – 14th Edition Students can purchase the manual directly from AISC with discount code from Prof. Wecharatana.

2. AISC Steel Construction Manual, AISC, 14th Edition

Course Objectives:

1. Illustrate and develop methodologies and introduce and employ the concept of codes and specifications for design of structural steel members and elementary structures.
2. Apply and enhance the knowledge of strength of materials and structural analysis.
3. Incorporate proper use of modern engineering tools for problem solving and communication.

Topics:

Introduction

Analysis and Design of Tension Members
Compression Members
Beam-Columns
Connections
Plate Girders

Schedule: Lecture/Recitation – 3-hour class, once per week
Laboratory – none

Professional Component: Engineering Topics (Design)

Program Objectives Addressed: 1,2

Prepared By: Prof. Methi Wecharatana
Date: 1/20/15

Course Objectives Matrix – CE 432 Structural Steel Design

<table>
<thead>
<tr>
<th>Strategies, Actions and Assignments</th>
<th>ABET Student Outcomes (1-7)</th>
<th>Program Educational Objectives</th>
<th>Assessment Measures</th>
</tr>
</thead>
</table>
| **Student Learning Outcome 1:** Apply design methodologies and concept of codes and specifications for structural steel members and elementary structures.
Illustrate load and resistance factor design LRFD and allowable stress design (ASD) philosophies. Formulate the LRFD methodology. | 1, 2 | 1, 2 | Homework, projects, quizzes, exams. |
| Discuss AISC Construction Manual Load & Resistance Factor Design (LRFD). | | 1 | |
| **Student Learning Outcome 2:** Apply and enhance the knowledge of strength of materials and structural analysis.
Incorporate and apply basic knowledge of strength of materials and structural analysis. | 1, 2 | 1 | Homework, quizzes, and exams. |
| **Student Learning Outcome 3:** Use modern engineering tools for problem solving and communication.
Introduce state of the art analysis and design software (STAAD/Pro), and code. | 1, 2 | 1 | Homework, quizzes, and exams. |
| Discuss the pitfalls with “black box” use of computers and interpretation of computer output. | 7 | 1, 2 | Homework and projects to using STAAD/Pro, and AISC |
| Certain homework and projects solved both manually and using STAAD/Pro, and AISC |

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

1 – Engineering Practice: Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2 – Professional Growth: Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3 – Service: Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Revised: 2/13/18