
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2011

Design and evaluation of an adaptable vector coprocessor for Design and evaluation of an adaptable vector coprocessor for

multicores multicores

Timothy William Steele
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Steele, Timothy William, "Design and evaluation of an adaptable vector coprocessor for multicores"
(2011). Theses. 102.
https://digitalcommons.njit.edu/theses/102

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/102?utm_source=digitalcommons.njit.edu%2Ftheses%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DESIGN AND EVALUATION OF AN ADAPTABLE VECTOR

COPROCESSOR FOR MULTICORES

by

Timothy William Steele

Future applications for multi-core processor systems will require increased signal

processing power along with increased resource utilization and decreased power

consumption. Conservative power consumption will be of paramount importance

primarily for battery-powered portable multi-core platforms (e.g., advanced cell phones,

tablet computers, etc.). This thesis investigates the robustness, efficiency and

effectiveness of vector coprocessor sharing policies in multi-core environments. Vector

coprocessor sharing is based on an innovative design for a vector lane that forms the

building block for the creation of larger vector coprocessors. This innovative lane design

contains a floating-point multiply unit, a floating-point add/subtract unit, a miscellaneous

function unit, a load/store unit, and a vector register file. The design was prototyped and

benchmarked on a field programmable gate array (FPGA) for a multitude of

configurations to evaluate the performance and power consumption. The configurations

included one or two host processors and two, four, eight, sixteen or thirty-two lanes.

Sample applications in benchmarking were the fast Fourier transform, finite impulse

response filter, matrix multiplication and LU matrix decomposition. As an additional

experiment, a reconfigurable unit was added to the lane and configured as either a

combined floating-point multiply/add or a floating-point divide to better match the needs

of specific applications. The results show the versatility of the design towards high

performance and controllable power consumption.

DESIGN AND EVALUATION OF AN ADAPTABLE VECTOR

COPROCESSOR FOR MULTICORES

by

Timothy William Steele

A Thesis

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 2011

APPROVAL PAGE

DESIGN AND EVALUATION OF AN ADAPTABLE VECTOR COPROCESSOR

FOR MULTICORES

Timothy William Steele

Dr. Sotirios G. Ziavras, Thesis Advisor Date

Professor of Electrical and Computer Engineering, NJIT

Dr. Sui-Hoi E. Hou, Committee Member Date

Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Jie Hu, Committee Member Date

Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Timothy William Steele

Degree:	 Master of Science

Date:	 May 2011

Undergraduate and Graduate Education:

• Bachelor of Science in Electrical Engineering,
Rochester Institute of Technology, Rochester, NY, USA, 1991

Major:	 Electrical Engineering

iv

v

To my parents, William and Maral for making it all possible, to my wife, Rhonda for

patience and support, and to my daughter, Megan for the future.

vi

ACKNOWLEDGMENT

First and foremost I offer my sincerest gratitude to my thesis advisor, Professor Sotirios

G. Ziavras for introducing me to the topic of sharable vector coprocessors and their

application to current and future design challenges. I am indebted to him for his time and

patience while I completed this thesis.

It is my pleasure to thank Dr. Sui-Hoi E. Hou and Dr. Jie Hu for being members

of my thesis committee. Their support and guidance are greatly appreciated.

My special thanks to Spiridon F. Beldianu and Christopher Dahlberg for their

continuous assistance towards the completion of this thesis. Without their time and

efforts I would have never succeeded at this task.

Lastly, I thank my family and friends for their encouragement and support while I

was studying at New Jersey Institute of Technology.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……............................………………..…………………………. 1

 1.1 Need for Co-Processor Sharing for Multicores.………………………………... 1

 1.2 Existing Approaches……………….…..………………………………….…... 1

 1.3 Motivations and Objectives………….…………………………………….…... 2

2 PROPOSED FRAMEWORK………………………………………………………. 4

 2.1 Basic Architecture..…………………………………………………………….. 4

 2.2 Design Details………………….………………………………………………. 6

 2.2.1 Vector Controller…..………………………………………………….... 6

 2.2.2 Vector Processor Lane Details...…...………………………………….... 6

 2.2.3 Memory Crossbar Details...…..……………………………………….... 12

3 APPLICATION BENCHMARKING……………………………………………… 14

 3.1 Fast Fourier Transform (FFT)………….………………………….………...… 14

 3.2 Finite Impulse Response Filter (FIR)…….………………………….………....

17

 3.3 Matrix Multiplication (MM)…………...….……………………….………...… 21

 3.4 LU Decomposition (LU)………………………………………….…………....

24

4 ANALYSIS OF RESULTS………………………………………….……………... 28

 4.1 FFT Application Results…………………….………………….…………...… 28

 4.2 FIR Filter Application Results……..………………………….……………....

31

 4.3 FIR Filter MADD Results…………………………………………………...… 34

 4.4 MM Application Results……..………..…………………….……………...… 39

viii

TABLE OF CONTENTS

(Continued)

Chapter Page

 4.5 MM MADD Results………………………….…………………………..…....

41

 4.6 LU Decomposition Application Results…….…………………………..…....

44

 4.7 LU Decomposition DIV Results…….………………………………………....

46

 4.8 FPGA Resource Utilization…..………..…………………….……………...… 48

 4.9 FPGA Power Consumption…………………………………………………....

50

5 CONCLUSION.…………….…………………………………….………………... 56

APPENDIX A – FIR FILTER MADD BENCHMARKS…………………………….. 58

APPENDIX B – MM MADD BENCHMARKS…..………………………………….. 62

APPENDIX C – LU DIV BENCHMARKS……….………………………………….. 65

APPENDIX D – SCENARIOS RUN ON SYSTEM………………………………….. 68

REFERENCES ………………………………………………………………………... 76

ix

LIST OF TABLES

Table Page

3.1 FFT 32, Simple………………………………………………………….....…….. 15

3.2 FFT 32, Double………………………………………………….…...………….. 16

3.3 FIR 32, VL=32, No Loop Unroll…………..………………………………...….. 18

3.4 FIR 32, VL=64, No Loop Unroll…………………………………...……………. 19

3.5 FIR 32, VL=64, Unroll 3 Times…………………..……………………………... 20

3.6 MM, VL=32, Unroll 1 Time……………………………………………………... 22

3.7 MM, VL=64, Unroll 1 Time……………………………………………………... 23

3.8 LU Decomp, VL=64, No Loop Unroll…………………………………………... 25

3.9 LU Decomp, VL=32, No Loop Unroll…………………………………………... 26

4.1 FPGA Synthesis Results…………………………………………..……………... 49

4.2 FIR Filter Dynamic Power Results………………………………..……………... 53

4.3 MM Dynamic Power Results……………………………………..……………... 54

4.4 LU Decomp Dynamic Power Results……………………………..……………... 55

A.1 FIR 32, VL=32, No Loop Unroll, MADD…..…………………………………... 59

A.2 FIR 32, VL=32, Unroll 3 Times, MADD…..………………….………………... 60

A.3 FIR 32, VL=128, Unroll 3 Times, MADD…..……..………….………………... 61

B.1 MM, VL=32, Unroll 1 Time, MADD…………….……………………………... 63

B.2 MM, VL=64, Unroll 1 Time, MADD…………….……………………………... 64

C.1 LU Decomp, VL=64, No Loop Unroll, DIV…………………...………………... 66

C.2 LU Decomp, VL=32, No Loop Unroll, DIV………….…………..……………... 67

x

LIST OF FIGURES

Figure Page

2.1 Top level architecture ...………………………..………..……………………….

5

2.2 Vector processor lane architecture……………………………………………….

7

2.3 Multiply module architecture...….......………………..…………………………. 8

2.4 Multiply/add module architecture..……………………………………………… 10

2.5 Vector register file architecture…...……………………………………………... 12

2.6 Memory crossbar architecture..……..…………………………………………… 13

3.1 FFT 32, simple………………………………………………………….....…….. 15

3.2 FFT 32, double………….……………………………………….…...………….. 16

3.3 FIR 32, VL=32, no loop unroll…...………..………………………………...….. 18

3.4 FIR 32, VL=64, no loop unroll..…………………………………...……………. 19

3.5 FIR 32, VL=64, unroll 3 times..…………………..……………………………... 20

3.6 MM, VL=32, unroll 1 time…..…………………………………………………... 22

3.7 MM, VL=64, unroll 1 time…..…………………………………………………... 23

3.8 LU decomposition, VL=64, no loop unroll….…………………………………... 25

3.9 LU decomposition, VL=32, no loop unroll.……………………………………... 26

A.1 FIR 32, VL=32, no loop unroll, MADD….....…………………………………... 59

A.2 FIR 32, VL=32, unroll 3 times, MADD…..…..……………….………………... 60

A.3 FIR 32, VL=128, unroll 3 times, MADD…..………………….………………... 61

B.1 MM, VL=32, unroll 1 time, MADD……...……………………………………... 63

B.2 MM, VL=64, unroll 1 time, MADD……...……………………………………... 64

xi

LIST OF FIGURES

(Continued)

Figure Page

C.1 LU decomposition, VL=64, no loop unroll, DIV…………………...…………... 66

C.2 LU decomposition, VL=32, no loop unroll, DIV…………….…..……………... 67

1

CHAPTER 1

INTRODUCTION

1.1 Need for Coprocessor Sharing in Multicore Processors

A shared vector coprocessor bank comprised of multiple vector lanes makes sense for

multiple processor core architectures for several reasons. The first is that with

appropriate resource allocation, a larger percentage of the entire coprocessor can be

utilized at any given time. A number of lanes can be assigned to each processor based on

the needs of the currently running application rather than on a design decision made

during the architecture design. Any unused lanes would then be in a power-down mode,

thus limiting power usage by keeping active only an optimum number of lanes. The

second is that as the number of processor cores grows, the coprocessor bank can grow

more slowly to meet the needs of the increased number of expected concurrent

applications. This saves a significant number of transistors and a related amount of area

on the die. The third is that an explicit vector design per core will not have a high

utilization despite the rather frequent need to parallelize the processing of floating point

data ever present in most digital signal processing applications.

1.2 Existing Approaches

Existing approaches in the literature, such as VIRAM [Kozyrakis and Patterson 2003],

SODA [Lin et al. 2006] and AnySP [Woh et al. 2010] are designed as single

microprocessor cores with attached vector operation support. These resources are not

shared and are closely coupled with the microprocessor, thus limiting the possibility of

2

taking advantage of parallelism between different threads while also underutilizing

silicon resources. In addition, “soft” vector processor solutions have been investigated

[Cho et al. 2006; Lin et al. 2006; Yiannacouras et al. 2008; Yu et al. 2009; Yang and

Ziavras 2005] as coprocessor add-ons to an FPGA-based microprocessor. However,

these designs are done using a fixed vector register length and as a result are not a

generalized solution to the real issues of varying vector length for different applications

or within the same application. A proposed architecture for simultaneous sharing and

changeable vector register lengths [Beldianu and Ziavras 2011] forms the basis for the

design utilized in this investigation. This adaptive vector processor sharing takes

advantage of thread level parallelism by allowing multiple vector length instructions to

pass through the lanes at the same time.

1.3 Motivations and Objectives

The motivation behind this effort is to provide a scalable, flexible solution to the problem

of floating point vector processing for multicores. The design described within this paper

is configurable to support between two and thirty-two processing lanes, with three

distinct modes of sharing. The first mode is Coarse-grain Temporal Sharing (CTS),

where all the available lanes are assigned to a microprocessor on an as-needed basis. The

second mode is Vector Lane Sharing (VLS), where the available lanes are divided into

two distinct groups, mimicking a dedicated vector coprocessor involving one half of the

total vector lanes. The third mode is Fine-grain Temporal Sharing (FTS), where

instruction requests from multiple cores are interleaved across the entire array of lanes

[Beldianu and Ziavras 2011]. The objective is to benchmark these techniques using four

3

different common signal processing applications in order to show how performance, cost

and power consumption are affected by various lane configurations and the

aforementioned vector lane sharing modes of operation.

4

CHAPTER 2

PROPOSED FRAMEWORK

2.1 Basic Architecture

The architecture proposed for this investigation is shown in Figure 2.1. It consists of

two Xilinx™ MicroBlaze™ processors with associated program store memory

connected through the Local Memory Bus (LMB). Attached to the common

Processor Local Bus (PLB) is the array of Xilinx Block RAM (BRAM) memory

blocks which form the interface to the Vector Processor (VP) lanes. Also connected

to the PLB is the Hardware Internal Configuration Access Port (HWICAP) which

allows either processor to reconfigure a predetermined portion of the lane known as

the Reconfigurable Module (RM). Attached to each processor via a Fast Simplex

Link (FSL) is a Vector Controller (VC) which handles scheduling of instructions to

the lanes, and the flow of data into and out of the BRAM memory blocks. The two

VC modules request access to the lanes through the Scheduler, which is granted in an

arbitrated round-robin fashion. The Floating Point (FP) data flows between the

BRAM memory blocks and the VP lanes through a Memory Crossbar (MC) which is

configurable to support up to thirty-two lanes and thirty-two memory blocks. The

MC also can function as a shuffle network to route data directly from one lane to

another rather than requiring extra cycles to store the data in BRAM and retrieve it.

For the applications used in this thesis, a minimum of eight memory blocks are used

for the two and four lane cases due to the minimum required memory for the software

as written.

5

MicroBlaze™ 0 MicroBlaze™ 1

BRAM

Program

Store

LMB LMB

BRAM

Program

Store

Hardware

ICAP

F
S

L
 1

F
S

L
 0

PLB

Vector

Controller 0

Vector

Controller 1
Scheduler

...

Lane 0 Lane 1 Lane N

Memory Crossbar

BRAM

Bank 0

BRAM

Bank 1

BRAM

Bank L
...

PLB

PLB Interface

To Lanes

Figure 2.1 Top level architecture.

6

2.2 Design Details

All the designs described below are written in synthesizable VHDL and targeted on a

Xilinx Virtex-5 FPGA. The various floating point functions and ram blocks, as well

as the MicroBlaze processors, are Xilinx core functions used for ease of synthesis.

2.2.1 Vector Controller (VC) Details

The Vector Controller (VC) receives instructions over the Xilinx Fast Simplex Link.

It coordinates through the Scheduler when the commands are presented to the lanes

and also determines how many of the lanes are dedicated to the current application.

The controller and scheduler provide support for the three vector processor sharing

architectures described in the introduction. The control signals from the VC and

Scheduler provide all the information needed by the lane to indicate which VC

currently controls the lane, the total number of lanes currently assigned to the VC, the

index of the lane relative to the others attached to the VC to provide a continuous

address space for the vector registers, and the number of register elements located in

this lane’s Vector Register File. This information is stored in four discrete registers

internal to each lane.

2.2.2 Vector Processor Lane Details

Each lane consists of a Load/Store function (on the left in Figure 2.2), an

Arithmetic/Logic Unit (on the right), and a multi-port Vector Register File.

Instructions coming into the lane from either Vector Controller are decoded, the

respective operands fetched, and the dictated processing is done. Separate functional

blocks in the ALU provide floating point multiplication, addition or subtraction, and

7

miscellaneous functions such as negate, invert and move. A fourth block is added to

take advantage of the capability of the Xilinx FPGA architecture to reprogram

portions of the device while the system is operating. This reconfigurable module can

be set at run time or at compile time to perform functions such as combined multiply

and add/subtract, or divide, depending on the needs of the application.

Vector Register File

Index 1

Add/Subtract

Module

Index 2

Miscellaneous

Module

Index 3

Reconfigurable

Module

Index 0

Multiply

Module

WB Buffer WB Buffer WB Buffer WB Buffer

Vector Flag Register File

ALU QueueLD/ST Queue

ALU Decode

ALU Op Fetch
ALU Fetch

State Machine

WB Arbiter
ALU Write Back

State Machine

From VC 0 From VC 1

LD/ST Fetch

State Machine
LD/ST Decode

Load BufferRequest Stage

LD/ST Write Back

State Machine

To Memory Crossbar From Memory Crossbar

Figure 2.2 Vector processor lane architecture.

8

2.2.2.1 Multiply Module. The Multiply module contains a Xilinx floating

point core which performs a fully pipelined single precision multiplication with a

latency of six clock cycles. This function supports three modes of operation: a vector

times a vector, a vector times a scalar or a scalar times a vector. In addition, the

module includes a write-back buffer because multiple instructions could finish on the

same clock but only one write-back port is available to the vector register file. The

results of the operation are stored in this buffer along with side information such as

priority, an ignore flag, and a ready flag.

Xilinx Floating

Point Core

Module, Single

Precision

Multiply, 6 Clock

Latency

WB Buffer

6 Stage

Side Info

Pipeline

Operand A

From VRF

Operand B

From VRF

Side Info

From ALU

Output To

WB Arbiter

Figure 2.3 Multiply module architecture.

9

2.2.2.2 Add/Subtract Module. The Add/Subtract module contains a Xilinx

floating point core which performs a fully pipelined single precision addition or

subtraction with a latency of six clock cycles. This module supports the same three

operating modes as the multiply module. In addition, the module includes an

identical write-back buffer to the Multiply module.

2.2.2.3 Miscellaneous Module. The Miscellaneous module provides the

capability to invert or negate a scalar or vector quantity, take the absolute value, or

another path for data to move without using the Load/Store function. These functions

take a single clock cycle to complete and the module includes a write-back buffer,

which is the same as for the other functions.

2.2.2.4 Reconfigurable Module (RM). The Reconfigurable Module (RM)

takes advantage of the ability in the Xilinx FPGA architecture to reprogram pre-

defined areas of the device in the designed system. In this case, the floating point

divide function (with a latency of six clock cycles) and a combined multiply (a vector

times a scalar) and add/subtract (a vector added/subtracted with the result of the

multiply) function (with a latency of eight clock cycles) take up approximately the

same number of resources on the device. As a result, it is relatively straight forward

to provide the configuration files for each possible use and allow the processor to

program the lane with the function which makes the most sense for a particular

application. Another possible function is the pipelined square root function.

Reconfiguration can occur under the control of the microprocessor, with the

configuration file stored externally to the FPGA. Since the largest of the proposed

units uses approximately 980 slice registers, the region will consist of 25

10

Reconfigurable Frames. The time required to change from one function to another

will take about 370 microseconds per lane, based on the information in the Xilinx

Partial Reconfiguration User Guide. [Xilinx 2010]

Xilinx Floating

Point Core

Module, Single

Precision

Multiply, 4 Clock

Latency

WB Buffer

4 Stage

Operand B

Pipeline

Operand A

From VRF

Operand B

From VRF

Side Info

From ALU

Output To

WB Arbiter

Operand C

From ALU

Xilinx Floating

Point Core

Module, Single

Precision Add/

Subtract, 4 Clock

Latency

8 Stage

Side Info

Pipeline

Figure 2.4 Multiply/add module architecture.

11

2.2.2.5 Load/Store Module. The Load/Store module handles all data

traffic into and out of the lane. It interfaces directly with the Memory Crossbar to

load data into the Vector Register File or to return calculation results to the Vector

Memory. This module also controls the shuffle function of the crossbar so that data

can pass from one lane directly to another without passing through the Vector

Memory.

2.2.2.6 Vector Register File (VRF). The Vector Register File (VRF)

consists of 512 32-bit memory locations using the Xilinx Block RAM function

(BRAM). Both the Load/Store and ALU sides of the lane require two read ports and

one write port. This is handled in the FPGA by duplication of the BRAM and by

running the interface at twice the processing clock rate. In addition, a 512x1 bit Flag

register is included with each lane, as well as the four configuration registers

described in the VC section, above.

12

BRAM_32

BRAM_32

W_Phase

ALU_W_Addr

Ld/St_W_Addr

ALU_W_Data

Ld/St_W_Data

ALU_R_Phase

Ld/St_R_Phase

ALU_R_Addr_0

ALU_R_Addr_1

Ld/St_R_Addr_0

Ld/St_R_Addr_1

ALU_DDR_R_Data

Ld/St_DDR_R_Data

Figure 2.5 Vector register file architecture.

2.2.3 Memory Crossbar Details

The Memory Crossbar provides a direct connection between the N lanes and the L

BRAMs used in the Vector Memory. Access is arbitrated using a round-robin

scheme for each input and output port and if no contention exists, all ports can be

active on a single clock cycle. The architecture allows for the number of ports to be

set to match the number of lanes and the number of block memories. The lane

requests access to a specific BRAM and the arbiter acknowledges when the path

through the crossbar is available. The BRAMs are set up as dual port devices, with

one port dedicated to the lane through the crossbar, and the other dedicated to the

PLB. The number of lanes does not need to match the number of BRAMs.

13

BRAM 0

BRAM 1

BRAM L

.

.

.

Slave IF 0 Master IF 0

Slave IF 1

Slave IF L

.

.

.

.

.

.

Master IF 1

Master IF N

.

.

.

PLB Lane 0

PLB

PLB

Lane 1

Lane N

Figure 2.6 Memory crossbar architecture.

14

CHAPTER 3

APPLICATION BENCHMARKING

3.1 Fast Fourier Transform (FFT)

The first application used to benchmark the performance of the multiple lane

configurations was the 32-point decimation-in-time radix-2 butterfly fast Fourier

transform. This was implemented using a five-stage butterfly where each stage

includes complex multiplication and addition followed by a shuffle operation through

the Memory Crossbar. Due to architectural limitations in the available size of vector

lengths and number of vector registers, this application was not run on the two-lane

version of the design. Two different scenarios were run and charted (see Tables 3.1

and 3.2, and Figures 3.1 and 3.2), first with simple processing (e.g., one complete

FFT per pass through the loop) and, second with double processing of two complete

FFTs per loop. The scenarios were run in each of the three lane sharing

configurations and over the four instantiated lane conditions.

15

15

Table 3.1 FFT 32, Simple

 No. of Lanes 4 8 16 32

FFT 32 Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

Simple CTS 1.00 64.26 39.18 1.32 40.70 22.15 1.58 24.86 13.29 1.73 13.88 7.24

 VLS 1.23 72.30 43.07 2.00 34.24 33.30 2.63 40.52 20.44 3.17 24.93 11.11

 FTS 1.41 88.67 53.54 2.38 69.77 38.30 3.07 39.35 21.02 3.42 21.25 11.06

Figure 3.1 FFT 32, simple.

1
5

Table 3.2 FFT 32, Double

 No. of Lanes 4 8 16 32

FFT 32 Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

Double CTS 1.26 81.52 49.07 2.04 62.67 34.34 2.29 35.95 21.02 2.29 18.37 9.63

 VLS 1.37 79.99 47.10 2.53 44.49 42.92 4.08 62.79 26.37 4.57 35.94 14.21

 FTS 1.46 94.09 57.03 2.82 76.29 41.47 4.63 49.66 26.39 4.57 25.34 13.16

Figure 3.2 FFT 32, double.

1
6

17

17

3.2 Finite Impulse Response Filter (FIR)

The second application used to benchmark the multiple lane configurations was the

32-tap finite impulse response filter, implemented using the outer product format

[Sung and Mitra 1987] which avoids the reduction operation. Three different

scenarios were run and charted (see Tables 3.3, 3.4, and 3.5, and Figures 3.3, 3.4, and

3.5), first with a vector length of 32 and no loop unrolling, second with a vector

length of 64 and no loop unrolling, and third with a vector length of 64 and unrolling

the loop three times (for a total of four passes through the loop). The scenarios were

run in each of the three lane sharing configurations and over the five instantiated lane

conditions. An additional set of runs was done using the RM configured as a

combined Multiply/Add functional unit and the application was changed to take

advantage of this where possible. The results are compared for three scenarios, first

with a vector length of 32 and no loop unrolling, the second with the same vector

length and unrolling the loop three times and the third with a vector length of 128 and

unrolling the loop three times. All three scenarios were run on the three lane sharing

configurations and the first two over the five instantiated lane conditions (see Tables

A.1, A.2 and A.3, and Figures A.1, A.2 and A.3). The third was run with four, eight,

sixteen and thirty-two lanes due to the limit of available vector registers with two

lanes.

18

18

Table 3.3 FIR 32, VL=32, No Loop Unroll

 No. of Lanes 2 4 8 16 32

FIR 32 Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=32 CTS 1.00 37.90 19.82 1.39 26.39 13.80 1.74 16.34 8.44 1.98 9.37 4.75 2.13 5.03 2.55

No Loop Unroll VLS 1.28 48.43 25.28 2.00 37.80 19.19 2.79 26.42 13.44 3.47 16.45 8.36 3.95 9.37 5.11

 FTS 1.95 73.91 38.68 2.77 52.53 26.74 3.47 32.90 16.71 3.95 18.74 9.51 4.25 10.07 4.76

Figure 3.3 FIR32, VL=32, no loop unroll.

1
8

Table 3.4 FIR 32, VL=64, No Loop Unroll

 No. of Lanes 2 4 8 16 32

FIR 32 Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=64 CTS 1.28 49.35 25.86 2.00 37.87 19.80 2.79 26.42 13.42 3.47 16.44 4.75 3.96 9.37 4.76

No Loop Unroll VLS 1.48 56.11 28.82 2.56 48.41 24.61 3.99 37.81 19.25 5.58 26.42 8.36 6.94 16.45 8.36

 FTS 2.24 84.92 44.25 3.90 73.88 37.58 5.54 52.60 26.71 6.94 32.86 9.51 7.91 18.74 9.51

Figure 3.4 FIR32, VL=64, no loop unroll.

1
9

Table 3.5 FIR 32, VL=64, Unroll 3 Times

 No. of Lanes 2 4 8 16 32

FIR 32 Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=64 CTS 2.36 89.50 46.66 4.32 81.89 41.92 6.19 58.63 29.79 7.64 36.18 18.39 8.65 20.49 10.41

Unroll 3 Times VLS 2.47 93.36 48.60 4.72 89.34 45.93 8.60 81.50 41.52 12.29 58.22 35.65 15.19 35.99 20.58

 FTS 2.61 99.85 51.45 5.29 99.56 50.89 10.07 95.37 48.35 14.70 70.16 29.64 17.08 40.45 18.30

Figure 3.5 FIR32, VL=64, unroll 3 times.

2
0

21

21

3.3 Matrix Multiplication (MM)

The third application is matrix multiplication, which uses the same procedure as the

FIR filtering. The Single-precision real Alpha X plus Y (SAXPY) algorithm is run in

a loop to obtain one row result for each pass. Two different scenarios were run and

charted (see Tables 3.6 and 3.7, and Figures 3.6 and 3.7), first with a vector length of

32 and unrolling the loop once, and second with a vector length of 64 and unrolling

the loop once. The scenarios were run in each of the three lane sharing configurations

and over the five instantiated lane conditions. An additional set of runs was done

using the RM configured as a combined Multiply/Add functional unit and the

application was changed to take advantage of this where possible. The results are

compared for two scenarios, first with a vector length of 32 and unrolling the loop

one time and second with a vector length of 64 and unrolling the loop one time. The

scenarios were run for all three lane sharing configurations and over the five

instantiated lane conditions (see Tables B.1 and B.2, and Figures B.1 and B.2).

22

22

Table 3.6 MM, VL=32, Unroll 1 Time

 No. of Lanes 2 4 8 16 32

MM Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=32 CTS 1.00 71.10 72.21 1.47 52.22 53.08 1.91 33.94 34.50 2.09 18.67 18.91 2.20 9.80 9.96

Unroll 1 Time VLS 1.17 82.98 84.63 2.00 71.04 72.36 3.04 53.51 68.20 3.67 32.86 33.32 4.18 18.58 19.38

 FTS 1.38 98.13 99.87 2.49 88.74 90.34 3.79 67.09 54.50 4.08 36.57 37.13 4.36 19.27 19.59

Figure 3.6 MM, VL=32, unroll 1 time.

2
2

Table 3.7 MM, VL=64, Unroll 1 Time

 No. of Lanes 2 4 8 16 32

MM Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=64 CTS 1.16 82.59 84.29 1.96 69.18 70.25 2.83 70.13 68.96 3.48 30.95 31.53 3.94 17.61 17.91

Unroll 1 Time VLS 1.28 90.72 92.14 2.32 82.47 84.08 3.96 71.68 70.31 5.66 50.04 50.88 6.96 31.16 31.68

 FTS 1.38 98.35 100.00 2.75 97.73 99.51 4.95 89.46 87.98 6.84 61.03 61.98 7.84 34.97 35.52

Figure 3.7 MM, VL=64, unroll 1 time.

2
3

24

24

3.4 LU Decomposition (LU)

The fourth application is LU decomposition, where the Lower and Upper diagonal

matrices are generated from a dense 128x128 element matrix using the Doolittle

algorithm [Golub and Van Loan 1996]. Two different scenarios were run and charted

(see Tables 3.8 and 3.9, and Figures 3.8 and 3.9), first with a vector length of 64 and

no loop unrolling, and second with a vector length of 32 and no loop unrolling. The

scenarios were run in each of the three lane sharing configurations and over the five

instantiated lane conditions. An additional set of runs was done using the RM

configured for a Divide function, the application was changed to take advantage of

this where possible, and these results are compared for two scenarios, first with a

vector length of 64 and no loop unrolling and second with a vector length of 32 and

no loop unrolling. The scenarios were run for the CTS and FTS lane sharing

configurations and over the four, eight, sixteen, and thirty-two lane cases (see Tables

C.1 and C.2, and Figures C.1 and C.2). The two lane case was not used because once

the application was modified to use the Divide function too many vector registers

were required. The VLS lane sharing configuration was not run for the same reason.

25

25

Table 3.8 LU Decomposition, VL=64, No Loop Unroll

 No. of Lanes 2 4 8 16 32

LU Decomp Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=64 CTS 1.00 53.20 54.24 1.83 40.28 40.87 1.81 20.11 20.40 1.64 10.06 10.20 1.83 5.03 5.10

No Unrolls VLS 1.33 59.02 60.49 2.40 53.24 54.71 3.67 39.62 41.05 3.67 19.86 20.50 3.67 9.97 10.25

 FTS 1.75 90.19 93.38 3.58 79.71 82.41 3.62 39.93 41.35 3.62 20.00 20.63 3.62 10.00 10.32

Figure 3.8 LU decomposition, VL=64, no loop unroll.

2
5

Table 3.9 LU Decomposition, VL=32, No Loop Unroll

 No. of Lanes 2 4 8 16 32

LU Decomp Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=32 CTS 1.29 39.84 41.31 1.83 19.90 20.61 1.81 9.58 10.33 1.72 4.98 5.15 1.83 2.49 2.58

No Unrolls VLS 2.40 52.28 56.25 3.67 38.25 42.03 3.62 19.05 21.03 3.67 9.55 10.49 3.62 4.77 5.24

 FTS 3.58 76.57 84.82 3.71 38.62 42.89 3.62 18.74 21.10 3.62 9.67 10.71 3.58 4.84 5.35

Figure 3.9 LU decomposition, VL=32, no loop unroll.

2
6

27

For each combination of lane sharing configuration and number of lanes in

shown in the tables, three metrics are displayed. The first is performance (Perf.),

which is the ratio of the time needed to complete one computational element for a

given application on the slowest case to the time needed to complete one

computational element for that location in the table. As an example, in Table 3.1 the

FTS configuration in the eight lane case performs 2.38 times faster than the CTS

configuration in four lanes. The second metric is ALU utilization (ALU Util.), which

is a measure of the percentage of the total available capacity of the arithmetic/logic

unit used by this application in this VP configuration. A higher value means that the

VP is taking advantage of data parallelism and has fewer gaps in the computation

pipeline. The third metric is Load/Store utilization (LD/ST Util.), which measures

the percentage of the total load/store unit capacity used by this application. As with

the ALU utilization, a higher value means that the VP is taking advantage of

parallelism in the application but it is instruction parallelism that is being indicated.

28

CHAPTER 4

ANALYSIS OF RESULTS

4.1 FFT Application Results

All of the relative performance results shown in the charts are normalized with respect to

the four-lane, one MicroBlaze, simple case. This application could not be run on the two-

lane version of the design because it requires more than sixteen vector registers with

thirty-two elements per lane which cannot be supported because the product of the

number elements per lane and number of vector registers must be less than or equal to

the available memory locations in the VRF, which is 512. As can be seen from Figures

3.1 and 3.2, the performance grows as the number of lanes increases. However, this

growth is not linear due to limitations in keeping the execution pipelines of the vector

lanes full.

The performance for the Simple CTS case (the reference for normalization) grows

by 73% when the number of lanes increases from four to thirty-two, but that requires an

8x increase in computational resources. The ALU utilization starts at 64.26% for the

four-lane case and decreases to 13.88% for the thirty-two-lane case due to the lack of

sufficient instruction and data parallelism in the single application. The Load/Store

utilization starts at 39.18% for the four-lane case and decreases to 7.24% for the thirty-

two-lane case for the same reason.

The performance for the Simple VLS case starts out 23% better than the CTS

case, and grows by 158% from the four-lane case to the thirty-two-lane version because

of the improvement in resource utilization. The ALU utilization starts at 72.30% for the

29

four-lane case and decreases to 24.93% for the thirty-two-lane case because the two

microprocessors cannot keep the pipeline full as the number of available lanes increases.

The Load/Store utilization starts at 43.07% for the four-lane case and decreases to

11.11% for the thirty-two-lane case, which is not much better than the CTS case.

The performance for the Simple FTS case starts out 41% better than the CTS

case, and grows by 143% from the four-lane case to the thirty-two-lane case. The ALU

utilization starts at 88.67% for the four-lane case and decreases to 21.25% for the thirty-

two-lane case because even two microprocessors equally sharing the resources cannot

achieve high utilization running this application. The Load/Store utilization starts at

53.54% for the four-lane case and decreases to 11.06% for the thirty-two-lane case.

The performance for the Double CTS case starts out 26% better than the Simple

CTS case, and grows by 57% when the number of lanes increases from four to thirty-two

because of the increase in data parallelism over the Simple CTS case. The ALU

utilization starts at 81.52% for the four-lane case and decreases to 18.37% for the thirty-

two-lane case for the same reason as the Simple CTS case. The Load/Store utilization

starts at 49.07% for the four-lane case and decreases to 9.63% for the thirty-two-lane

case, again somewhat better than the Simple CTS case but not a sufficient increase in

parallelism to justify thirty-two-lanes for this application.

The performance for the Double VLS case starts out 37% better than the Simple

CTS case, and grows by 234% from the four-lane case to the thirty-two-lane version due

to increased utilization from two processors. The ALU utilization starts at 72.30% for the

four-lane case and decreases to 24.93% for the thirty-two-lane case. The Load/Store

30

utilization starts at 43.07% for the four-lane case and decreases to 11.11% for the thirty-

two-lane case.

The performance for the Double FTS case starts out 41% better than the Simple

CTS case, and grows by 217% from the four-lane case to the sixteen lane case. There in

an anomaly in that the performance improvement for the thirty-two-lane case actually

decreases by 1.3% compared with that of the sixteen lane case. This is caused by a large

number of the instructions issued to the lane requiring two clock cycles (multiplying a

vector quantity by a scalar value which is included as the second 32 bits of the

instruction). In this case the pipeline of the lane cannot hide the extra clock because each

lane is processing only one element. The ALU utilization starts at 94.09% for the four-

lane case and decreases to 25.34% for the thirty-two-lane case. The Load/Store

utilization starts at 57.03% for the four-lane case and decreases to 13.16% for the thirty-

two-lane case.

The performance increase is best for the FTS sharing case for both the Simple and

the Double applications, and the decreased utilization percentages for the higher lane

cases indicates that more threads or applications from additional processors could be

supported with little decrease in performance. In addition, the performance increases

more for the Double version, indicating that applications which more fully utilize the

available resources because of improved data parallelism will show a larger payback in

results.

31

4.2 FIR Filter Application Results

All of the relative performance results shown for this application are normalized with

respect to the two-lane, one MicroBlaze, vector length 32, no loop unrolling case. As can

be seen from Figures 3.3, 3.4 and 3.5, the performance improvement grows as the

number of lanes increases. As was the case for the FFT application, this improvement is

not linear.

The performance for the vector length 32 with no loop unrolling CTS case (the

reference for normalization) grows by 113% when the number of lanes increases from

two to thirty-two, but that requires a 16x increase in computational resources. The ALU

utilization starts at 37.90% for the two-lane case and decreases to 5.03% for the thirty-

two-lane case due to a lack of parallelism. The Load/Store utilization starts at 19.82% for

the two-lane case and decreases to 2.55% for the thirty-two-lane case for the same reason.

The performance for the vector length 32 with no loop unrolling VLS case starts

out 28% better than the CTS case, and grows by 209% from the two-lane case to the

thirty-two-lane version due to an increase in data traffic from two separate

microprocessors. The ALU utilization starts at 48.43% for the two-lane case and

decreases to 9.47% for the thirty-two-lane case due to no increase in data or instruction

parallelism. The Load/Store utilization starts at 25.28% for the two-lane case and

decreases to 5.11% for the thirty-two-lane case.

The performance for the vector length 32 with no loop unrolling FTS case starts

out 95% better than the CTS case, and grows by 118% from the two-lane case to the

thirty-two-lane case because the two microprocessors are sharing the available resources

equally which improves the utilization. The ALU utilization starts at 73.91% for the two-

32

lane case and decreases to 10.07% for the thirty-two-lane case which is better than the

CTS case but still shows improvements in the application are possible. The Load/Store

utilization starts at 38.68% for the two-lane case and decreases to 4.76% for the thirty-

two-lane case.

The performance for the vector length 64 with no loop unrolling CTS case starts

out 28% better than the vector length 32 with no loop unrolling CTS case, and grows by

209% when the number of lanes increases from two to thirty-two due to the increased

data parallelism from the doubling of the vector length. The ALU utilization starts at

49.35% for the two-lane case and decreases to 9.37% for the thirty-two-lane case. The

Load/Store utilization starts at 25.86% for the two-lane case and decreases to 4.76% for

the thirty-two-lane case.

The performance for the vector length 64 with no loop unrolling VLS case starts

out 48% better than the vector length 32 with no loop unrolling CTS case, and grows by

369% from the two-lane case to the thirty-two-lane version because of the combination of

improved parallelism and dividing the lanes between two microprocessors. The ALU

utilization starts at 56.11% for the two-lane case and decreases to 16.45% for the thirty-

two-lane case. The Load/Store utilization starts at 28.82% for the two-lane case and

decreases to 8.36% for the thirty-two-lane case.

The performance for the vector length 64 with no loop unrolling FTS case starts

out 124% better than the vector length 32 with no loop unrolling CTS case, and grows by

253% from the two-lane case to the thirty-two-lane case, again because of increased

parallelism and because of the sharing configuration. The ALU utilization starts at

84.92% for the two-lane case and decreases to 18.74% for the thirty-two-lane case. The

33

Load/Store utilization starts at 44.25% for the two-lane case and decreases to 9.51% for

the thirty-two-lane case.

The performance for the vector length 64 with three times loop unrolling CTS

case starts out 136% better than the vector length 32 with no loop unrolling CTS case,

and grows by 267% when the number of lanes increases from two to thirty-two because

now instruction parallelism has been increased by unrolling the loop. The ALU

utilization starts at 89.50% for the two-lane case and decreases to 20.49% for the thirty-

two-lane case. The Load/Store utilization starts at 46.66% for the two-lane case and

decreases to 10.41% for the thirty-two-lane case.

The performance for the vector length 64 with three times loop unrolling VLS

case starts out 147% better than the vector length 32 with no loop unrolling CTS case,

and grows by 515% from the two-lane case to the thirty-two-lane version, again because

of improved parallelism and dividing the lanes between two processors. The ALU

utilization starts at 93.36% for the two-lane case and decreases to 35.99% for the thirty-

two-lane case. The Load/Store utilization starts at 48.60% for the two-lane case and

decreases to 20.58% for the thirty-two-lane case.

The performance for the vector length 64 with three times loop unrolling FTS

case starts out 161% better than the vector length 32 with no loop unrolling CTS case,

and grows by 554% from the two-lane case to the thirty-two-lane case due to data and

instruction parallelism and improved sharing of resources between the two

microprocessors. The ALU utilization starts at 99.85% for the two-lane case and

decreases to 40.45% for the thirty-two-lane case which shows that it is possible to keep

the pipeline nearly completely full on the ALU side. The Load/Store utilization starts at

34

51.45% for the two-lane case and decreases to 18.30% for the thirty-two-lane case in part

because this application has about one half the Load/Store utilization compared with the

ALU utilization for each case.

As with the FFT application above, the performance increase is best for the FTS

sharing case for all three applications, and the decreased utilization percentages for the

higher lane cases indicates that more threads or applications from additional processors

could be supported with little decrease in performance. In addition, performance

increases significantly for the vector length 64 version, and even more for the three times

loop unrolling version, indicating that designing applications to exhibit more parallelism

results in large performance gains.

4.3 FIR Filter MADD Results

The normalization of performance results for this section match that of the FIR Filter.

The addition of the combined Multiply/Add function does result in significant

performance increases, as can be seen in Figures 3.6, 3.7 and 3.8.

The performance for the vector length 32 with no loop unrolling CTS MADD

case starts out 46% better than the vector length 32 with no loop unrolling CTS case, and

grows by 203% from the two-lane case to the thirty-two-lane case because the

replacement of two separate instructions (one multiply and one add/subtract) with one

instruction balances the utilization between the ALU and the Load/Store units. The

relative increase in performance for each lane configuration remains almost the same as

well, decreasing from 46% for the two-lane case to 42% for the thirty-two-lane case. The

ALU utilization starts at 28.11% for the two-lane case and decreases to 3.64% for the

35

thirty-two-lane case. The Load/Store utilization starts at 28.08% for the two-lane case

and decreases to 3.64% for the thirty-two-lane case.

The performance for the vector length 32 with no loop unrolling VLS MADD

case starts out 87% better than the vector length 32 with no loop unrolling CTS case, and

grows by 202% from the two-lane case to the thirty-two-lane case. The relative increase

in performance for each lane configuration remains almost the same as well, decreasing

from 46% for the two-lane case to 43% for the thirty-two-lane case when compared with

the vector length 32 with no loop unrolling VLS case. The ALU utilization starts at

35.97% for the two-lane case and decreases to 6.79% for the thirty-two-lane case. The

Load/Store utilization starts at 36.13% for the two-lane case and decreases to 6.79% for

the thirty-two-lane case.

The performance for the vector length 32 with no loop unrolling FTS MADD case

starts out 191% better than the vector length 32 with no loop unrolling CTS case, and

grows by 108% from the two-lane case to the thirty-two-lane case. The relative increase

in performance for each lane configuration remains almost the same as well, decreasing

from 49% for the two-lane case to 43% for the thirty-two-lane case when compared with

the vector length 32 with no loop unrolling FTS case. The ALU utilization starts at

55.98% for the two-lane case and decreases to 7.28% for the thirty-two-lane case. The

Load/Store utilization starts at 55.92% for the two-lane case and decreases to 7.28% for

the thirty-two-lane case.

In all three cases, the change in the application to take advantage of the additional

MADD function decreases the ALU utilization relative to the case without the MADD

36

function and increases the Load/Store utilization until both percentages are approximately

equal.

The performance for the vector length 32 with three times loop unrolling CTS

MADD case starts out 270% better than the vector length 32 with no loop unrolling CTS

case, and grows by 74% from the two-lane case to the thirty-two-lane case because of the

increased instruction parallelism arising from loop unrolling. The relative increase in

performance for each lane configuration does not remain the same, decreasing from 71%

for the two-lane case to 39% for the thirty-two-lane case when compared with the vector

length 32 with three times loop unrolling CTS case because the boost from the added

instruction combined with the boost from loop unrolling becomes less effective as the

number of lanes increases. This is shown by the large decreases in utilization for both the

ALU and the Load/Store units. The ALU utilization starts at 83.82% for the two-lane

case and decreases to 9.13% for the thirty-two-lane case. The Load/Store utilization

starts at 71.19% for the two-lane case and decreases to 7.74% for the thirty-two-lane

case.

The performance for the vector length 32 with three times loop unrolling VLS

MADD case starts out 311% better than the vector length 32 with no loop unrolling CTS

case, and grows by 213% from the two-lane case to the sixteen lane case. The

performance remains constant for sixteen and thirty-two-lanes. The relative increase in

performance for each lane configuration does not remain the same, decreasing from 74%

for the two-lane case to 49% for the thirty-two-lane case when compared with the vector

length 32 with three times loop unrolling VLS case. The ALU utilization starts at

92.86% for the two-lane case and decreases to 18.26% for the thirty-two-lane case. The

37

Load/Store utilization starts at 78.79% for the two-lane case and decreases to 15.47% for

the thirty-two-lane case.

The performance for the vector length 32 with three times loop unrolling FTS

MADD case starts out 321% better than the vector length 32 with no loop unrolling CTS

case, and grows by 205% from the two-lane case to the eight lane case. The performance

remains flat from eight to thirty-two-lanes. The relative increase in performance for each

lane configuration does not remain the same, increasing from 60% for the two-lane case

to 73% for the eight lane case and then decreasing to 39% for the thirty-two-lane case

when compared with the vector length 32 with three times loop unrolling VLS case. The

ALU utilization starts at 97.76% for the two-lane case and decreases to 18.26% for the

thirty-two-lane case. The Load/Store utilization starts at 83.24% for the two-lane case

and decreases to 15.46% for the thirty-two-lane case.

In all three cases, the change in the application to take advantage of the additional

MADD function increases the ALU utilization relative to the case without the MADD

function and increases the Load/Store utilization but both percentages remain unequal.

This is the explanation for the tailing off of the performance increases as the number of

lanes is increased.

The performance for the vector length 128 with three times loop unrolling CTS

MADD case starts out 723% better than the vector length 32 with no loop unrolling CTS

case, and grows by 213% from the four-lane case to the thirty-two-lane case due to the

combination of increased data and instruction parallelism. The relative increase in

performance for each lane configuration does not remain the same, increasing from 74%

for the four-lane case to 90% for the sixteen lane case and then decreasing to 68% for the

38

thirty-two-lane case when compared with the vector length 128 with three times loop

unrolling CTS case. The ALU utilization starts at 93.52% for the four-lane case and

decreases to 36.48% for the thirty-two-lane case. The Load/Store utilization starts at

79.42% for the four-lane case and decreases to 31.58% for the thirty-two-lane case.

These are still relatively high utilization numbers even for the thirty-two-lane case,

indicating the increased performance from improved parallelism in the application.

The performance for the vector length 128 with three times loop unrolling VLS

MADD case starts out 759% better than the vector length 32 with no loop unrolling CTS

case, and grows by 420% from the four-lane case to the thirty-two-lane case. The

relative increase in performance for each lane configuration does not remain the same,

decreasing from 74% for the four-lane case to 62% for the sixteen lane case and then

increasing to 82% for the thirty-two-lane case when compared with the vector length 128

with three times loop unrolling VLS case. The ALU utilization starts at 97.42% for the

four-lane case and decreases to 64.69% for the thirty-two-lane case. The Load/Store

utilization starts at 82.84% for the four-lane case and decreases to 55.21% for the thirty-

two-lane case. These are high utilization numbers up through the thirty-two-lane case

which explains the large performance increases.

The performance for the vector length 128 with three times loop unrolling FTS

MADD case starts out 791% better than the vector length 32 with no loop unrolling CTS

case, and grows by 477% from the two-lane case to the thirty-two-lane case. The relative

increase in performance for each lane configuration does not remain the same, decreasing

from 71% for the four-lane case to 59% for the eight lane case and increasing to 75% for

the thirty-two-lane case when compared with the vector length 128 with three times loop

39

unrolling VLS case. The ALU utilization starts at 98.85% for the four-lane case and

decreases to 60.83% for the thirty-two-lane case. The Load/Store utilization starts at

83.61% for the four-lane case and decreases to 51.53% for the thirty-two-lane case.

In all three cases, the change in the application to take advantage of the additional

MADD function increases the ALU utilization relative to the case without the MADD

function and increases the Load/Store utilization but both percentages remain unequal.

This is the explanation for the tailing off of the performance increases as the number of

lanes is increased.

4.4 MM Application Results

All of the relative performance results shown in the charts are normalized with respect to

the two-lane, one MicroBlaze, vector length 32, unroll the loop one time case. As can be

seen from Figures 3.9 and 3.10, the performance grows as the number of lanes increases.

However, this growth is not linear due to limitations in keeping the execution pipelines of

the vector lanes full.

The performance for the vector length 32 one time unroll CTS case (the reference

for normalization) grows by 120% when the number of lanes increases from two to

thirty-two. The ALU utilization starts at 71.10% for the two-lane case and decreases to

9.80% for the thirty-two-lane case. The Load/Store utilization starts at 72.21% for the

two-lane case and decreases to 9.96% for the thirty-two-lane case.

The performance for the vector length 32 one time unroll VLS case starts out 17%

better than the CTS case, and grows by 257% from the two-lane case to the thirty-two-

lane version. The ALU utilization starts at 82.98% for the two-lane case and decreases to

40

18.58% for the thirty-two-lane case. The Load/Store utilization starts at 84.63% for the

two-lane case and decreases to 19.38% for the thirty-two-lane case.

The performance for the vector length 32 one time unroll FTS case starts out 38%

better than the CTS case, and grows by 216% from the two-lane case to the thirty-two-

lane case. The ALU utilization starts at 98.13% for the two-lane case and decreases to

19.27% for the thirty-two-lane case. The Load/Store utilization starts at 99.87% for the

two-lane case and decreases to 19.59% for the thirty-two-lane case.

The performance for the vector length 64 one time unroll CTS case starts out 16%

better than the vector length 32 one time unroll CTS case, and grows by 240% when the

number of lanes increases from two to thirty-two. The ALU utilization starts at 82.59%

for the two-lane case and decreases to 17.61% for the thirty-two-lane case. The

Load/Store utilization starts at 84.29% for the two-lane case and decreases to 17.91% for

the thirty-two-lane case.

The performance for the vector length 64 one time unroll VLS case starts out 28%

better than the vector length 32 one time unroll CTS case, and grows by 444% from the

two-lane case to the thirty-two-lane version. The ALU utilization starts at 90.72% for the

two-lane case and decreases to 31.16% for the thirty-two-lane case. The Load/Store

utilization starts at 92.14% for the two-lane case and decreases to 31.68% for the thirty-

two-lane case.

The performance for the vector length 64 one time unroll FTS case starts out 38%

better than the vector length 32 one time unroll CTS case, and grows by 468% from the

two-lane case to the thirty-two-lane case. The ALU utilization starts at 98.35% for the

four-lane case and decreases to 34.97% for the thirty-two-lane case. The Load/Store

41

utilization starts at 100.00% for the four-lane case and decreases to 35.52% for the thirty-

two-lane case.

The performance increase is best for the FTS sharing case for both vector lengths,

and the decreased utilization percentages for the higher lane cases indicates that more

threads or applications from additional processors could be supported with little decrease

in performance. In addition, the performance increases more for the version with the

larger vector length due to increased data parallelism. The Load/Store utilization is

slightly higher than the ALU utilization, indicating that this application relies more

heavily on the Load/Store unit than on the ALU.

4.5 MM MADD Results

The normalization of performance results for this section match that of the Matrix

Multiplication application. As can be seen from Figures 3.11 and 3.12, the performance

grows as the number of lanes increases. However, the addition of the MADD unit does

not provide as significant performance gains as it did in the case of the FIR application.

The performance for the vector length 32 one time unroll CTS MADD case starts

out 3% worse than the CTS case, and grows by 164% when the number of lanes increases

from two to thirty-two. This is due to the decreased ALU utilization (almost by a half)

when compared with the CTS case. The ALU utilization starts at 34.45% for the two-

lane case and decreases to 5.73% for the thirty-two-lane case. The Load/Store utilization

starts at 69.93% for the two-lane case and decreases to 11.65% for the thirty-two-lane

case, which is almost the same as the utilization for the CTS case (slightly lower for two-

lanes and higher by 2% for thirty-two-lanes).

42

The performance for the vector length 32 one time unroll VLS MADD case starts

out 15% better than the CTS case, and grows by 322% from the two-lane case to the

thirty-two-lane version, again starting slightly worse for two-lanes versus the VLS case

and improving up through the thirty-two-lane case. The ALU utilization starts at 40.79%

for the two-lane case and decreases to 10.79% for the thirty-two-lane case. The

Load/Store utilization starts at 82.97% for the two-lane case and decreases to 21.94% for

the thirty-two-lane case.

The performance for the vector length 32 one time unroll FTS MADD case starts

out 38% better than the CTS case, and grows by 266% from the two-lane case to the

thirty-two-lane case, showing no performance change for two-lanes compared with the

FTS case and improving up through the thirty-two-lane case. The ALU utilization starts

at 49.00% for the two-lane case and decreases to 11.17% for the thirty-two-lane case.

The Load/Store utilization starts at 99.85% for the two-lane case and decreases to 22.70%

for the thirty-two-lane case.

The performance for the vector length 64 one time unroll CTS MADD case starts

out 14% better than the vector length 32 one time unroll CTS case, and grows by 302%

when the number of lanes increases from two to thirty-two. This is worse performance

by 2% at two-lanes compared with the vector length 64 one time unroll CTS case, but

shows improvement over the thirty-two-lane case. The ALU utilization starts at 40.76%

for the two-lane case and decreases to 10.24% for the thirty-two-lane case. The

Load/Store utilization starts at 82.75% for the two-lane case and decreases to 20.78% for

the thirty-two-lane case.

43

The performance for the vector length 64 one time unroll VLS MADD case starts

out 26% better than the vector length 32 one time unroll CTS case, and grows by 501%

from the two-lane case to the thirty-two-lane version, again showing a slight (2%)

decrease in performance relative to the same configuration without the MADD at two-

lanes but ultimately showing an increase in performance at thirty-two-lanes. The ALU

utilization starts at 44.71% for the two-lane case and decreases to 16.76% for the thirty-

two-lane case. The Load/Store utilization starts at 91.41% for the two-lane case and

decreases to 34.05% for the thirty-two-lane case.

The performance for the vector length 64 one time unroll FTS MADD case starts

out 39% better than the vector length 32 one time unroll CTS case, and grows by 556%

from the two-lane case to the thirty-two-lane case. This time, the two-lane case starts

with a slight (1%) increase when compared with the vector length 64 one time unroll FTS

application and shows improved performance through thirty-two-lanes. The ALU

utilization starts at 49.08% for the four-lane case and decreases to 19.89% for the thirty-

two-lane case. The Load/Store utilization starts at 100.00% for the four-lane case and

decreases to 40.50% for the thirty-two-lane case.

In both cases, the change in the application to take advantage of the additional

MADD function decreases the ALU utilization relative to the case without the MADD

function by about half and increases the Load/Store utilization slightly. This makes the

two percentages unequal.

44

4.6 LU Decomposition Application Results

All of the relative performance results shown for this application are normalized with

respect to the two-lane, one MicroBlaze, vector length 64 case. As can be seen from

Figures 3.13 and 3.14, the performance improvement grows as the number of lanes

increases up to the four-lane version for most cases (eight lanes for the vector length 64

VLS case). This is because the limiting factor in this application is the number of

floating point divides required for each pass through the processing loop. These divisions

are done by the MicroBlaze rather than by the lane and take either 28 or 30 clock cycles

to complete, depending on the optimization used during synthesis of the microprocessor.

The performance for the vector length 64 no unroll CTS case grows by 83% when

the number of lanes increases from two to four and is basically constant up to thirty-two-

lanes. The ALU utilization starts at 53.20% for the two-lane case and decreases to 5.03%

for the thirty-two-lane case. The Load/Store utilization starts at 54.24% for the two-lane

case and decreases to 5.10% for the thirty-two-lane case.

The performance for the vector length 64 no unroll VLS case starts out 33% better

than the CTS case, grows by 176% from the two-lane case to the eight lane version and is

constant from then on. The ALU utilization starts at 59.02% for the two-lane case and

decreases to 9.97% for the thirty-two-lane case. The Load/Store utilization starts at

60.49% for the two-lane case and decreases to 10.25% for the thirty-two-lane case.

The performance for the vector length 64 no unroll FTS case starts out 75% better

than the CTS case, and grows by 107% from the two-lane case to the four-lane case and

is constant from then on. The ALU utilization starts at 90.19% for the two-lane case and

45

decreases to 10.00% for the thirty-two-lane case. The Load/Store utilization starts at

93.38% for the two-lane case and decreases to 10.32% for the thirty-two-lane case.

The performance for the vector length 32 no unroll CTS case starts out 29% better

than the vector length 64 no unroll CTS case, grows by 42% when the number of lanes

increases from two to four, and remains basically constant from then on. The ALU

utilization starts at 39.84% for the two-lane case and decreases to 2.49% for the thirty-

two-lane case. The Load/Store utilization starts at 41.31% for the two-lane case and

decreases to 2.58% for the thirty-two-lane case.

The performance for the vector length 32 no unroll VLS case starts out 140%

better than the vector length 64 no unroll CTS case, and grows by 53% from the two-lane

case to the four-lane version with no increase from then on. The ALU utilization starts at

52.28% for the two-lane case and decreases to 4.77% for the thirty-two-lane case. The

Load/Store utilization starts at 56.25% for the two-lane case and decreases to 5.24% for

the thirty-two-lane case.

The performance for the vector length 32 no unroll FTS case starts out 258%

better than the vector length 64 no unroll CTS case, and grows by 4% from the two-lane

case to the four-lane case with no additional increase beyond that. The ALU utilization

starts at 76.57% for the four-lane case and decreases to 4.84% for the thirty-two-lane

case. The Load/Store utilization starts at 84.82% for the four-lane case and decreases to

5.35% for the thirty-two-lane case.

46

4.7 LU Decomposition DIV Results

The normalization of performance results for this section match that of the LU

Decomposition. As can be seen from Figures 3.15 and 3.16, the performance

improvement grows as the number of lanes increases in a similar curve to the rest of the

applications described above. This is because the floating point divide functions have

been removed from the MicroBlaze and are performed in the lane. However, there are a

limited number of these divides so the performance increase in the VP is not large.

Overall application performance increases significantly because of removing the

MicroBlaze bottleneck from the application, replacing an un-pipelined 28 or 30 clock

latency divide function with a pipelined 6 clock latency function in the lane, but that

performance is not measured in this thesis. The two-lane cases for the two sharing

configurations (CTS and FTS) and all the lane cases for the VLS configuration could not

be run due to an architectural limitation related to the number of available vector

registers, similar to the issue with the FFT application, above.

The performance for the four-lane vector length 64 no unroll CTS DIV case starts

out 86% better than the two-lane vector length 64 no unroll CTS case and grows by 60%

when the number of lanes increases from four to thirty-two. The ALU utilization starts at

42.96% for the four-lane case and decreases to 10.27% for the thirty-two-lane case. The

Load/Store utilization starts at 44.21% for the four-lane case and decreases to 10.49% for

the thirty-two-lane case.

The performance for the four-lane vector length 64 no unroll FTS DIV case starts

out 225% better than the two-lane CTS case and grows by 76% from the four-lane case to

the thirty-two-lane case. This is lower performance for the four-lane case than the FTS

47

configuration without DIV, but improvement occurs at the eight lane case and continues

through the thirty-two-lane case. The ALU utilization starts at 72.68% for the four-lane

case and decreases to 19.61% for the thirty-two-lane case. The Load/Store utilization

starts at 75.23% for the four-lane case and decreases to 20.09% for the thirty-two-lane

case.

The performance for the four-lane vector length 32 no unroll CTS DIV case starts

out 134% better than the two-lane vector length 64 no unroll CTS case and grows by 30%

when the number of lanes increases from four to thirty-two. The ALU utilization starts at

25.74% for the two-lane case and decreases to 4.47% for the thirty-two-lane case. The

Load/Store utilization starts at 27.80% for the two-lane case and decreases to 4.86% for

the thirty-two-lane case.

The performance for the four-lane vector length 32 no unroll FTS DIV case starts

out 409% better than the two-lane vector length 64 no unroll CTS case and grows by 46%

from the four-lane case to the thirty-two-lane case. The ALU utilization starts at 51.28%

for the four-lane case and decreases to 9.89% for the thirty-two-lane case. The

Load/Store utilization starts at 54.79% for the four-lane case and decreases to 10.61% for

the thirty-two-lane case.

In all four cases with the DIV function, the utilization percentages for both the

ALU and Load/Store units are approximately equal and are from 33% (for four-lanes) to

104% (for thirty-two-lanes) higher than the equivalent run without the DIV function.

This is the explanation for the performance improvements.

48

4.8 FPGA Resource Utilization

The Xilinx synthesis tool was run on ten of the configurations (see Table 4.1 below):

once for each number of lanes without the addition of the RM and once for each number

of lanes with the RM included and configured for the MADD function. The DIV

function is slightly smaller (approximately 100 slice registers fewer than the 980 required

for the MADD function) so it did not make sense to run this configuration through the

tool. As can be seen from the table, the amount of resources used increased nearly

linearly, approximately doubling for each increase in the number of lanes. The growth

varies from a low of 72.6% between the two and four-lane cases without RM to 119.5%

between the sixteen and thirty-two-lane cases without RM. The number of BRAMs does

not increase the same way for the two and four-lane cases because the minimum number

of RAMs in the VM is eight. The numbers in the table do not include the resources

required for the MicroBlaze processors or the associated program memory and related

logic.

49

Table 4.1 FPGA Synthesis Results

Logic Utilization
in XC5VLX110T

2-Lane
w/

MADD

2-Lane 4-Lane
w/

MADD

4-Lane 8-Lane
w/

MADD

8-Lane 16-Lane
w/

MADD

16-Lane 32-Lane
w/

MADD

32-Lane Available
Resources

Number of Slice
Registers 10495 8575 18703 14798 35101 27308 66306 50607 142248 111112 69120

Number of Slice
LUTs 8391 5911 15099 10164 28891 19058 60690 41030 151899 112603 69120

Number of fully
used LUT-FF pairs 4548 3290 8121 5516 15577 10456 28979 18411 67258 46489 11196

Number of
bonded IOBs 230 230 230 230 230 230 231 231 232 232 680

Number of Block
RAM/FIFO 18 18 20 20 24 24 48 48 96 96 148

Number of
BUFG/BUFGCTRLs 3 3 3 3 3 3 3 3 3 3 32

Number of
DCM_ADVs 1 1 1 1 1 1 1 1 1 1 12

Number of
DSP48Es 6 6 12 12 24 24 48 48 96 96 64

 Frequency
(in MHz) 225.2 229.4 228.8 228.4 220.4 220.4 175.4 174.8 145.1 145.1

4
9

50

4.9 FPGA Power Consumption

The dynamic power consumption of each lane configuration is estimated based on a

formula generated empirically by Spiridon Beldianu and discussed in a forthcoming

paper. The formula, shown below, calculates the dynamic power dissipated during the

active operation of the lanes and is based on the utilization of both the arithmetic/logic

unit and the load/store unit. In addition, the formula includes a factor for the vector

memory and crossbar units. From this power value, the dynamic energy use for each

computational element can be calculated by multiplying the power by the time to

complete one element.

P
d

TOTAL M [(KALU + KVRF/2)UALU + (KLDST + KVRF/2)ULDST] + KMC_VM · ULDST (1)

Where:

 P
d

TOTAL is the total dynamic power

 M is the number of lanes

KALU is a constant for the ALU equal to 0.3723 mW/%, 0.4739mW/% for MADD

and DIV cases

 KLDST is a constant for the LD/ST equal to 0.0967 mW/%

 KVRF is a constant for the VRF equal to 0.2818 mW/%

KMC_VM is a constant for the MC/VM equal to 1.5197 mW/% (2, 4 and 8 lanes),

3.0394 mW/% (16 lanes), and 6.0788 mW/% (32 lanes)

 UALU is the percent utilization of the ALU for a particular scenario

 ULDST is the percent utilization of the LD/ST for a particular scenario

51

 As can be seen in Table 4.2 the dynamic power increases as the number of lanes

increases and as the sharing configuration changes from CTS to VLS and to FTS. More

interesting is the dynamic energy required for computation of one element for the FIR 32

application. For a constant number of lanes, the dynamic energy per element is

approximately constant for the same lane architecture (without or with RM). It decreases

by about 19% from two to four-lanes and about 13% from four to eight lanes. In this

application, the dynamic energy decreases significantly for the RM architecture when

compared with the case without the RM. The decrease is approximately 25% for two-

lanes, 31% for four-lanes, and 35% for eight, sixteen and thirty-two-lanes. Also

interesting to note is that the dynamic energy per element stops decreasing as the number

of lanes increases beyond eight. This is due to the application reaching the maximum

possible level of parallelism, so an increased number of available lanes does not improve

the energy used.

 In Table 4.3 the dynamic power and energy usage is compared for the MM

scenarios. The energy per computational element values are much larger than those for

the FIR scenarios because one element for MM is the calculation of an entire row, rather

than the calculation of a single filter value for FIR. The power increases as the number of

lanes increases and as the sharing configuration changes. As with the FIR scenarios, the

dynamic energy values are basically constant for a set number of lanes. It decreases by

approximately 26% from two to four-lanes and about 17% from four to eight lanes.

Again, the RM architecture provides a significant improvement in dynamic energy usage,

from about 17% for two-lanes to about 22% for four-lanes and about 27% for eight,

sixteen and thirty-two-lanes.

52

 Table 4.4 shows the comparison of power and energy usage for the LU

Decomposition scenarios. Of most interest is the increase of dynamic energy required

per computational element for the RM architecture over the version without the

additional module. This is due to moving the divide function from the MicroBlaze to the

lanes, which increases the total amount of work done by the lanes. In this case, a fair

comparison of efficiency would have to include the power and energy used by the

microprocessor to carry out the floating point divide functions.

53

Table 4.2 FIR Filter Dynamic Power Results

 No. of Lanes 2 4 8 16 32

Power
(in

mW)
Energy
(in nJ)

Power
(in

mW)
Energy
(in nJ)

Power
(in

mW)
Energy
(in nJ)

Power
(in

mW)
Energy
(in nJ)

Power
(in

mW)
Energy
(in nJ)

 CTS 78.4 53.8 88.2 43.5 96.0 38.0 109.4 38.0 117.6 37.9

FIR 32 CTS - MADD 90.6 42.6 95.6 32.6 99.9 27.5 113.2 27.5 121.3 27.5

VL=32 VLS 100.1 53.8 125.0 43.0 154.3 38.0 192.2 38.0 218.9 38.0

No Unroll VLS - MADD 116.3 42.7 138.6 32.6 161.7 27.5 199.9 27.5 226.5 27.5

 FTS 153.0 53.8 173.8 43.1 192.1 38.0 218.8 38.0 235.2 38.0

 FTS - MADD 180.3 42.5 190.2 32.5 199.6 27.5 226.1 27.5 242.7 27.5

 CTS 169.6 53.9 196.2 43.5 211.2 38.0 239.3 38.0 256.1 38.0

FIR 32 CTS - MADD 245.1 45.5 299.9 35.5 285.6 30.5 285.5 30.5 285.4 30.5

VL=32 VLS 185.0 53.8 274.1 42.8 342.6 38.0 422.8 38.3 478.9 38.0

Unroll 3 Times VLS - MADD 271.3 45.3 385.7 35.5 513.8 31.2 571.8 30.5 570.8 30.5

 FTS 203.3 53.0 324.5 44.0 410.3 37.9 478.3 38.0 512.0 38.0

 FTS - MADD 286.4 46.8 426.8 35.6 570.5 30.4 570.8 30.5 570.6 30.5

 CTS 297.0 43.2 478.3 38.0 685.1 38.0 845.6 38.0

FIR 32 CTS - MADD 426.0 35.5 664.0 30.5 1050.8 30.5 1142.6 30.5

VL=128 VLS 312.3 43.3 521.9 38.0 953.2 38.0 1367.1 38.3

Unroll 3 Times VLS - MADD 444.1 35.5 713.7 30.5 1248.6 30.7 2027.3 31.2

 FTS 331.9 43.6 582.9 37.8 1112.9 37.9 1639.1 38.3

 FTS - MADD 449.5 34.6 766.4 31.3 1377.7 28.8 1901.0 25.4

5
3

54

Table 4.3 MM Dynamic Power Results

 No. of Lanes 2 4 8 16 32

Power
(in

mW)
Energy
(in nJ)

Power
(in

mW)
Energy
(in nJ)

Power
(in

mW)
Energy
(in nJ)

Power
(in

mW)
Energy
(in nJ)

Power
(in mW)

Energy
(in nJ)

 CTS 217.0 2503.2 238.2 1864.3 257.6 1552.1 282.1 1554.0 297.0 1560.1

MM CTS - MADD 181.8 2160.3 196.6 1529.9 212.3 1219.3 257.8 1218.6 272.1 1224.0

VL=32 VLS 253.9 2508.2 324.4 1871.9 406.4 1540.9 497.5 1564.2 570.0 1571.8

Unroll 1 Time VLS - MADD 215.6 2166.0 257.2 1531.3 308.6 1216.3 420.2 1216.2 512.3 1219.5

 FTS 299.9 2507.0 405.2 1878.9 509.3 1552.3 554.1 1567.1 584.3 1547.4

 FTS - MADD 259.4 2167.5 359.9 1542.3 420.8 1212.0 514.3 1232.6 530.1 1211.1

 CTS 252.8 2516.1 315.4 1859.5 380.1 1544.0 469.6 1556.3 534.0 1563.7

MM CTS - MADD 214.1 2161.8 252.3 1526.2 300.8 1211.5 401.9 1212.8 485.6 1224.0

VL=64 VLS 276.9 2502.0 376.8 1875.0 534.5 1558.6 758.7 1546.9 944.7 1564.9

Unroll 1 Time VLS - MADD 237.3 2165.7 303.6 1532.7 401.9 1226.4 592.7 1211.0 795.2 1211.3

 FTS 300.9 2508.4 446.3 1872.7 667.9 1553.9 924.7 1558.0 1059.7 1558.3

 FTS - MADD 260.5 2169.9 365.6 1532.6 551.1 1217.4 798.3 12109.1 945.1 1196.1

5
4

55

Table 4.4 LU Decomposition Dynamic Power Results

 No. of Lanes 4 8 16 32

Power (in

mW)
Energy
(in nJ)

Power (in
mW)

Energy
(in nJ)

Power (in
mW)

Energy
(in nJ)

Power (in
mW)

Energy
(in nJ)

 CTS 183.6 114.5 152.3 96.3 152.3 106.0 152.3 95.1

LU Decomp CTS - DIV 214.8 132.3 262.5 128.1 311.2 131.9 345.4 135.4

VL=64 VLS 244.3 116.3 303.5 94.7 303.2 94.6 303.8 94.8

No Unrolls FTS 367.1 117.5 305.2 96.4 305.2 96.5 305.2 96.4

 FTS - DIV 364.5 128.3 499.4 123.9 597.9 126.8 660.4 132.1

 CTS 91.7 57.2 75.8 47.9 76.1 50.5 76.1 47.5

LU Decomp CTS - DIV 131.9 64.4 134.4 57.0 153.6 60.2 154.4 58.0

VL=32 VLS 182.3 56.9 150.1 47.4 150.1 46.8 150.1 47.4

No Unrolls FTS 185.2 57.0 149.1 47.1 152.6 48.2 152.5 48.8

 FTS - DIV 261.4 73.2 261.7 55.5 305.5 61.1 339.6 65.2

5
5

56

CHAPTER 5

CONCLUSIONS

This thesis presents a shared vector coprocessor bank comprised of multiple vector lanes.

Three sharing configurations, Coarse-grained Temporal Sharing, Vector Lane Sharing

and Fine-grained Temporal Sharing, were investigated to determine the possible

improvements in both performance and energy efficiency. In addition, five different

numbers of lanes (two, four, eight, sixteen and thirty-two) were also evaluated. Finally,

an additional Reconfigurable Module was added to each lane and configured to best

support the benchmarking application currently being run to determine possible

improvements from this feature.

It was shown that because of the increased utilization of the lanes, FTS sharing

provided the greatest improvement, followed by VLS. It was also shown that while

adding the RM for the FIR Filter application provided significant improvement in both

performance and energy usage, the same function in the MM application only provided

modest performance improvement along with a similarly better dynamic energy usage.

Finally, the addition of the RM to the LU Decomposition application provided a minor

performance increase but also increased the dynamic energy per element because of

moving the divide function from the microprocessor to the lanes.

 Increases in instruction parallelism from loop unrolling and data parallelism from

longer vector lengths were shown in the analysis to improve performance by a larger

margin than an increased number of lanes alone while not causing an increase in energy

per element usage. This is due to the larger utilization percentage of both the Load/Store

57

and Arithmetic/Logic units in each lane. The impact of changing the sharing

configuration and thus increasing utilization was larger than that of improved parallelism

for a given application, showing that FTS followed by VLS is a better way to improve

performance than changing the application.

 Future work will focus on alternative functions for the RM such as the floating

point square root, as well as continued improvements to the scheduling and sharing

portions of the design with the goal of dynamically optimizing either performance or

energy usage depending on the current operating conditions. In addition, priority will be

included in the scheduling function so that a higher priority task or thread can preempt a

lower priority one either from the same microprocessor or from another attached

microprocessor. Finally, simulation of the implementation in an ASIC environment

rather than a Xilinx FPGA architecture will be investigated to see if any improvements

can be made by increasing the number of read and write ports on the Vector Register

File, increasing the data bus size from 32 to 64 bits, or adding the capability to perform

double precision operations, as examples.

58

APPENDIX A

FIR FILTER MADD BENCHMARKS

The three charts and figures for the FIR Filter with MADD RM scenarios will be found in

this appendix.

65

Table A.1 FIR 32, VL=32, No Loop Unroll, MADD

 No. of Lanes 2 4 8 16 32

FIR 32 Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=32 CTS 1.00 37.90 19.82 1.39 26.39 13.80 1.74 16.34 8.44 1.98 9.37 4.75 2.13 5.03 2.55

No Loop Unroll CTS - MADD 1.46 28.11 28.08 2.02 19.42 19.39 2.49 12.00 11.98 2.83 6.79 6.79 3.03 3.64 3.64

MADD VLS 1.28 48.43 25.28 2.00 37.80 19.19 2.79 26.42 13.44 3.47 16.45 8.36 3.95 9.37 5.11

 VLS - MADD 1.87 35.97 36.13 2.92 28.14 28.11 4.03 19.40 19.40 4.98 12.00 11.98 5.65 6.79 6.79

 FTS 1.95 73.91 38.68 2.77 52.53 26.74 3.47 32.90 16.71 3.95 18.74 9.51 4.25 10.07 5.11

 FTS - MADD 2.91 55.98 55.92 4.01 38.62 38.58 4.98 23.96 23.93 5.64 13.56 13.57 6.06 7.28 7.28

Figure A.1 FIR 32, VL=32, no loop unroll, MADD.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

2 4 8 16 32

CTS

CTS-MADD

VLS

VLS-MADD

FTS

FTS-MADD

5
9

Table A.2 FIR 32, VL=32, Unroll 3 Times, MADD

No. of Lanes 2 4 8 16 32

 Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

CTS 2.16 81.86 42.91 3.10 58.67 30.59 3.82 36.17 18.35 4.32 20.49 10.41 4.63 10.96 5.57

CTS - MADD 3.70 83.82 71.19 5.81 65.94 55.82 6.43 36.56 30.98 6.43 18.27 15.28 6.43 9.13 7.74

VLS 2.36 89.39 46.76 4.40 81.88 42.94 6.18 58.63 29.84 7.59 36.19 18.40 8.65 20.50 10.42

VLS - MADD 4.11 92.86 78.79 7.45 84.76 71.91 11.30 65.79 55.66 12.86 36.60 30.99 12.86 18.26 15.47

FTS 2.63 99.71 50.66 5.07 98.23 49.80 7.42 70.23 35.70 8.65 40.94 20.80 9.26 21.91 11.14

FTS - MADD 4.21 97.76 83.24 8.22 93.82 79.43 12.86 73.04 61.82 12.86 36.53 30.94 12.86 18.26 15.46

Figure A.2 FIR 32, VL=32, unroll 3 times, MADD.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

2 4 8 16 32

CTS

CTS-MADD

VLS

VLS-MADD

FTS

FTS-MADD

6
0

Table A.3 FIR 32, VL=128, Unroll 3 Times, MADD

 No. of Lanes 4 8 16 32

FIR 32 Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=128 CTS 4.72 89.57 45.86 8.64 81.83 41.66 12.38 58.63 29.83 15.28 36.18 18.41

Unroll 3 Times CTS - MADD 8.23 93.52 79.42 14.94 84.91 72.10 23.62 67.11 57.16 25.72 36.48 31.08

MADD VLS 4.94 93.74 48.58 9.44 89.39 45.35 17.23 81.62 41.43 24.52 58.51 29.74

 VLS - MADD 8.59 97.42 82.84 16.08 91.36 77.38 27.95 79.98 67.58 44.65 64.69 55.21

 FTS 5.22 99.85 51.42 10.58 99.65 50.86 20.14 95.30 48.35 29.41 70.15 35.65

 FTS - MADD 8.91 98.85 83.61 16.82 97.99 83.24 32.89 88.23 74.59 51.44 60.83 51.53

Figure A.3 FIR 32, VL=128, unroll 3 times, MADD.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4 8 16 32

CTS

CTS-MADD

VLS

VLS-MADD

FTS

FTS-MADD

6
1

APPENDIX B

MM MADD BENCHMARKS

The two charts and figures for the MM with MADD RM scenarios will be found in this

appendix.

Table B.1 MM, VL=32, Unroll 1 Time, MADD

 No. of Lanes 2 4 8 16 32

MM Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=32 CTS 1.00 71.10 72.21 1.47 52.22 53.08 1.91 34.50 33.94 2.09 18.61 18.91 2.20 9.80 9.96

Unroll 1 Time CTS - MADD 0.97 34.45 69.93 1.48 26.31 53.40 2.01 17.89 36.36 2.44 10.86 22.08 2.56 5.73 11.65

MADD VLS 1.17 82.98 84.63 2.00 71.04 72.36 3.04 54.45 53.51 3.67 32.86 33.32 4.18 18.58 19.38

 VLS - MADD 1.15 40.79 82.97 1.94 34.42 69.88 2.93 26.03 52.83 3.99 17.71 35.98 4.85 10.79 21.94

 FTS 1.38 98.13 99.87 2.49 88.74 90.34 3.79 68.20 67.09 4.08 36.57 37.13 4.36 19.27 19.59

 FTS - MADD 1.38 49.00 99.85 2.69 48.14 97.80 4.01 35.43 72.14 4.81 21.68 44.03 5.05 11.17 22.70

Figure B.1 MM, VL=32, unroll 1 time, MADD.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2 4 8 16 32

CTS

CTS-MADD

VLS

VLS-MADD

FTS

FTS-MADD

6
3

Table B.2 MM, VL=64, Unroll 1 Time, MADD

 No. of Lanes 2 4 8 16 32

MM Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=64 CTS 1.16 82.59 84.29 1.96 69.18 70.25 2.84 70.13 68.96 3.48 30.95 31.53 3.94 17.61 17.91

Unroll 1 Time CTS - MADD 1.14 40.76 82.25 1.91 33.75 68.56 2.86 25.36 51.51 3.82 16.94 34.41 4.58 10.24 20.78

MADD VLS 1.28 90.72 92.14 2.32 82.47 84.08 3.96 71.68 70.31 5.66 50.44 50.88 6.96 31.16 31.68

 VLS - MADD 1.26 44.71 91.41 2.29 40.59 82.56 3.78 33.88 68.82 5.65 24.97 50.77 7.57 16.76 34.05

 FTS 1.38 98.35 100.00 2.75 97.73 99.51 4.96 89.46 87.98 6.84 61.03 61.98 7.85 34.97 35.52

 FTS - MADD 1.39 49.08 100.00 2.75 48.80 99.47 5.22 46.63 94.42 7.62 33.65 68.36 9.12 19.89 40.50

Figure B.2 MM, VL=64, unroll 1 time, MADD.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

2 4 8 16 32

CTS

CTS-MADD

VLS

VLS-MADD

FTS

FTS-MADD

6
4

65

APPENDIX C

LU DIV BENCHMARKS

The two charts and figures for the LU Decomposition with DIV RM scenarios will be

found in this appendix.

Table C.1 LU Decomp, VL=64, No Loop Unroll, DIV

No. of Lanes

4

8

16

32

LU Decomp

Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=64 CTS 1.83 40.28 40.87 1.81 20.11 20.40 1.64 10.06 10.20 1.83 5.03 5.10

No Unrolls CTS - DIV 1.86 42.96 44.21 2.34 31.18 31.94 2.69 18.48 18.93 2.92 10.27 10.49

DIV FTS 3.58 79.71 82.41 3.62 39.93 41.35 3.62 20.00 20.63 3.62 10.00 10.32

FTS - DIV 3.25 72.68 75.23 4.61 59.31 60.79 5.40 35.50 36.38 5.72 19.61 20.09

Figure C.1 LU Decomp, VL=64, no loop unroll, DIV.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

4 8 16 32

CTS

CTS-DIV

FTS

FTS-DIV

6
6

Table C.2 LU Decomp, VL=32, No Loop Unroll, DIV

 No. of Lanes 4 8 16 32

LU Decomp Perf.
ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util. Perf.

ALU
Util.

LD/ST
Util.

VL=32 CTS 1.83 19.90 20.61 1.81 9.58 10.33 1.72 4.98 5.15 1.83 2.49 2.58

No Unrolls CTS - DIV 2.34 25.74 27.80 2.70 15.62 16.85 2.92 8.90 9.66 3.04 4.47 4.86

DIV FTS 3.71 38.62 42.89 3.62 18.74 21.10 3.62 9.67 10.71 3.58 4.84 5.35

 FTS - DIV 4.09 51.28 54.79 5.40 30.65 32.46 5.72 17.87 18.98 5.96 9.89 10.61

Figure C.2 LU Decomp, VL=32, no loop unroll, DIV.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

4 8 16 32

CTS

CTS-DIV

FTS

FTS-DIV

6
7

68

APPENDIX D

SCENARIOS RUN ON SYSTEM

The complete list of scenarios run on the system as part of the research in this thesis will

be found in this appendix.

D.1 Fast Fourier Transform (FFT)

D.1.1 03_fft32_1mb_simple_v01

CTS; single pass through FFT; run on four, eight, sixteen and thirty-two lanes.

D.1.2 04_fft32_1mb_double_v01

CTS; double pass through FFT; run on four, eight, sixteen and thirty-two lanes.

D.1.3 05_fft32_2mb_simple_v01

FTS; single pass through FFT; vector length 32; run on four, eight, sixteen and thirty-two

lanes.

D.1.4 06_fft32_2mb_double_v01

FTS; double pass through FFT; vector length 32; run on four, eight, sixteen and thirty-

two lanes.

D.1.5 07_fft32_2mb_simple_sl_v01

VLS; single pass through FFT; vector length 32; run on four, eight, sixteen and thirty-two

lanes.

D.1.6 08_fft32_2mb_double_sl_v01

VLS; double pass through FFT; vector length 32; run on four, eight, sixteen and thirty-

two lanes.

69

D.2 Finite Impulse Response (FIR)

D.2.1 12_fir32_vl32_unroll4_1mb

CTS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes.

D.2.2 13_fir32_vl64_unroll4_1mb

CTS; unroll loop three times; vector length 64; run on two, four, eight, sixteen and thirty-

two lanes.

D.2.3 14_fir32_vl128_unroll4_1mb

CTS; unroll loop three times; vector length 128; run on eight, sixteen and thirty-two

lanes.

D.2.4 15_fir32_vl256_unroll4_1mb

CTS; unroll loop three times; vector length 256; run on eight, sixteen and thirty-two

lanes.

D.2.5 16_fir32_vl64_unroll4_2mb

FTS; unroll loop three times; vector length 64; run on eight, sixteen and thirty-two lanes.

D.2.6 17_fir32_vl128_unroll4_2mb

FTS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two

lanes.

D.2.7 18_fir32_vl256_unroll4_2mb

FTS; unroll loop three times; vector length 256; run on eight, sixteen and thirty-two

lanes.

D.2.8 31_01_fir32_vl32_nounroll_1mb

CTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

D.2.9 31_02_fir32_vl64_nounroll_1mb

CTS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

70

D.2.10 31_03_fir32_vl128_nounroll_1mb

CTS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes.

D.2.11 31_04_fir32_vl256_nounroll_1mb

CTS; no loop unroll; vector length 256; run on eight, sixteen and thirty-two lanes.

D.2.12 33_01_fir32_vl32_nounroll_2mb

FTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

D.2.13 33_02_fir32_vl64_nounroll_2mb

FTS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

D.2.14 33_03_fir32_vl128_nounroll_2mb

FTS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes.

D.2.15 33_04_fir32_vl256_nounroll_2mb

FTS; no loop unroll; vector length 256; run on eight, sixteen and thirty-two lanes.

D.2.16 34_01_fir32_vl32_unroll2_2mb

FTS; unroll loop once; vector length 32; run on two and four lanes.

D.2.17 34_02_fir32_vl64_unroll2_2mb

FTS; unroll loop once; vector length 64; run on two and four lanes.

D.2.18 35_01_fir32_vl32_nounroll_2mb_sl

VLS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

D.2.19 35_02_fir32_vl64_nounroll_2mb_sl

VLS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

71

D.2.20 35_03_fir32_vl128_nounroll_2mb_sl

VLS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes.

D.2.21 37_01_fir32_vl32_unroll4_2mb_sl

VLS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes.

D.2.22 37_02_fir32_vl64_unroll4_2mb_sl

VLS; unroll loop three times; vector length 64; run on two, four, eight, sixteen and thirty-

two lanes.

D.2.23 37_03_fir32_vl128_unroll4_2mb_sl

VLS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two

lanes.

D.2.24 110_39_01_fir32_vl32_unroll4_2mb_no_madd

FTS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes.

D.3 Finite Impulse Response (FIR) with MADD

D.3.1 110_12_fir32_vl32_unroll4_1mb

CTS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes; equivalent to D.2.1.

D.3.2 110_14_fir32_vl128_unroll4_1mb

CTS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two

lanes; equivalent to D.2.3.

D.3.3 110_17_fir32_vl128_unroll4_2mb

FTS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two

lanes; equivalent to D.2.6.

D.3.4 110_31_01_fir32_vl32_nounroll_1mb

CTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.2.8.

72

D.3.5 110_33_01_fir32_vl32_nounroll_2mb

FTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.2.12.

D.3.6 110_35_01_fir32_vl32_nounroll_2mb_sl

VLS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.2.18.

D.3.7 110_37_01_fir32_vl32_unroll4_2mb_sl

VLS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes; equivalent to D.2.21.

D.3.8 110_37_03_fir32_vl128_unroll4_2mb_sl

VLS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two

lanes; equivalent to D.2.23.

D.3.9 110_38_01_fir32_vl32_unroll4_2mb

FTS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes; equivalent to D.2.24.

D.4 Matrix Multiplication (MM)

D.4.1 53_01_matmul_vl128_unroll_1mb

CTS; unroll loop once; vector length 128; run on eight, sixteen and thirty-two lanes.

D.4.2 53_02_matmul_vl64_unroll_1mb

CTS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

D.4.3 53_03_matmul_vl32_unroll_1mb

CTS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

D.4.4 54_01_matmul_vl128_unroll_2mb

FTS; unroll loop once; vector length 128; run on eight, sixteen and thirty-two lanes.

73

D.4.5 54_02_matmul_vl64_unroll_2mb

FTS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

D.4.6 54_03_matmul_vl32_unroll_2mb

FTS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

D.4.7 55_01_matmul_vl128_unroll_4lanes_2mb

VLS; unroll loop once; vector length 128; run on eight, sixteen and thirty-two lanes.

D.4.8 55_02_matmul_vl64_unroll_4lanes_2mb

VLS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

D.4.9 55_03_matmul_vl32_unroll_4lanes_2mb

VLS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

D.5 Matrix Multiplication (MM) with MADD

D.5.1 120_53_02_matmul_vl64_unroll_1mb

CTS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.4.2.

D.5.2 120_53_03_matmul_vl32_unroll_1mb

CTS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.4.3.

D.5.3 120_54_02_matmul_vl64_unroll_2mb

FTS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.4.5.

74

D.5.4 120_54_03_matmul_vl32_unroll_2mb

FTS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.4.6.

D.5.5 120_55_02_matmul_vl64_unroll_4lanes_2mb

VLS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.4.8.

D.5.6 120_55_03_matmul_vl32_unroll_4lanes_2mb

VLS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes; equivalent to D.4.9.

D.6 LU Decomposition (LU)

D.6.1 60_01_LUDecomp_origMatSize128_matSize128_vl128_1mb

CTS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes.

D.6.2 60_02_LUDecomp_origMatSize128_matSize64_vl64_1mb

CTS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

D.6.3 60_03_LUDecomp_origMatSize128_matSize32_vl32_1mb

CTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

D.6.4 61_01_LUDecomp_origMatSize128_matSize128_vl128_2mb

FTS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes.

D.6.5 61_02_LUDecomp_origMatSize128_matSize64_vl64_2mb

FTS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

D.6.6 61_03_LUDecomp_origMatSize128_matSize32_vl32_2mb

FTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

75

D.6.7 62_01_LUDecomp_origMatSize128_matSize128_vl128_2mb_vls

VLS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes.

D.6.8 62_02_LUDecomp_origMatSize128_matSize64_vl64_2mb_vls

VLS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two

lanes.

D.6.9 62_03_LUDecomp_origMatSize128_matSize32_vl32_2mb_vls

VLS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two

lanes.

D.7 LU Decomposition (LU) with DIV

D.7.1 130_60_05_LUDecomp_origMatSize128_matSize128_vl64_1mb

CTS; no loop unroll; vector length 64; run on four, eight, sixteen and thirty-two lanes;

equivalent to D.6.2.

D.7.2 130_60_08_LUDecomp_origMatSize128_matSize128_vl32_1mb

CTS; no loop unroll; vector length 32; run on four, eight, sixteen and thirty-two lanes;

equivalent to D.6.3.

D.7.3 130_61_05_LUDecomp_origMatSize128_matSize128_vl64_2mb

FTS; no loop unroll; vector length 64; run on four, eight, sixteen and thirty-two lanes;

equivalent to D.6.5.

D.7.4 130_61_08_LUDecomp_origMatSize128_matSize128_vl32_2mb

FTS; no loop unroll; vector length 32; run on four, eight, sixteen and thirty-two lanes;

equivalent to D.6.6.

76

REFERENCES

Beldianu, S.F. and Ziavras, S.G. 2011. On-chip Vector Coprocessor Sharing for

Multicores. In Proceedings of 19th Euromicro International Conference on

Parallel, Distributed and Network-Based Computing. IEEE Computer Society

proceedings.

Cho, J., Chang, H., and Sung, W. 2006. An FPGA based SIMD processor with a vector

memory unit. In Proceedings of IEEE International Symposium on Circuits and

Systems. IEEE 525-528.

Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations 3rd Ed. Johns Hopkins,

Baltimore, USA.

Kozyrakis, C. and Patterson, D. 2003. Scalable, vector processors for embedded systems.

IEEE Micro. 23, 6, 36-45.

Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., Chakrabarti, C., Flautner,

K. 2006. SODA: A low-power architecture for software radio. In Proceedings

33rd Annual International Symposium on Computer Architecture. IEEE, Boston,

MA, 89-101.

Sung, W. and Mitra, S. K. 1987. Implementation of digital filtering algorithms using

pipelined vector processors. Proceedings of the IEEE. IEEE, 75, 9, 1293-1303.

Woh, M., Seo, S., Mahlke, S., Mudge, T., Chakrabarti, C., and Flautner, K. 2010.

AnySP: Anytime Anywhere Anyway Signal Processing. IEEE Micro. 30, 1, 81-

91.

Xilinx Inc. 2010. Partial Reconfiguration of Virtex FPGAs in ISE 12. Xilinx,

http://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reco

nfig_Virtex_FPGAs.pdf

Yang, H. and Ziavras, S. 2005. FPGA-Based Vector Processor for Algebraic Equation

Solvers. In Proceedings of IEEE International Systems-On-Chip Conference.

IEEE, Herndon, VA, 115-116.

Yiannacouras, P., Steffan, J. G. and Rose, J. 2008. VESPA: Portable, Scalable and

Flexible FPGA-Based Vector Processors. In Proceedings of International

Conference on Compilers, Architecture and Synthesis for Embedded Systems.

ACM, Atlanta, GA.

Yu, J., Eagleston, C., Chour, C. H.-Y. Perreault, M., and Lemieux, G. 2009. Vector

Processing as a Soft Processor Accelerator. ACM Transactions on Reconfigurable

Technology and Systems. ACM, 2, 2, 1-34.

	Design and evaluation of an adaptable vector coprocessor for multicores
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Proposed Framework
	Chapter 3: Application Benchmarking
	Chapter 4: Analysis of Results
	Chapter 5: Conclusions
	Appendix A: FIR Filter MADD Benchmarks
	Appendix B: MM MADD Benchmarks
	Appendix C: LU DIV Benchmarks
	Appendix D: Scenarios Run On System
	References

	List of Tables
	List of Tables (1 of 2)
	List of Tables (2 of 2)

