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ABSTRACT  

DESIGN AND EVALUATION OF AN ADAPTABLE VECTOR 

COPROCESSOR FOR MULTICORES 

 

by 

Timothy William Steele 

Future applications for multi-core processor systems will require increased signal 

processing power along with increased resource utilization and decreased power 

consumption. Conservative power consumption will be of paramount importance 

primarily for battery-powered portable multi-core platforms (e.g., advanced cell phones, 

tablet computers, etc.).  This thesis investigates the robustness, efficiency and 

effectiveness of vector coprocessor sharing policies in multi-core environments. Vector 

coprocessor sharing is based on an innovative design for a vector lane that forms the 

building block for the creation of larger vector coprocessors. This innovative lane design 

contains a floating-point multiply unit, a floating-point add/subtract unit, a miscellaneous 

function unit, a load/store unit, and a vector register file. The design was prototyped and 

benchmarked on a field programmable gate array (FPGA) for a multitude of 

configurations to evaluate the performance and power consumption.  The configurations 

included one or two host processors and two, four, eight, sixteen or thirty-two lanes.  

Sample applications in benchmarking were the fast Fourier transform, finite impulse 

response filter, matrix multiplication and LU matrix decomposition.  As an additional 

experiment, a reconfigurable unit was added to the lane and configured as either a 

combined floating-point multiply/add or a floating-point divide to better match the needs 

of specific applications.  The results show the versatility of the design towards high 

performance and controllable power consumption. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Need for Coprocessor Sharing in Multicore Processors 

A shared vector coprocessor bank comprised of multiple vector lanes makes sense for 

multiple processor core architectures for several reasons.  The first is that with 

appropriate resource allocation, a larger percentage of the entire coprocessor can be 

utilized at any given time.  A number of lanes can be assigned to each processor based on 

the needs of the currently running application rather than on a design decision made 

during the architecture design.  Any unused lanes would then be in a power-down mode, 

thus limiting power usage by keeping active only an optimum number of lanes.  The 

second is that as the number of processor cores grows, the coprocessor bank can grow 

more slowly to meet the needs of the increased number of expected concurrent 

applications.  This saves a significant number of transistors and a related amount of area 

on the die.  The third is that an explicit vector design per core will not have a high 

utilization despite the rather frequent need to parallelize the processing of floating point 

data ever present in most digital signal processing applications. 

 

1.2 Existing Approaches 

Existing approaches in the literature, such as VIRAM [Kozyrakis and Patterson 2003], 

SODA [Lin et al. 2006] and AnySP [Woh et al. 2010] are designed as single 

microprocessor cores with attached vector operation support.  These resources are not 

shared and are closely coupled with the microprocessor, thus limiting the possibility of 
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taking advantage of parallelism between different threads while also underutilizing 

silicon resources.  In addition, “soft” vector processor solutions have been investigated 

[Cho et al. 2006; Lin et al. 2006; Yiannacouras et al. 2008; Yu et al. 2009; Yang and 

Ziavras 2005] as coprocessor add-ons to an FPGA-based microprocessor.  However, 

these designs are done using a fixed vector register length and as a result are not a 

generalized solution to the real issues of varying vector length for different applications 

or within the same application.  A proposed architecture for simultaneous sharing and 

changeable vector register lengths [Beldianu and Ziavras 2011] forms the basis for the 

design utilized in this investigation.  This adaptive vector processor sharing takes 

advantage of thread level parallelism by allowing multiple vector length instructions to 

pass through the lanes at the same time. 

 

1.3 Motivations and Objectives 

The motivation behind this effort is to provide a scalable, flexible solution to the problem 

of floating point vector processing for multicores.  The design described within this paper 

is configurable to support between two and thirty-two processing lanes, with three 

distinct modes of sharing.  The first mode is Coarse-grain Temporal Sharing (CTS), 

where all the available lanes are assigned to a microprocessor on an as-needed basis.  The 

second mode is Vector Lane Sharing (VLS), where the available lanes are divided into 

two distinct groups, mimicking a dedicated vector coprocessor involving one half of the 

total vector lanes.  The third mode is Fine-grain Temporal Sharing (FTS), where 

instruction requests from multiple cores are interleaved across the entire array of lanes 

[Beldianu and Ziavras 2011].  The objective is to benchmark these techniques using four 



3 

 

different common signal processing applications in order to show how performance, cost 

and power consumption are affected by various lane configurations and the 

aforementioned vector lane sharing modes of operation. 
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CHAPTER 2 

PROPOSED FRAMEWORK 

 

 

2.1 Basic Architecture 

The architecture proposed for this investigation is shown in Figure 2.1.  It consists of 

two Xilinx™ MicroBlaze™ processors with associated program store memory 

connected through the Local Memory Bus (LMB).  Attached to the common 

Processor Local Bus (PLB) is the array of Xilinx Block RAM (BRAM) memory 

blocks which form the interface to the Vector Processor (VP) lanes.  Also connected 

to the PLB is the Hardware Internal Configuration Access Port (HWICAP) which 

allows either processor to reconfigure a predetermined portion of the lane known as 

the Reconfigurable Module (RM).  Attached to each processor via a Fast Simplex 

Link (FSL) is a Vector Controller (VC) which handles scheduling of instructions to 

the lanes, and the flow of data into and out of the BRAM memory blocks.  The two 

VC modules request access to the lanes through the Scheduler, which is granted in an 

arbitrated round-robin fashion.  The Floating Point (FP) data flows between the 

BRAM memory blocks and the VP lanes through a Memory Crossbar (MC) which is 

configurable to support up to thirty-two lanes and thirty-two memory blocks.  The 

MC also can function as a shuffle network to route data directly from one lane to 

another rather than requiring extra cycles to store the data in BRAM and retrieve it.  

For the applications used in this thesis, a minimum of eight memory blocks are used 

for the two and four lane cases due to the minimum required memory for the software 

as written. 
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Figure 2.1 Top level architecture. 
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2.2 Design Details 

All the designs described below are written in synthesizable VHDL and targeted on a 

Xilinx Virtex-5 FPGA.  The various floating point functions and ram blocks, as well 

as the MicroBlaze processors, are Xilinx core functions used for ease of synthesis. 

 

2.2.1 Vector Controller (VC) Details 

The Vector Controller (VC) receives instructions over the Xilinx Fast Simplex Link. 

It coordinates through the Scheduler when the commands are presented to the lanes 

and also determines how many of the lanes are dedicated to the current application.  

The controller and scheduler provide support for the three vector processor sharing 

architectures described in the introduction.  The control signals from the VC and 

Scheduler provide all the information needed by the lane to indicate which VC 

currently controls the lane, the total number of lanes currently assigned to the VC, the 

index of the lane relative to the others attached to the VC to provide a continuous 

address space for the vector registers, and the number of register elements located in 

this lane’s Vector Register File.  This information is stored in four discrete registers 

internal to each lane. 

 

2.2.2 Vector Processor Lane Details 

Each lane consists of a Load/Store function (on the left in Figure 2.2), an 

Arithmetic/Logic Unit (on the right), and a multi-port Vector Register File.  

Instructions coming into the lane from either Vector Controller are decoded, the 

respective operands fetched, and the dictated processing is done.  Separate functional 

blocks in the ALU provide floating point multiplication, addition or subtraction, and 
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miscellaneous functions such as negate, invert and move.  A fourth block is added to 

take advantage of the capability of the Xilinx FPGA architecture to reprogram 

portions of the device while the system is operating.  This reconfigurable module can 

be set at run time or at compile time to perform functions such as combined multiply 

and add/subtract, or divide, depending on the needs of the application. 

 

Vector Register File

Index 1

Add/Subtract 

Module

Index 2

Miscellaneous 

Module

Index 3

Reconfigurable 

Module

Index 0

Multiply

Module

WB Buffer WB Buffer WB Buffer WB Buffer

Vector Flag Register File

ALU QueueLD/ST Queue

ALU Decode

ALU Op Fetch
ALU Fetch

State Machine

WB Arbiter
ALU Write Back

State Machine

From VC 0 From VC 1

LD/ST Fetch

State Machine
LD/ST Decode

Load BufferRequest Stage

LD/ST Write Back

State Machine

To Memory Crossbar From Memory Crossbar

 

Figure 2.2 Vector processor lane architecture. 
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2.2.2.1 Multiply Module. The Multiply module contains a Xilinx floating 

point core which performs a fully pipelined single precision multiplication with a 

latency of six clock cycles.  This function supports three modes of operation: a vector 

times a vector, a vector times a scalar or a scalar times a vector.  In addition, the 

module includes a write-back buffer because multiple instructions could finish on the 

same clock but only one write-back port is available to the vector register file.  The 

results of the operation are stored in this buffer along with side information such as 

priority, an ignore flag, and a ready flag. 

 

Xilinx Floating 

Point Core 

Module, Single 

Precision 

Multiply, 6 Clock 

Latency

WB Buffer

6 Stage

Side Info

Pipeline

Operand A 

From VRF

Operand B 

From VRF

Side Info 

From ALU

Output To 

WB Arbiter  

Figure 2.3 Multiply module architecture. 
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2.2.2.2 Add/Subtract Module. The Add/Subtract module contains a Xilinx 

floating point core which performs a fully pipelined single precision addition or 

subtraction with a latency of six clock cycles.  This module supports the same three 

operating modes as the multiply module.  In addition, the module includes an 

identical write-back buffer to the Multiply module. 

2.2.2.3 Miscellaneous Module. The Miscellaneous module provides the 

capability to invert or negate a scalar or vector quantity, take the absolute value, or 

another path for data to move without using the Load/Store function.  These functions 

take a single clock cycle to complete and the module includes a write-back buffer, 

which is the same as for the other functions. 

2.2.2.4 Reconfigurable Module (RM). The Reconfigurable Module (RM) 

takes advantage of the ability in the Xilinx FPGA architecture to reprogram pre-

defined areas of the device in the designed system.  In this case, the floating point 

divide function (with a latency of six clock cycles) and a combined multiply (a vector 

times a scalar) and add/subtract (a vector added/subtracted with the result of the 

multiply) function (with a latency of eight clock cycles) take up approximately the 

same number of resources on the device.  As a result, it is relatively straight forward 

to provide the configuration files for each possible use and allow the processor to 

program the lane with the function which makes the most sense for a particular 

application.  Another possible function is the pipelined square root function.  

Reconfiguration can occur under the control of the microprocessor, with the 

configuration file stored externally to the FPGA.  Since the largest of the proposed 

units uses approximately 980 slice registers, the region will consist of 25 
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Reconfigurable Frames.  The time required to change from one function to another 

will take about 370 microseconds per lane, based on the information in the Xilinx 

Partial Reconfiguration User Guide. [Xilinx 2010] 
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Figure 2.4 Multiply/add module architecture. 
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2.2.2.5 Load/Store Module.  The Load/Store module handles all data 

traffic into and out of the lane.  It interfaces directly with the Memory Crossbar to 

load data into the Vector Register File or to return calculation results to the Vector 

Memory.  This module also controls the shuffle function of the crossbar so that data 

can pass from one lane directly to another without passing through the Vector 

Memory. 

2.2.2.6 Vector Register File (VRF).  The Vector Register File (VRF) 

consists of 512 32-bit memory locations using the Xilinx Block RAM function 

(BRAM).  Both the Load/Store and ALU sides of the lane require two read ports and 

one write port.  This is handled in the FPGA by duplication of the BRAM and by 

running the interface at twice the processing clock rate.  In addition, a 512x1 bit Flag 

register is included with each lane, as well as the four configuration registers 

described in the VC section, above. 
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Figure 2.5 Vector register file architecture. 

 

2.2.3 Memory Crossbar Details 

The Memory Crossbar provides a direct connection between the N lanes and the L 

BRAMs used in the Vector Memory.  Access is arbitrated using a round-robin 

scheme for each input and output port and if no contention exists, all ports can be 

active on a single clock cycle.  The architecture allows for the number of ports to be 

set to match the number of lanes and the number of block memories.  The lane 

requests access to a specific BRAM and the arbiter acknowledges when the path 

through the crossbar is available.  The BRAMs are set up as dual port devices, with 

one port dedicated to the lane through the crossbar, and the other dedicated to the 

PLB.  The number of lanes does not need to match the number of BRAMs. 
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Figure 2.6 Memory crossbar architecture. 
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CHAPTER 3 

APPLICATION BENCHMARKING 

 

3.1 Fast Fourier Transform (FFT) 

The first application used to benchmark the performance of the multiple lane 

configurations was the 32-point decimation-in-time radix-2 butterfly fast Fourier 

transform.  This was implemented using a five-stage butterfly where each stage 

includes complex multiplication and addition followed by a shuffle operation through 

the Memory Crossbar.  Due to architectural limitations in the available size of vector 

lengths and number of vector registers, this application was not run on the two-lane 

version of the design.  Two different scenarios were run and charted (see Tables 3.1 

and 3.2, and Figures 3.1 and 3.2), first with simple processing (e.g., one complete 

FFT per pass through the loop) and, second with double processing of two complete 

FFTs per loop.  The scenarios were run in each of the three lane sharing 

configurations and over the four instantiated lane conditions. 
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Table 3.1 FFT 32, Simple 

 

  No. of Lanes   4     8     16     32   

FFT 32   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

Simple CTS 1.00 64.26 39.18 1.32 40.70 22.15 1.58 24.86 13.29 1.73 13.88 7.24 

  VLS 1.23 72.30 43.07 2.00 34.24 33.30 2.63 40.52 20.44 3.17 24.93 11.11 

  FTS 1.41 88.67 53.54 2.38 69.77 38.30 3.07 39.35 21.02 3.42 21.25 11.06 

 

 

 
 

Figure 3.1 FFT 32, simple. 

1
5
 



 

 

Table 3.2 FFT 32, Double 

 

  No. of Lanes   4     8     16     32   

FFT 32   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

Double CTS 1.26 81.52 49.07 2.04 62.67 34.34 2.29 35.95 21.02 2.29 18.37 9.63 

  VLS 1.37 79.99 47.10 2.53 44.49 42.92 4.08 62.79 26.37 4.57 35.94 14.21 

  FTS 1.46 94.09 57.03 2.82 76.29 41.47 4.63 49.66 26.39 4.57 25.34 13.16 

 

 

 
 

Figure 3.2 FFT 32, double. 
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3.2 Finite Impulse Response Filter (FIR) 

The second application used to benchmark the multiple lane configurations was the 

32-tap finite impulse response filter, implemented using the outer product format 

[Sung and Mitra 1987] which avoids the reduction operation.  Three different 

scenarios were run and charted (see Tables 3.3, 3.4, and 3.5, and Figures 3.3, 3.4, and 

3.5), first with a vector length of 32 and no loop unrolling, second with a vector 

length of 64 and no loop unrolling, and third with a vector length of 64 and unrolling 

the loop three times (for a total of four passes through the loop).  The scenarios were 

run in each of the three lane sharing configurations and over the five instantiated lane 

conditions.  An additional set of runs was done using the RM configured as a 

combined Multiply/Add functional unit and the application was changed to take 

advantage of this where possible.  The results are compared for three scenarios, first 

with a vector length of 32 and no loop unrolling, the second with the same vector 

length and unrolling the loop three times and the third with a vector length of 128 and 

unrolling the loop three times.  All three scenarios were run on the three lane sharing 

configurations and the first two over the five instantiated lane conditions (see Tables 

A.1, A.2 and A.3, and Figures A.1, A.2 and A.3).  The third was run with four, eight, 

sixteen and thirty-two lanes due to the limit of available vector registers with two 

lanes. 
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Table 3.3 FIR 32, VL=32, No Loop Unroll 

 

  No. of Lanes   2     4     8     16     32   

FIR 32   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=32 CTS 1.00 37.90 19.82 1.39 26.39 13.80 1.74 16.34 8.44 1.98 9.37 4.75 2.13 5.03 2.55 

No Loop Unroll VLS 1.28 48.43 25.28 2.00 37.80 19.19 2.79 26.42 13.44 3.47 16.45 8.36 3.95 9.37 5.11 

  FTS 1.95 73.91 38.68 2.77 52.53 26.74 3.47 32.90 16.71 3.95 18.74 9.51 4.25 10.07 4.76 

 

 

 
 

Figure 3.3 FIR32, VL=32, no loop unroll. 
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Table 3.4 FIR 32, VL=64, No Loop Unroll 

 

  No. of Lanes   2     4     8     16     32   

FIR 32   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=64 CTS 1.28 49.35 25.86 2.00 37.87 19.80 2.79 26.42 13.42 3.47 16.44 4.75 3.96 9.37 4.76 

No Loop Unroll VLS 1.48 56.11 28.82 2.56 48.41 24.61 3.99 37.81 19.25 5.58 26.42 8.36 6.94 16.45 8.36 

  FTS 2.24 84.92 44.25 3.90 73.88 37.58 5.54 52.60 26.71 6.94 32.86 9.51 7.91 18.74 9.51 

 

 

 
 

Figure 3.4 FIR32, VL=64, no loop unroll. 
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Table 3.5 FIR 32, VL=64, Unroll 3 Times 

 

  No. of Lanes   2     4     8     16     32   

FIR 32   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=64 CTS 2.36 89.50 46.66 4.32 81.89 41.92 6.19 58.63 29.79 7.64 36.18 18.39 8.65 20.49 10.41 

Unroll 3 Times VLS 2.47 93.36 48.60 4.72 89.34 45.93 8.60 81.50 41.52 12.29 58.22 35.65 15.19 35.99 20.58 

  FTS 2.61 99.85 51.45 5.29 99.56 50.89 10.07 95.37 48.35 14.70 70.16 29.64 17.08 40.45 18.30 

 

 

 
 

Figure 3.5 FIR32, VL=64, unroll 3 times. 
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3.3 Matrix Multiplication (MM) 

The third application is matrix multiplication, which uses the same procedure as the 

FIR filtering.  The Single-precision real Alpha X plus Y (SAXPY) algorithm is run in 

a loop to obtain one row result for each pass. Two different scenarios were run and 

charted (see Tables 3.6 and 3.7, and Figures 3.6 and 3.7), first with a vector length of 

32 and unrolling the loop once, and second with a vector length of 64 and unrolling 

the loop once.  The scenarios were run in each of the three lane sharing configurations 

and over the five instantiated lane conditions.  An additional set of runs was done 

using the RM configured as a combined Multiply/Add functional unit and the 

application was changed to take advantage of this where possible.  The results are 

compared for two scenarios, first with a vector length of 32 and unrolling the loop 

one time and second with a vector length of 64 and unrolling the loop one time.  The 

scenarios were run for all three lane sharing configurations and over the five 

instantiated lane conditions (see Tables B.1 and B.2, and Figures B.1 and B.2). 
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Table 3.6 MM, VL=32, Unroll 1 Time 

 

  No. of Lanes   2     4     8     16     32   

MM   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=32 CTS 1.00 71.10 72.21 1.47 52.22 53.08 1.91 33.94 34.50 2.09 18.67 18.91 2.20 9.80 9.96 

Unroll 1 Time VLS 1.17 82.98 84.63 2.00 71.04 72.36 3.04 53.51 68.20 3.67 32.86 33.32 4.18 18.58 19.38 

  FTS 1.38 98.13 99.87 2.49 88.74 90.34 3.79 67.09 54.50 4.08 36.57 37.13 4.36 19.27 19.59 

 

 

 
 

Figure 3.6 MM, VL=32, unroll 1 time. 
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Table 3.7 MM, VL=64, Unroll 1 Time 

 

  No. of Lanes   2     4     8     16     32   

MM   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=64 CTS 1.16 82.59 84.29 1.96 69.18 70.25 2.83 70.13 68.96 3.48 30.95 31.53 3.94 17.61 17.91 

Unroll 1 Time VLS 1.28 90.72 92.14 2.32 82.47 84.08 3.96 71.68 70.31 5.66 50.04 50.88 6.96 31.16 31.68 

  FTS 1.38 98.35 100.00 2.75 97.73 99.51 4.95 89.46 87.98 6.84 61.03 61.98 7.84 34.97 35.52 

 

 

 
 

Figure 3.7 MM, VL=64, unroll 1 time.
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3.4 LU Decomposition (LU) 

The fourth application is LU decomposition, where the Lower and Upper diagonal 

matrices are generated from a dense 128x128 element matrix using the Doolittle 

algorithm [Golub and Van Loan 1996].  Two different scenarios were run and charted 

(see Tables 3.8 and 3.9, and Figures 3.8 and 3.9), first with a vector length of 64 and 

no loop unrolling, and second with a vector length of 32 and no loop unrolling.  The 

scenarios were run in each of the three lane sharing configurations and over the five 

instantiated lane conditions.  An additional set of runs was done using the RM 

configured for a Divide function, the application was changed to take advantage of 

this where possible, and these results are compared for two scenarios, first with a 

vector length of 64 and no loop unrolling and second with a vector length of 32 and 

no loop unrolling.  The scenarios were run for the CTS and FTS lane sharing 

configurations and over the four, eight, sixteen, and thirty-two lane cases (see Tables 

C.1 and C.2, and Figures C.1 and C.2).  The two lane case was not used because once 

the application was modified to use the Divide function too many vector registers 

were required.  The VLS lane sharing configuration was not run for the same reason. 
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Table 3.8 LU Decomposition, VL=64, No Loop Unroll 

 

  No. of Lanes   2     4     8     16     32   

LU Decomp   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=64 CTS 1.00 53.20 54.24 1.83 40.28 40.87 1.81 20.11 20.40 1.64 10.06 10.20 1.83 5.03 5.10 

No Unrolls VLS 1.33 59.02 60.49 2.40 53.24 54.71 3.67 39.62 41.05 3.67 19.86 20.50 3.67 9.97 10.25 

  FTS 1.75 90.19 93.38 3.58 79.71 82.41 3.62 39.93 41.35 3.62 20.00 20.63 3.62 10.00 10.32 

 

 

 
 

Figure 3.8 LU decomposition, VL=64, no loop unroll. 
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Table 3.9 LU Decomposition, VL=32, No Loop Unroll 

 

  No. of Lanes   2     4     8     16     32   

LU Decomp   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=32 CTS 1.29 39.84 41.31 1.83 19.90 20.61 1.81 9.58 10.33 1.72 4.98 5.15 1.83 2.49 2.58 

No Unrolls VLS 2.40 52.28 56.25 3.67 38.25 42.03 3.62 19.05 21.03 3.67 9.55 10.49 3.62 4.77 5.24 

  FTS 3.58 76.57 84.82 3.71 38.62 42.89 3.62 18.74 21.10 3.62 9.67 10.71 3.58 4.84 5.35 

 

 

 

 
 

Figure 3.9 LU decomposition, VL=32, no loop unroll.
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For each combination of lane sharing configuration and number of lanes in 

shown in the tables, three metrics are displayed.  The first is performance (Perf.), 

which is the ratio of the time needed to complete one computational element for a 

given application on the slowest case to the time needed to complete one 

computational element for that location in the table. As an example, in Table 3.1 the 

FTS configuration in the eight lane case performs 2.38 times faster than the CTS 

configuration in four lanes.  The second metric is ALU utilization (ALU Util.), which 

is a measure of the percentage of the total available capacity of the arithmetic/logic 

unit used by this application in this VP configuration.  A higher value means that the 

VP is taking advantage of data parallelism and has fewer gaps in the computation 

pipeline.  The third metric is Load/Store utilization (LD/ST Util.), which measures 

the percentage of the total load/store unit capacity used by this application.  As with 

the ALU utilization, a higher value means that the VP is taking advantage of 

parallelism in the application but it is instruction parallelism that is being indicated. 
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CHAPTER 4 

ANALYSIS OF RESULTS 

 

4.1 FFT Application Results 

All of the relative performance results shown in the charts are normalized with respect to 

the four-lane, one MicroBlaze, simple case.  This application could not be run on the two-

lane version of the design because it requires more than sixteen vector registers with 

thirty-two elements per lane which cannot be supported because the product of the 

number elements per lane and number of vector registers must  be less than or equal to 

the available memory locations in the VRF, which is 512.  As can be seen from Figures 

3.1 and 3.2, the performance grows as the number of lanes increases.  However, this 

growth is not linear due to limitations in keeping the execution pipelines of the vector 

lanes full. 

The performance for the Simple CTS case (the reference for normalization) grows 

by 73% when the number of lanes increases from four to thirty-two, but that requires an 

8x increase in computational resources.  The ALU utilization starts at 64.26% for the 

four-lane case and decreases to 13.88% for the thirty-two-lane case due to the lack of 

sufficient instruction and data parallelism in the single application.  The Load/Store 

utilization starts at 39.18% for the four-lane case and decreases to 7.24% for the thirty-

two-lane case for the same reason. 

The performance for the Simple VLS case starts out 23% better than the CTS 

case, and grows by 158% from the four-lane case to the thirty-two-lane version because 

of the improvement in resource utilization.  The ALU utilization starts at 72.30% for the 



29 
 

 

 

 

four-lane case and decreases to 24.93% for the thirty-two-lane case because the two 

microprocessors cannot keep the pipeline full as the number of available lanes increases.  

The Load/Store utilization starts at 43.07% for the four-lane case and decreases to 

11.11% for the thirty-two-lane case, which is not much better than the CTS case. 

The performance for the Simple FTS case starts out 41% better than the CTS 

case, and grows by 143% from the four-lane case to the thirty-two-lane case.  The ALU 

utilization starts at 88.67% for the four-lane case and decreases to 21.25% for the thirty-

two-lane case because even two microprocessors equally sharing the resources cannot 

achieve high utilization running this application.  The Load/Store utilization starts at 

53.54% for the four-lane case and decreases to 11.06% for the thirty-two-lane case. 

The performance for the Double CTS case starts out 26% better than the Simple 

CTS case, and grows by 57% when the number of lanes increases from four to thirty-two 

because of the increase in data parallelism over the Simple CTS case.  The ALU 

utilization starts at 81.52% for the four-lane case and decreases to 18.37% for the thirty-

two-lane case for the same reason as the Simple CTS case.  The Load/Store utilization 

starts at 49.07% for the four-lane case and decreases to 9.63% for the thirty-two-lane 

case, again somewhat better than the Simple CTS case but not a sufficient increase in 

parallelism to justify thirty-two-lanes for this application. 

The performance for the Double VLS case starts out 37% better than the Simple 

CTS case, and grows by 234% from the four-lane case to the thirty-two-lane version due 

to increased utilization from two processors.  The ALU utilization starts at 72.30% for the 

four-lane case and decreases to 24.93% for the thirty-two-lane case.  The Load/Store 
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utilization starts at 43.07% for the four-lane case and decreases to 11.11% for the thirty-

two-lane case.   

The performance for the Double FTS case starts out 41% better than the Simple 

CTS case, and grows by 217% from the four-lane case to the sixteen lane case.  There in 

an anomaly in that the performance improvement for the thirty-two-lane case actually 

decreases by 1.3% compared with that of the sixteen lane case.  This is caused by a large 

number of the instructions issued to the lane requiring two clock cycles (multiplying a 

vector quantity by a scalar value which is included as the second 32 bits of the 

instruction).  In this case the pipeline of the lane cannot hide the extra clock because each 

lane is processing only one element.  The ALU utilization starts at 94.09% for the four-

lane case and decreases to 25.34% for the thirty-two-lane case.  The Load/Store 

utilization starts at 57.03% for the four-lane case and decreases to 13.16% for the thirty-

two-lane case. 

The performance increase is best for the FTS sharing case for both the Simple and 

the Double applications, and the decreased utilization percentages for the higher lane 

cases indicates that more threads or applications from additional processors could be 

supported with little decrease in performance.  In addition, the performance increases 

more for the Double version, indicating that applications which more fully utilize the 

available resources because of improved data parallelism will show a larger payback in 

results. 
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4.2 FIR Filter Application Results 

All of the relative performance results shown for this application are normalized with 

respect to the two-lane, one MicroBlaze, vector length 32, no loop unrolling case.  As can 

be seen from Figures 3.3, 3.4 and 3.5, the performance improvement grows as the 

number of lanes increases.  As was the case for the FFT application, this improvement is 

not linear. 

The performance for the vector length 32 with no loop unrolling CTS case (the 

reference for normalization) grows by 113% when the number of lanes increases from 

two to thirty-two, but that requires a 16x increase in computational resources.  The ALU 

utilization starts at 37.90% for the two-lane case and decreases to 5.03% for the thirty-

two-lane case due to a lack of parallelism.  The Load/Store utilization starts at 19.82% for 

the two-lane case and decreases to 2.55% for the thirty-two-lane case for the same reason. 

The performance for the vector length 32 with no loop unrolling VLS case starts 

out 28% better than the CTS case, and grows by 209% from the two-lane case to the 

thirty-two-lane version due to an increase in data traffic from two separate 

microprocessors.  The ALU utilization starts at 48.43% for the two-lane case and 

decreases to 9.47% for the thirty-two-lane case due to no increase in data or instruction 

parallelism.  The Load/Store utilization starts at 25.28% for the two-lane case and 

decreases to 5.11% for the thirty-two-lane case. 

The performance for the vector length 32 with no loop unrolling FTS case starts 

out 95% better than the CTS case, and grows by 118% from the two-lane case to the 

thirty-two-lane case because the two microprocessors are sharing the available resources 

equally which improves the utilization.  The ALU utilization starts at 73.91% for the two-
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lane case and decreases to 10.07% for the thirty-two-lane case which is better than the 

CTS case but still shows improvements in the application are possible.  The Load/Store 

utilization starts at 38.68% for the two-lane case and decreases to 4.76% for the thirty-

two-lane case.  

The performance for the vector length 64 with no loop unrolling CTS case starts 

out 28% better than the vector length 32 with no loop unrolling CTS case, and grows by 

209% when the number of lanes increases from two to thirty-two due to the increased 

data parallelism from the doubling of the vector length.  The ALU utilization starts at 

49.35% for the two-lane case and decreases to 9.37% for the thirty-two-lane case.  The 

Load/Store utilization starts at 25.86% for the two-lane case and decreases to 4.76% for 

the thirty-two-lane case. 

The performance for the vector length 64 with no loop unrolling VLS case starts 

out 48% better than the vector length 32 with no loop unrolling CTS case, and grows by 

369% from the two-lane case to the thirty-two-lane version because of the combination of 

improved parallelism and dividing the lanes between two microprocessors.  The ALU 

utilization starts at 56.11% for the two-lane case and decreases to 16.45% for the thirty-

two-lane case.  The Load/Store utilization starts at 28.82% for the two-lane case and 

decreases to 8.36% for the thirty-two-lane case. 

The performance for the vector length 64 with no loop unrolling FTS case starts 

out 124% better than the vector length 32 with no loop unrolling CTS case, and grows by 

253% from the two-lane case to the thirty-two-lane case, again because of increased 

parallelism and because of the sharing configuration.  The ALU utilization starts at 

84.92% for the two-lane case and decreases to 18.74% for the thirty-two-lane case.  The 
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Load/Store utilization starts at 44.25% for the two-lane case and decreases to 9.51% for 

the thirty-two-lane case. 

The performance for the vector length 64 with three times loop unrolling CTS 

case starts out 136% better than the vector length 32 with no loop unrolling CTS case, 

and grows by 267% when the number of lanes increases from two to thirty-two because 

now instruction parallelism has been increased by unrolling the loop.  The ALU 

utilization starts at 89.50% for the two-lane case and decreases to 20.49% for the thirty-

two-lane case.  The Load/Store utilization starts at 46.66% for the two-lane case and 

decreases to 10.41% for the thirty-two-lane case. 

The performance for the vector length 64 with three times loop unrolling VLS 

case starts out 147% better than the vector length 32 with no loop unrolling CTS case, 

and grows by 515% from the two-lane case to the thirty-two-lane version, again because 

of improved parallelism and dividing the lanes between two processors.  The ALU 

utilization starts at 93.36% for the two-lane case and decreases to 35.99% for the thirty-

two-lane case.  The Load/Store utilization starts at 48.60% for the two-lane case and 

decreases to 20.58% for the thirty-two-lane case. 

The performance for the vector length 64 with three times loop unrolling FTS 

case starts out 161% better than the vector length 32 with no loop unrolling CTS case, 

and grows by 554% from the two-lane case to the thirty-two-lane case due to data and 

instruction parallelism and improved sharing of resources between the two 

microprocessors.  The ALU utilization starts at 99.85% for the two-lane case and 

decreases to 40.45% for the thirty-two-lane case which shows that it is possible to keep 

the pipeline nearly completely full on the ALU side.  The Load/Store utilization starts at 
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51.45% for the two-lane case and decreases to 18.30% for the thirty-two-lane case in part 

because this application has about one half the Load/Store utilization compared with the 

ALU utilization for each case. 

As with the FFT application above, the performance increase is best for the FTS 

sharing case for all three applications, and the decreased utilization percentages for the 

higher lane cases indicates that more threads or applications from additional processors 

could be supported with little decrease in performance.  In addition, performance 

increases significantly for the vector length 64 version, and even more for the three times 

loop unrolling version, indicating that designing applications to exhibit more parallelism 

results in large performance gains. 

 

4.3 FIR Filter MADD Results 

The normalization of performance results for this section match that of the FIR Filter.  

The addition of the combined Multiply/Add function does result in significant 

performance increases, as can be seen in Figures 3.6, 3.7 and 3.8.   

The performance for the vector length 32 with no loop unrolling CTS MADD 

case starts out 46% better than the vector length 32 with no loop unrolling CTS case, and 

grows by 203% from the two-lane case to the thirty-two-lane case because the 

replacement of two separate instructions (one multiply and one add/subtract) with one 

instruction balances the utilization between the ALU and the Load/Store units.  The 

relative increase in performance for each lane configuration remains almost the same as 

well, decreasing from 46% for the two-lane case to 42% for the thirty-two-lane case.  The 

ALU utilization starts at 28.11% for the two-lane case and decreases to 3.64% for the 



35 
 

 

 

 

thirty-two-lane case.  The Load/Store utilization starts at 28.08% for the two-lane case 

and decreases to 3.64% for the thirty-two-lane case. 

The performance for the vector length 32 with no loop unrolling VLS MADD 

case starts out 87% better than the vector length 32 with no loop unrolling CTS case, and 

grows by 202% from the two-lane case to the thirty-two-lane case.  The relative increase 

in performance for each lane configuration remains almost the same as well, decreasing 

from 46% for the two-lane case to 43% for the thirty-two-lane case when compared with 

the vector length 32 with no loop unrolling VLS case.  The ALU utilization starts at 

35.97% for the two-lane case and decreases to 6.79% for the thirty-two-lane case.  The 

Load/Store utilization starts at 36.13% for the two-lane case and decreases to 6.79% for 

the thirty-two-lane case. 

The performance for the vector length 32 with no loop unrolling FTS MADD case 

starts out 191% better than the vector length 32 with no loop unrolling CTS case, and 

grows by 108% from the two-lane case to the thirty-two-lane case.  The relative increase 

in performance for each lane configuration remains almost the same as well, decreasing 

from 49% for the two-lane case to 43% for the thirty-two-lane case when compared with 

the vector length 32 with no loop unrolling FTS case.  The ALU utilization starts at 

55.98% for the two-lane case and decreases to 7.28% for the thirty-two-lane case.  The 

Load/Store utilization starts at 55.92% for the two-lane case and decreases to 7.28% for 

the thirty-two-lane case. 

In all three cases, the change in the application to take advantage of the additional 

MADD function decreases the ALU utilization relative to the case without the MADD 
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function and increases the Load/Store utilization until both percentages are approximately 

equal. 

The performance for the vector length 32 with three times loop unrolling CTS 

MADD case starts out 270% better than the vector length 32 with no loop unrolling CTS 

case, and grows by 74% from the two-lane case to the thirty-two-lane case because of the 

increased instruction parallelism arising from loop unrolling.  The relative increase in 

performance for each lane configuration does not remain the same, decreasing from 71% 

for the two-lane case to 39% for the thirty-two-lane case when compared with the vector 

length 32 with three times loop unrolling CTS case because the boost from the added 

instruction combined with the boost from loop unrolling becomes less effective as the 

number of lanes increases.  This is shown by the large decreases in utilization for both the 

ALU and the Load/Store units.  The ALU utilization starts at 83.82% for the two-lane 

case and decreases to 9.13% for the thirty-two-lane case.  The Load/Store utilization 

starts at 71.19% for the two-lane case and decreases to 7.74% for the thirty-two-lane 

case. 

The performance for the vector length 32 with three times loop unrolling VLS 

MADD case starts out 311% better than the vector length 32 with no loop unrolling CTS 

case, and grows by 213% from the two-lane case to the sixteen lane case.  The 

performance remains constant for sixteen and thirty-two-lanes.  The relative increase in 

performance for each lane configuration does not remain the same, decreasing from 74% 

for the two-lane case to 49% for the thirty-two-lane case when compared with the vector 

length 32 with three times loop unrolling VLS case.  The ALU utilization starts at 

92.86% for the two-lane case and decreases to 18.26% for the thirty-two-lane case.  The 
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Load/Store utilization starts at 78.79% for the two-lane case and decreases to 15.47% for 

the thirty-two-lane case. 

The performance for the vector length 32 with three times loop unrolling FTS 

MADD case starts out 321% better than the vector length 32 with no loop unrolling CTS 

case, and grows by 205% from the two-lane case to the eight lane case.  The performance 

remains flat from eight to thirty-two-lanes.  The relative increase in performance for each 

lane configuration does not remain the same, increasing from 60% for the two-lane case 

to 73% for the eight lane case and then decreasing to 39% for the thirty-two-lane case 

when compared with the vector length 32 with three times loop unrolling VLS case.  The 

ALU utilization starts at 97.76% for the two-lane case and decreases to 18.26% for the 

thirty-two-lane case.  The Load/Store utilization starts at 83.24% for the two-lane case 

and decreases to 15.46% for the thirty-two-lane case. 

In all three cases, the change in the application to take advantage of the additional 

MADD function increases the ALU utilization relative to the case without the MADD 

function and increases the Load/Store utilization but both percentages remain unequal.  

This is the explanation for the tailing off of the performance increases as the number of 

lanes is increased. 

The performance for the vector length 128 with three times loop unrolling CTS 

MADD case starts out 723% better than the vector length 32 with no loop unrolling CTS 

case, and grows by 213% from the four-lane case to the thirty-two-lane case due to the 

combination of increased data and instruction parallelism.  The relative increase in 

performance for each lane configuration does not remain the same, increasing from 74% 

for the four-lane case to 90% for the sixteen lane case and then decreasing to 68% for the 
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thirty-two-lane case when compared with the vector length 128 with three times loop 

unrolling CTS case.  The ALU utilization starts at 93.52% for the four-lane case and 

decreases to 36.48% for the thirty-two-lane case.  The Load/Store utilization starts at 

79.42% for the four-lane case and decreases to 31.58% for the thirty-two-lane case.  

These are still relatively high utilization numbers even for the thirty-two-lane case, 

indicating the increased performance from improved parallelism in the application. 

The performance for the vector length 128 with three times loop unrolling VLS 

MADD case starts out 759% better than the vector length 32 with no loop unrolling CTS 

case, and grows by 420% from the four-lane case to the thirty-two-lane case.  The 

relative increase in performance for each lane configuration does not remain the same, 

decreasing from 74% for the four-lane case to 62% for the sixteen lane case and then 

increasing to 82% for the thirty-two-lane case when compared with the vector length 128 

with three times loop unrolling VLS case.  The ALU utilization starts at 97.42% for the 

four-lane case and decreases to 64.69% for the thirty-two-lane case.  The Load/Store 

utilization starts at 82.84% for the four-lane case and decreases to 55.21% for the thirty-

two-lane case.  These are high utilization numbers up through the thirty-two-lane case 

which explains the large performance increases. 

The performance for the vector length 128 with three times loop unrolling FTS 

MADD case starts out 791% better than the vector length 32 with no loop unrolling CTS 

case, and grows by 477% from the two-lane case to the thirty-two-lane case.  The relative 

increase in performance for each lane configuration does not remain the same, decreasing 

from 71% for the four-lane case to 59% for the eight lane case and increasing to 75% for 

the thirty-two-lane case when compared with the vector length 128 with three times loop 
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unrolling VLS case.  The ALU utilization starts at 98.85% for the four-lane case and 

decreases to 60.83% for the thirty-two-lane case.  The Load/Store utilization starts at 

83.61% for the four-lane case and decreases to 51.53% for the thirty-two-lane case. 

In all three cases, the change in the application to take advantage of the additional 

MADD function increases the ALU utilization relative to the case without the MADD 

function and increases the Load/Store utilization but both percentages remain unequal.  

This is the explanation for the tailing off of the performance increases as the number of 

lanes is increased. 

 

4.4 MM Application Results 

All of the relative performance results shown in the charts are normalized with respect to 

the two-lane, one MicroBlaze, vector length 32, unroll the loop one time case.  As can be 

seen from Figures 3.9 and 3.10, the performance grows as the number of lanes increases.  

However, this growth is not linear due to limitations in keeping the execution pipelines of 

the vector lanes full. 

The performance for the vector length 32 one time unroll CTS case (the reference 

for normalization) grows by 120% when the number of lanes increases from two to 

thirty-two.  The ALU utilization starts at 71.10% for the two-lane case and decreases to 

9.80% for the thirty-two-lane case.  The Load/Store utilization starts at 72.21% for the 

two-lane case and decreases to 9.96% for the thirty-two-lane case. 

The performance for the vector length 32 one time unroll VLS case starts out 17% 

better than the CTS case, and grows by 257% from the two-lane case to the thirty-two-

lane version.  The ALU utilization starts at 82.98% for the two-lane case and decreases to 
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18.58% for the thirty-two-lane case.  The Load/Store utilization starts at 84.63% for the 

two-lane case and decreases to 19.38% for the thirty-two-lane case. 

The performance for the vector length 32 one time unroll FTS case starts out 38% 

better than the CTS case, and grows by 216% from the two-lane case to the thirty-two-

lane case.  The ALU utilization starts at 98.13% for the two-lane case and decreases to 

19.27% for the thirty-two-lane case.  The Load/Store utilization starts at 99.87% for the 

two-lane case and decreases to 19.59% for the thirty-two-lane case. 

The performance for the vector length 64 one time unroll CTS case starts out 16% 

better than the vector length 32 one time unroll CTS case, and grows by 240% when the 

number of lanes increases from two to thirty-two.  The ALU utilization starts at 82.59% 

for the two-lane case and decreases to 17.61% for the thirty-two-lane case.  The 

Load/Store utilization starts at 84.29% for the two-lane case and decreases to 17.91% for 

the thirty-two-lane case. 

The performance for the vector length 64 one time unroll VLS case starts out 28% 

better than the vector length 32 one time unroll CTS case, and grows by 444% from the 

two-lane case to the thirty-two-lane version.  The ALU utilization starts at 90.72% for the 

two-lane case and decreases to 31.16% for the thirty-two-lane case.  The Load/Store 

utilization starts at 92.14% for the two-lane case and decreases to 31.68% for the thirty-

two-lane case. 

The performance for the vector length 64 one time unroll FTS case starts out 38% 

better than the vector length 32 one time unroll CTS case, and grows by 468% from the 

two-lane case to the thirty-two-lane case.  The ALU utilization starts at 98.35% for the 

four-lane case and decreases to 34.97% for the thirty-two-lane case.  The Load/Store 
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utilization starts at 100.00% for the four-lane case and decreases to 35.52% for the thirty-

two-lane case. 

The performance increase is best for the FTS sharing case for both vector lengths, 

and the decreased utilization percentages for the higher lane cases indicates that more 

threads or applications from additional processors could be supported with little decrease 

in performance.  In addition, the performance increases more for the version with the 

larger vector length due to increased data parallelism.  The Load/Store utilization is 

slightly higher than the ALU utilization, indicating that this application relies more 

heavily on the Load/Store unit than on the ALU. 

 

4.5 MM MADD Results 

The normalization of performance results for this section match that of the Matrix 

Multiplication application.  As can be seen from Figures 3.11 and 3.12, the performance 

grows as the number of lanes increases.  However, the addition of the MADD unit does 

not provide as significant performance gains as it did in the case of the FIR application. 

The performance for the vector length 32 one time unroll CTS MADD case starts 

out 3% worse than the CTS case, and grows by 164% when the number of lanes increases 

from two to thirty-two.  This is due to the decreased ALU utilization (almost by a half) 

when compared with the CTS case.  The ALU utilization starts at 34.45% for the two-

lane case and decreases to 5.73% for the thirty-two-lane case.  The Load/Store utilization 

starts at 69.93% for the two-lane case and decreases to 11.65% for the thirty-two-lane 

case, which is almost the same as the utilization for the CTS case (slightly lower for two-

lanes and higher by 2% for thirty-two-lanes). 
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The performance for the vector length 32 one time unroll VLS MADD case starts 

out 15% better than the CTS case, and grows by 322% from the two-lane case to the 

thirty-two-lane version, again starting slightly worse for two-lanes versus the VLS case 

and improving up through the thirty-two-lane case.  The ALU utilization starts at 40.79% 

for the two-lane case and decreases to 10.79% for the thirty-two-lane case.  The 

Load/Store utilization starts at 82.97% for the two-lane case and decreases to 21.94% for 

the thirty-two-lane case. 

The performance for the vector length 32 one time unroll FTS MADD case starts 

out 38% better than the CTS case, and grows by 266% from the two-lane case to the 

thirty-two-lane case, showing no performance change for two-lanes compared with the 

FTS case and improving up through the thirty-two-lane case.  The ALU utilization starts 

at 49.00% for the two-lane case and decreases to 11.17% for the thirty-two-lane case.  

The Load/Store utilization starts at 99.85% for the two-lane case and decreases to 22.70% 

for the thirty-two-lane case. 

The performance for the vector length 64 one time unroll CTS MADD case starts 

out 14% better than the vector length 32 one time unroll CTS case, and grows by 302% 

when the number of lanes increases from two to thirty-two.  This is worse performance 

by 2% at two-lanes compared with the vector length 64 one time unroll CTS case, but 

shows improvement over the thirty-two-lane case.  The ALU utilization starts at 40.76% 

for the two-lane case and decreases to 10.24% for the thirty-two-lane case.  The 

Load/Store utilization starts at 82.75% for the two-lane case and decreases to 20.78% for 

the thirty-two-lane case. 
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The performance for the vector length 64 one time unroll VLS MADD case starts 

out 26% better than the vector length 32 one time unroll CTS case, and grows by 501% 

from the two-lane case to the thirty-two-lane version, again showing a slight (2%) 

decrease in performance relative to the same configuration without the MADD at two-

lanes but ultimately showing an increase in performance at thirty-two-lanes.  The ALU 

utilization starts at 44.71% for the two-lane case and decreases to 16.76% for the thirty-

two-lane case.  The Load/Store utilization starts at 91.41% for the two-lane case and 

decreases to 34.05% for the thirty-two-lane case. 

The performance for the vector length 64 one time unroll FTS MADD case starts 

out 39% better than the vector length 32 one time unroll CTS case, and grows by 556% 

from the two-lane case to the thirty-two-lane case.  This time, the two-lane case starts 

with a slight (1%) increase when compared with the vector length 64 one time unroll FTS 

application and shows improved performance through thirty-two-lanes.  The ALU 

utilization starts at 49.08% for the four-lane case and decreases to 19.89% for the thirty-

two-lane case.  The Load/Store utilization starts at 100.00% for the four-lane case and 

decreases to 40.50% for the thirty-two-lane case. 

In both cases, the change in the application to take advantage of the additional 

MADD function decreases the ALU utilization relative to the case without the MADD 

function by about half and increases the Load/Store utilization slightly.  This makes the 

two percentages unequal. 
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4.6 LU Decomposition Application Results 

All of the relative performance results shown for this application are normalized with 

respect to the two-lane, one MicroBlaze, vector length 64 case.  As can be seen from 

Figures 3.13 and 3.14, the performance improvement grows as the number of lanes 

increases up to the four-lane version for most cases (eight lanes for the vector length 64 

VLS case).  This is because the limiting factor in this application is the number of 

floating point divides required for each pass through the processing loop.  These divisions 

are done by the MicroBlaze rather than by the lane and take either 28 or 30 clock cycles 

to complete, depending on the optimization used during synthesis of the microprocessor. 

The performance for the vector length 64 no unroll CTS case grows by 83% when 

the number of lanes increases from two to four and is basically constant up to thirty-two-

lanes.  The ALU utilization starts at 53.20% for the two-lane case and decreases to 5.03% 

for the thirty-two-lane case.  The Load/Store utilization starts at 54.24% for the two-lane 

case and decreases to 5.10% for the thirty-two-lane case. 

The performance for the vector length 64 no unroll VLS case starts out 33% better 

than the CTS case, grows by 176% from the two-lane case to the eight lane version and is 

constant from then on.  The ALU utilization starts at 59.02% for the two-lane case and 

decreases to 9.97% for the thirty-two-lane case.  The Load/Store utilization starts at 

60.49% for the two-lane case and decreases to 10.25% for the thirty-two-lane case. 

The performance for the vector length 64 no unroll FTS case starts out 75% better 

than the CTS case, and grows by 107% from the two-lane case to the four-lane case and 

is constant from then on.  The ALU utilization starts at 90.19% for the two-lane case and 
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decreases to 10.00% for the thirty-two-lane case.  The Load/Store utilization starts at 

93.38% for the two-lane case and decreases to 10.32% for the thirty-two-lane case. 

The performance for the vector length 32 no unroll CTS case starts out 29% better 

than the vector length 64 no unroll CTS case, grows by 42% when the number of lanes 

increases from two to four, and remains basically constant from then on.  The ALU 

utilization starts at 39.84% for the two-lane case and decreases to 2.49% for the thirty-

two-lane case.  The Load/Store utilization starts at 41.31% for the two-lane case and 

decreases to 2.58% for the thirty-two-lane case. 

The performance for the vector length 32 no unroll VLS case starts out 140% 

better than the vector length 64 no unroll CTS case, and grows by 53% from the two-lane 

case to the four-lane version with no increase from then on.  The ALU utilization starts at 

52.28% for the two-lane case and decreases to 4.77% for the thirty-two-lane case.  The 

Load/Store utilization starts at 56.25% for the two-lane case and decreases to 5.24% for 

the thirty-two-lane case. 

The performance for the vector length 32 no unroll FTS case starts out 258% 

better than the vector length 64 no unroll CTS case, and grows by 4% from the two-lane 

case to the four-lane case with no additional increase beyond that.  The ALU utilization 

starts at 76.57% for the four-lane case and decreases to 4.84% for the thirty-two-lane 

case.  The Load/Store utilization starts at 84.82% for the four-lane case and decreases to 

5.35% for the thirty-two-lane case.   
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4.7 LU Decomposition DIV Results 

The normalization of performance results for this section match that of the LU 

Decomposition. As can be seen from Figures 3.15 and 3.16, the performance 

improvement grows as the number of lanes increases in a similar curve to the rest of the 

applications described above.  This is because the floating point divide functions have 

been removed from the MicroBlaze and are performed in the lane.  However, there are a 

limited number of these divides so the performance increase in the VP is not large.  

Overall application performance increases significantly because of removing the 

MicroBlaze bottleneck from the application, replacing an un-pipelined 28 or 30 clock 

latency divide function with a pipelined 6 clock latency function in the lane, but that 

performance is not measured in this thesis.  The two-lane cases for the two sharing 

configurations (CTS and FTS) and all the lane cases for the VLS configuration could not 

be run due to an architectural limitation related to the number of available vector 

registers, similar to the issue with the FFT application, above. 

The performance for the four-lane vector length 64 no unroll CTS DIV case starts 

out 86% better than the two-lane vector length 64 no unroll CTS case and grows by 60% 

when the number of lanes increases from four to thirty-two.  The ALU utilization starts at 

42.96% for the four-lane case and decreases to 10.27% for the thirty-two-lane case.  The 

Load/Store utilization starts at 44.21% for the four-lane case and decreases to 10.49% for 

the thirty-two-lane case. 

The performance for the four-lane vector length 64 no unroll FTS DIV case starts 

out 225% better than the two-lane CTS case and grows by 76% from the four-lane case to 

the thirty-two-lane case.  This is lower performance for the four-lane case than the FTS 
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configuration without DIV, but improvement occurs at the eight lane case and continues 

through the thirty-two-lane case.  The ALU utilization starts at 72.68% for the four-lane 

case and decreases to 19.61% for the thirty-two-lane case.  The Load/Store utilization 

starts at 75.23% for the four-lane case and decreases to 20.09% for the thirty-two-lane 

case. 

The performance for the four-lane vector length 32 no unroll CTS DIV case starts 

out 134% better than the two-lane vector length 64 no unroll CTS case and grows by 30% 

when the number of lanes increases from four to thirty-two.  The ALU utilization starts at 

25.74% for the two-lane case and decreases to 4.47% for the thirty-two-lane case.  The 

Load/Store utilization starts at 27.80% for the two-lane case and decreases to 4.86% for 

the thirty-two-lane case. 

The performance for the four-lane vector length 32 no unroll FTS DIV case starts 

out 409% better than the two-lane vector length 64 no unroll CTS case and grows by 46% 

from the four-lane case to the thirty-two-lane case.  The ALU utilization starts at 51.28% 

for the four-lane case and decreases to 9.89% for the thirty-two-lane case.  The 

Load/Store utilization starts at 54.79% for the four-lane case and decreases to 10.61% for 

the thirty-two-lane case. 

In all four cases with the DIV function, the utilization percentages for both the 

ALU and Load/Store units are approximately equal and are from 33% (for four-lanes) to 

104% (for thirty-two-lanes) higher than the equivalent run without the DIV function.  

This is the explanation for the performance improvements. 
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4.8 FPGA Resource Utilization 

The Xilinx synthesis tool was run on ten of the configurations (see Table 4.1 below): 

once for each number of lanes without the addition of the RM and once for each number 

of lanes with the RM included and configured for the MADD function.  The DIV 

function is slightly smaller (approximately 100 slice registers fewer than the 980 required 

for the MADD function) so it did not make sense to run this configuration through the 

tool.  As can be seen from the table, the amount of resources used increased nearly 

linearly, approximately doubling for each increase in the number of lanes.  The growth 

varies from a low of 72.6% between the two and four-lane cases without RM to 119.5% 

between the sixteen and thirty-two-lane cases without RM.  The number of BRAMs does 

not increase the same way for the two and four-lane cases because the minimum number 

of RAMs in the VM is eight.  The numbers in the table do not include the resources 

required for the MicroBlaze processors or the associated program memory and related 

logic. 
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Table 4.1 FPGA Synthesis Results 

Logic Utilization 
in XC5VLX110T 

2-Lane 
w/ 

MADD 

2-Lane 4-Lane 
w/ 

MADD 

4-Lane 8-Lane 
w/ 

MADD 

8-Lane 16-Lane 
w/ 

MADD 

16-Lane 32-Lane 
w/ 

MADD 

32-Lane Available 
Resources 

Number of Slice 
Registers 10495 8575 18703 14798 35101 27308 66306 50607 142248 111112 69120 

Number of Slice 
LUTs 8391 5911 15099 10164 28891 19058 60690 41030 151899 112603 69120 

Number of fully 
used LUT-FF pairs 4548 3290 8121 5516 15577 10456 28979 18411 67258 46489 11196 

Number of 
bonded IOBs 230 230 230 230 230 230 231 231 232 232 680 

Number of Block 
RAM/FIFO 18 18 20 20 24 24 48 48 96 96 148 

Number of 
BUFG/BUFGCTRLs 3 3 3 3 3 3 3 3 3 3 32 

Number of 
DCM_ADVs 1 1 1 1 1 1 1 1 1 1 12 

Number of 
DSP48Es 6 6 12 12 24 24 48 48 96 96 64 

 Frequency             
(in MHz) 225.2 229.4 228.8 228.4 220.4 220.4 175.4 174.8 145.1 145.1   

4
9
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4.9 FPGA Power Consumption 

The dynamic power consumption of each lane configuration is estimated based on a 

formula generated empirically by Spiridon Beldianu and discussed in a forthcoming 

paper.  The formula, shown below, calculates the dynamic power dissipated during the 

active operation of the lanes and is based on the utilization of both the arithmetic/logic 

unit and the load/store unit.  In addition, the formula includes a factor for the vector 

memory and crossbar units.  From this power value, the dynamic energy use for each 

computational element can be calculated by multiplying the power by the time to 

complete one element. 

 

P
d

TOTAL   M [(KALU + KVRF/2)UALU + (KLDST + KVRF/2)ULDST] + KMC_VM · ULDST      (1) 

Where: 

 P
d

TOTAL is the total dynamic power 

 M is the number of lanes 

KALU is a constant for the ALU equal to 0.3723 mW/%, 0.4739mW/% for MADD 

and DIV cases 

 KLDST is a constant for the LD/ST equal to 0.0967 mW/% 

 KVRF is a constant for the VRF equal to 0.2818 mW/% 

KMC_VM is a constant for the MC/VM equal to 1.5197 mW/% (2, 4 and 8 lanes), 

3.0394 mW/% (16 lanes), and 6.0788 mW/% (32 lanes) 

 UALU is the percent utilization of the ALU for a particular scenario 

 ULDST is the percent utilization of the LD/ST for a particular scenario 
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 As can be seen in Table 4.2 the dynamic power increases as the number of lanes 

increases and as the sharing configuration changes from CTS to VLS and to FTS.  More 

interesting is the dynamic energy required for computation of one element for the FIR 32 

application.  For a constant number of lanes, the dynamic energy per element is 

approximately constant for the same lane architecture (without or with RM).  It decreases 

by about 19% from two to four-lanes and about 13% from four to eight lanes.  In this 

application, the dynamic energy decreases significantly for the RM architecture when 

compared with the case without the RM.  The decrease is approximately 25% for two-

lanes, 31% for four-lanes, and 35% for eight, sixteen and thirty-two-lanes.  Also 

interesting to note is that the dynamic energy per element stops decreasing as the number 

of lanes increases beyond eight.  This is due to the application reaching the maximum 

possible level of parallelism, so an increased number of available lanes does not improve 

the energy used. 

 In Table 4.3 the dynamic power and energy usage is compared for the MM 

scenarios.  The energy per computational element values are much larger than those for 

the FIR scenarios because one element for MM is the calculation of an entire row, rather 

than the calculation of a single filter value for FIR.  The power increases as the number of 

lanes increases and as the sharing configuration changes.  As with the FIR scenarios, the 

dynamic energy values are basically constant for a set number of lanes.  It decreases by 

approximately 26% from two to four-lanes and about 17% from four to eight lanes.  

Again, the RM architecture provides a significant improvement in dynamic energy usage, 

from about 17% for two-lanes to about 22% for four-lanes and about 27% for eight, 

sixteen and thirty-two-lanes. 
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 Table 4.4 shows the comparison of power and energy usage for the LU 

Decomposition scenarios.  Of most interest is the increase of dynamic energy required 

per computational element for the RM architecture over the version without the 

additional module.  This is due to moving the divide function from the MicroBlaze to the 

lanes, which increases the total amount of work done by the lanes.  In this case, a fair 

comparison of efficiency would have to include the power and energy used by the 

microprocessor to carry out the floating point divide functions.   
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Table 4.2 FIR Filter Dynamic Power Results 

  No. of Lanes 2 4 8 16 32 

    

Power 
(in 

mW) 
Energy 
(in nJ) 

Power 
(in 

mW) 
Energy 
(in nJ) 

Power 
(in 

mW) 
Energy 
(in nJ) 

Power 
(in 

mW) 
Energy 
(in nJ) 

Power 
(in 

mW) 
Energy 
(in nJ) 

  CTS 78.4 53.8 88.2 43.5 96.0 38.0 109.4 38.0 117.6 37.9 

FIR 32 CTS - MADD 90.6 42.6 95.6 32.6 99.9 27.5 113.2 27.5 121.3 27.5 

VL=32 VLS 100.1 53.8 125.0 43.0 154.3 38.0 192.2 38.0 218.9 38.0 

No Unroll VLS - MADD 116.3 42.7 138.6 32.6 161.7 27.5 199.9 27.5 226.5 27.5 

  FTS 153.0 53.8 173.8 43.1 192.1 38.0 218.8 38.0 235.2 38.0 

  FTS - MADD 180.3 42.5 190.2 32.5 199.6 27.5 226.1 27.5 242.7 27.5 

  CTS 169.6 53.9 196.2 43.5 211.2 38.0 239.3 38.0 256.1 38.0 

FIR 32 CTS - MADD 245.1 45.5 299.9 35.5 285.6 30.5 285.5 30.5 285.4 30.5 

VL=32 VLS 185.0 53.8 274.1 42.8 342.6 38.0 422.8 38.3 478.9 38.0 

Unroll 3 Times VLS - MADD 271.3 45.3 385.7 35.5 513.8 31.2 571.8 30.5 570.8 30.5 

  FTS 203.3 53.0 324.5 44.0 410.3 37.9 478.3 38.0 512.0 38.0 

  FTS - MADD 286.4 46.8 426.8 35.6 570.5 30.4 570.8 30.5 570.6 30.5 

  CTS     297.0 43.2 478.3 38.0 685.1 38.0 845.6 38.0 

FIR 32 CTS - MADD     426.0 35.5 664.0 30.5 1050.8 30.5 1142.6 30.5 

VL=128 VLS     312.3 43.3 521.9 38.0 953.2 38.0 1367.1 38.3 

Unroll 3 Times VLS - MADD     444.1 35.5 713.7 30.5 1248.6 30.7 2027.3 31.2 

  FTS     331.9 43.6 582.9 37.8 1112.9 37.9 1639.1 38.3 

  FTS - MADD     449.5 34.6 766.4 31.3 1377.7 28.8 1901.0 25.4 
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Table 4.3 MM Dynamic Power Results 

  No. of Lanes 2 4 8 16 32 

    

Power 
(in 

mW) 
Energy 
(in nJ) 

Power 
(in 

mW) 
Energy 
(in nJ) 

Power 
(in 

mW) 
Energy 
(in nJ) 

Power 
(in 

mW) 
Energy 
(in nJ) 

Power 
(in mW) 

Energy 
(in nJ) 

  CTS 217.0 2503.2 238.2 1864.3 257.6 1552.1 282.1 1554.0 297.0 1560.1 

MM CTS - MADD 181.8 2160.3 196.6 1529.9 212.3 1219.3 257.8 1218.6 272.1 1224.0 

VL=32 VLS 253.9 2508.2 324.4 1871.9 406.4 1540.9 497.5 1564.2 570.0 1571.8 

Unroll 1 Time VLS - MADD 215.6 2166.0 257.2 1531.3 308.6 1216.3 420.2 1216.2 512.3 1219.5 

  FTS 299.9 2507.0 405.2 1878.9 509.3 1552.3 554.1 1567.1 584.3 1547.4 

  FTS - MADD 259.4 2167.5 359.9 1542.3 420.8 1212.0 514.3 1232.6 530.1 1211.1 

  CTS 252.8 2516.1 315.4 1859.5 380.1 1544.0 469.6 1556.3 534.0 1563.7 

MM CTS - MADD 214.1 2161.8 252.3 1526.2 300.8 1211.5 401.9 1212.8 485.6 1224.0 

VL=64 VLS 276.9 2502.0 376.8 1875.0 534.5 1558.6 758.7 1546.9 944.7 1564.9 

Unroll 1 Time VLS - MADD 237.3 2165.7 303.6 1532.7 401.9 1226.4 592.7 1211.0 795.2 1211.3 

  FTS 300.9 2508.4 446.3 1872.7 667.9 1553.9 924.7 1558.0 1059.7 1558.3 

  FTS - MADD 260.5 2169.9 365.6 1532.6 551.1 1217.4 798.3 12109.1 945.1 1196.1 

5
4
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Table 4.4 LU Decomposition Dynamic Power Results 

 

  No. of Lanes 4 8 16 32 

    
Power (in 

mW) 
Energy 
(in nJ) 

Power (in 
mW) 

Energy 
(in nJ) 

Power (in 
mW) 

Energy 
(in nJ) 

Power (in 
mW) 

Energy 
(in nJ) 

  CTS 183.6 114.5 152.3 96.3 152.3 106.0 152.3 95.1 

LU Decomp CTS - DIV 214.8 132.3 262.5 128.1 311.2 131.9 345.4 135.4 

VL=64 VLS 244.3 116.3 303.5 94.7 303.2 94.6 303.8 94.8 

No Unrolls FTS 367.1 117.5 305.2 96.4 305.2 96.5 305.2 96.4 

  FTS - DIV 364.5 128.3 499.4 123.9 597.9 126.8 660.4 132.1 

  CTS 91.7 57.2 75.8 47.9 76.1 50.5 76.1 47.5 

LU Decomp CTS - DIV 131.9 64.4 134.4 57.0 153.6 60.2 154.4 58.0 

VL=32 VLS 182.3 56.9 150.1 47.4 150.1 46.8 150.1 47.4 

No Unrolls FTS 185.2 57.0 149.1 47.1 152.6 48.2 152.5 48.8 

  FTS - DIV 261.4 73.2 261.7 55.5 305.5 61.1 339.6 65.2 

 

5
5
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CHAPTER 5 

CONCLUSIONS 

 

This thesis presents a shared vector coprocessor bank comprised of multiple vector lanes.  

Three sharing configurations, Coarse-grained Temporal Sharing, Vector Lane Sharing 

and Fine-grained Temporal Sharing, were investigated to determine the possible 

improvements in both performance and energy efficiency.  In addition, five different 

numbers of lanes (two, four, eight, sixteen and thirty-two) were also evaluated.  Finally, 

an additional Reconfigurable Module was added to each lane and configured to best 

support the benchmarking application currently being run to determine possible 

improvements from this feature. 

It was shown that because of the increased utilization of the lanes, FTS sharing 

provided the greatest improvement, followed by VLS.  It was also shown that while 

adding the RM for the FIR Filter application provided significant improvement in both 

performance and energy usage, the same function in the MM application only provided 

modest performance improvement along with a similarly better dynamic energy usage.  

Finally, the addition of the RM to the LU Decomposition application provided a minor 

performance increase but also increased the dynamic energy per element because of 

moving the divide function from the microprocessor to the lanes. 

 Increases in instruction parallelism from loop unrolling and data parallelism from 

longer vector lengths were shown in the analysis to improve performance by a larger 

margin than an increased number of lanes alone while not causing an increase in energy 

per element usage.  This is due to the larger utilization percentage of both the Load/Store 
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and Arithmetic/Logic units in each lane.  The impact of changing the sharing 

configuration and thus increasing utilization was larger than that of improved parallelism 

for a given application, showing that FTS followed by VLS is a better way to improve 

performance than changing the application. 

 Future work will focus on alternative functions for the RM such as the floating 

point square root, as well as continued improvements to the scheduling and sharing 

portions of the design with the goal of dynamically optimizing either performance or 

energy usage depending on the current operating conditions.  In addition, priority will be 

included in the scheduling function so that a higher priority task or thread can preempt a 

lower priority one either from the same microprocessor or from another attached 

microprocessor.  Finally, simulation of the implementation in an ASIC environment 

rather than a Xilinx FPGA architecture will be investigated to see if any improvements 

can be made by increasing the number of read and write ports on the Vector Register 

File, increasing the data bus size from 32 to 64 bits, or adding the capability to perform 

double precision operations, as examples. 
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APPENDIX A 

FIR FILTER MADD BENCHMARKS 

 

The three charts and figures for the FIR Filter with MADD RM scenarios will be found in 

this appendix. 
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Table A.1 FIR 32, VL=32, No Loop Unroll, MADD 

 

  No. of Lanes   2     4     8     16     32   

FIR 32   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=32 CTS 1.00 37.90 19.82 1.39 26.39 13.80 1.74 16.34 8.44 1.98 9.37 4.75 2.13 5.03 2.55 

No Loop Unroll CTS - MADD 1.46 28.11 28.08 2.02 19.42 19.39 2.49 12.00 11.98 2.83 6.79 6.79 3.03 3.64 3.64 

MADD VLS 1.28 48.43 25.28 2.00 37.80 19.19 2.79 26.42 13.44 3.47 16.45 8.36 3.95 9.37 5.11 

  VLS - MADD 1.87 35.97 36.13 2.92 28.14 28.11 4.03 19.40 19.40 4.98 12.00 11.98 5.65 6.79 6.79 

  FTS 1.95 73.91 38.68 2.77 52.53 26.74 3.47 32.90 16.71 3.95 18.74 9.51 4.25 10.07 5.11 

  FTS - MADD 2.91 55.98 55.92 4.01 38.62 38.58 4.98 23.96 23.93 5.64 13.56 13.57 6.06 7.28 7.28 

 

 
 

Figure A.1 FIR 32, VL=32, no loop unroll, MADD. 
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Table A.2 FIR 32, VL=32, Unroll 3 Times, MADD 

 

No. of Lanes   2     4     8     16     32   

  Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

CTS 2.16 81.86 42.91 3.10 58.67 30.59 3.82 36.17 18.35 4.32 20.49 10.41 4.63 10.96 5.57 

CTS - MADD 3.70 83.82 71.19 5.81 65.94 55.82 6.43 36.56 30.98 6.43 18.27 15.28 6.43 9.13 7.74 

VLS 2.36 89.39 46.76 4.40 81.88 42.94 6.18 58.63 29.84 7.59 36.19 18.40 8.65 20.50 10.42 

VLS - MADD 4.11 92.86 78.79 7.45 84.76 71.91 11.30 65.79 55.66 12.86 36.60 30.99 12.86 18.26 15.47 

FTS 2.63 99.71 50.66 5.07 98.23 49.80 7.42 70.23 35.70 8.65 40.94 20.80 9.26 21.91 11.14 

FTS - MADD 4.21 97.76 83.24 8.22 93.82 79.43 12.86 73.04 61.82 12.86 36.53 30.94 12.86 18.26 15.46 

 

 
 

Figure A.2 FIR 32, VL=32, unroll 3 times, MADD. 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

2 4 8 16 32

CTS

CTS-MADD

VLS

VLS-MADD

FTS

FTS-MADD

6
0
 



Table A.3 FIR 32, VL=128, Unroll 3 Times, MADD 

 

  No. of Lanes   4     8     16     32   

FIR 32   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=128 CTS 4.72 89.57 45.86 8.64 81.83 41.66 12.38 58.63 29.83 15.28 36.18 18.41 

Unroll 3 Times CTS - MADD 8.23 93.52 79.42 14.94 84.91 72.10 23.62 67.11 57.16 25.72 36.48 31.08 

MADD VLS 4.94 93.74 48.58 9.44 89.39 45.35 17.23 81.62 41.43 24.52 58.51 29.74 

  VLS - MADD 8.59 97.42 82.84 16.08 91.36 77.38 27.95 79.98 67.58 44.65 64.69 55.21 

  FTS 5.22 99.85 51.42 10.58 99.65 50.86 20.14 95.30 48.35 29.41 70.15 35.65 

  FTS - MADD 8.91 98.85 83.61 16.82 97.99 83.24 32.89 88.23 74.59 51.44 60.83 51.53 

 

 
 

Figure A.3 FIR 32, VL=128, unroll 3 times, MADD. 
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APPENDIX B 

MM MADD BENCHMARKS 

 

The two charts and figures for the MM with MADD RM scenarios will be found in this 

appendix. 



 

 

Table B.1 MM, VL=32, Unroll 1 Time, MADD 

 

  No. of Lanes   2     4     8     16     32   

MM   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=32 CTS 1.00 71.10 72.21 1.47 52.22 53.08 1.91 34.50 33.94 2.09 18.61 18.91 2.20 9.80 9.96 

Unroll 1 Time CTS - MADD 0.97 34.45 69.93 1.48 26.31 53.40 2.01 17.89 36.36 2.44 10.86 22.08 2.56 5.73 11.65 

MADD VLS 1.17 82.98 84.63 2.00 71.04 72.36 3.04 54.45 53.51 3.67 32.86 33.32 4.18 18.58 19.38 

  VLS - MADD 1.15 40.79 82.97 1.94 34.42 69.88 2.93 26.03 52.83 3.99 17.71 35.98 4.85 10.79 21.94 

  FTS 1.38 98.13 99.87 2.49 88.74 90.34 3.79 68.20 67.09 4.08 36.57 37.13 4.36 19.27 19.59 

  FTS - MADD 1.38 49.00 99.85 2.69 48.14 97.80 4.01 35.43 72.14 4.81 21.68 44.03 5.05 11.17 22.70 

 

 
 

Figure B.1 MM, VL=32, unroll 1 time, MADD.
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Table B.2 MM, VL=64, Unroll 1 Time, MADD 

 

  No. of Lanes   2     4     8     16     32   

MM   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=64 CTS 1.16 82.59 84.29 1.96 69.18 70.25 2.84 70.13 68.96 3.48 30.95 31.53 3.94 17.61 17.91 

Unroll 1 Time CTS - MADD 1.14 40.76 82.25 1.91 33.75 68.56 2.86 25.36 51.51 3.82 16.94 34.41 4.58 10.24 20.78 

MADD VLS 1.28 90.72 92.14 2.32 82.47 84.08 3.96 71.68 70.31 5.66 50.44 50.88 6.96 31.16 31.68 

  VLS - MADD 1.26 44.71 91.41 2.29 40.59 82.56 3.78 33.88 68.82 5.65 24.97 50.77 7.57 16.76 34.05 

  FTS 1.38 98.35 100.00 2.75 97.73 99.51 4.96 89.46 87.98 6.84 61.03 61.98 7.85 34.97 35.52 

  FTS - MADD 1.39 49.08 100.00 2.75 48.80 99.47 5.22 46.63 94.42 7.62 33.65 68.36 9.12 19.89 40.50 

 

 
 

Figure B.2 MM, VL=64, unroll 1 time, MADD. 
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APPENDIX C 

LU DIV BENCHMARKS 

 

The two charts and figures for the LU Decomposition with DIV RM scenarios will be 

found in this appendix. 

 



 

 

Table C.1 LU Decomp, VL=64, No Loop Unroll, DIV 

 

 
No. of Lanes 

 
4 

  
8 

  
16 

  
32 

 

LU Decomp 
 

Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=64 CTS 1.83 40.28 40.87 1.81 20.11 20.40 1.64 10.06 10.20 1.83 5.03 5.10 

No Unrolls CTS - DIV 1.86 42.96 44.21 2.34 31.18 31.94 2.69 18.48 18.93 2.92 10.27 10.49 

DIV FTS 3.58 79.71 82.41 3.62 39.93 41.35 3.62 20.00 20.63 3.62 10.00 10.32 

 
FTS - DIV 3.25 72.68 75.23 4.61 59.31 60.79 5.40 35.50 36.38 5.72 19.61 20.09 

 

 

 
 

Figure C.1 LU Decomp, VL=64, no loop unroll, DIV. 
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Table C.2 LU Decomp, VL=32, No Loop Unroll, DIV 

 

  No. of Lanes   4     8     16     32   

LU Decomp   Perf. 
ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. Perf. 

ALU 
Util. 

LD/ST 
Util. 

VL=32 CTS 1.83 19.90 20.61 1.81 9.58 10.33 1.72 4.98 5.15 1.83 2.49 2.58 

No Unrolls CTS - DIV 2.34 25.74 27.80 2.70 15.62 16.85 2.92 8.90 9.66 3.04 4.47 4.86 

DIV FTS 3.71 38.62 42.89 3.62 18.74 21.10 3.62 9.67 10.71 3.58 4.84 5.35 

  FTS - DIV 4.09 51.28 54.79 5.40 30.65 32.46 5.72 17.87 18.98 5.96 9.89 10.61 

 

 

 
 

Figure C.2 LU Decomp, VL=32, no loop unroll, DIV. 
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APPENDIX D 

SCENARIOS RUN ON SYSTEM 

The complete list of scenarios run on the system as part of the research in this thesis will 

be found in this appendix. 

 

 

D.1 Fast Fourier Transform (FFT) 

 

D.1.1 03_fft32_1mb_simple_v01 

 

CTS; single pass through FFT; run on four, eight, sixteen and thirty-two lanes. 

 

D.1.2 04_fft32_1mb_double_v01 

 

CTS; double pass through FFT; run on four, eight, sixteen and thirty-two lanes. 

 

D.1.3 05_fft32_2mb_simple_v01 

 

FTS; single pass through FFT; vector length 32; run on four, eight, sixteen and thirty-two 

lanes. 

 

D.1.4 06_fft32_2mb_double_v01 

 

FTS; double pass through FFT; vector length 32; run on four, eight, sixteen and thirty-

two lanes. 

 

D.1.5 07_fft32_2mb_simple_sl_v01 

 

VLS; single pass through FFT; vector length 32; run on four, eight, sixteen and thirty-two 

lanes. 

 

D.1.6 08_fft32_2mb_double_sl_v01 

 

VLS; double pass through FFT; vector length 32; run on four, eight, sixteen and thirty-

two lanes. 
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D.2 Finite Impulse Response (FIR) 

 

D.2.1 12_fir32_vl32_unroll4_1mb 

 

CTS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes. 

 

D.2.2 13_fir32_vl64_unroll4_1mb 

 

CTS; unroll loop three times; vector length 64; run on two, four, eight, sixteen and thirty-

two lanes. 

 

D.2.3 14_fir32_vl128_unroll4_1mb 

 

CTS; unroll loop three times; vector length 128; run on eight, sixteen and thirty-two 

lanes. 

 

D.2.4 15_fir32_vl256_unroll4_1mb 

 

CTS; unroll loop three times; vector length 256; run on eight, sixteen and thirty-two 

lanes. 

 

D.2.5 16_fir32_vl64_unroll4_2mb 

 

FTS; unroll loop three times; vector length 64; run on eight, sixteen and thirty-two lanes. 

 

D.2.6 17_fir32_vl128_unroll4_2mb 

 

FTS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two 

lanes. 

 

D.2.7 18_fir32_vl256_unroll4_2mb 

 

FTS; unroll loop three times; vector length 256; run on eight, sixteen and thirty-two 

lanes. 

 

D.2.8 31_01_fir32_vl32_nounroll_1mb 

 

CTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.2.9 31_02_fir32_vl64_nounroll_1mb 

 

CTS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 
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D.2.10 31_03_fir32_vl128_nounroll_1mb 

 

CTS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes. 

 

D.2.11 31_04_fir32_vl256_nounroll_1mb 

 

CTS; no loop unroll; vector length 256; run on eight, sixteen and thirty-two lanes. 

 

D.2.12 33_01_fir32_vl32_nounroll_2mb 

 

FTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.2.13 33_02_fir32_vl64_nounroll_2mb 

 

FTS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.2.14 33_03_fir32_vl128_nounroll_2mb 

 

FTS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes. 

 

D.2.15 33_04_fir32_vl256_nounroll_2mb 

 

FTS; no loop unroll; vector length 256; run on eight, sixteen and thirty-two lanes. 

 

D.2.16 34_01_fir32_vl32_unroll2_2mb 

 

FTS; unroll loop once; vector length 32; run on two and four lanes. 

 

D.2.17 34_02_fir32_vl64_unroll2_2mb 

 

FTS; unroll loop once; vector length 64; run on two and four lanes. 

 

D.2.18 35_01_fir32_vl32_nounroll_2mb_sl 

 

VLS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.2.19 35_02_fir32_vl64_nounroll_2mb_sl 

 

VLS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 
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D.2.20 35_03_fir32_vl128_nounroll_2mb_sl 

 

VLS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes. 

 

D.2.21 37_01_fir32_vl32_unroll4_2mb_sl 

 

VLS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes. 

 

D.2.22 37_02_fir32_vl64_unroll4_2mb_sl 

 

VLS; unroll loop three times; vector length 64; run on two, four, eight, sixteen and thirty-

two lanes. 

 

D.2.23 37_03_fir32_vl128_unroll4_2mb_sl 

 

VLS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two 

lanes. 

 

D.2.24 110_39_01_fir32_vl32_unroll4_2mb_no_madd 

 

FTS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes. 

 

 

D.3 Finite Impulse Response (FIR) with MADD 

 

D.3.1 110_12_fir32_vl32_unroll4_1mb 

 

CTS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes; equivalent to D.2.1. 

 

D.3.2 110_14_fir32_vl128_unroll4_1mb 

 

CTS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two 

lanes; equivalent to D.2.3. 

 

D.3.3 110_17_fir32_vl128_unroll4_2mb 

 

FTS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two 

lanes; equivalent to D.2.6. 

 

D.3.4 110_31_01_fir32_vl32_nounroll_1mb 

 

CTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.2.8. 
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D.3.5 110_33_01_fir32_vl32_nounroll_2mb 

 

FTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.2.12. 

 

D.3.6 110_35_01_fir32_vl32_nounroll_2mb_sl 

 

VLS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.2.18. 

 

D.3.7 110_37_01_fir32_vl32_unroll4_2mb_sl 

 

VLS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes; equivalent to D.2.21. 

 

D.3.8 110_37_03_fir32_vl128_unroll4_2mb_sl 

 

VLS; unroll loop three times; vector length 128; run on four, eight, sixteen and thirty-two 

lanes; equivalent to D.2.23. 

 

D.3.9 110_38_01_fir32_vl32_unroll4_2mb 

 

FTS; unroll loop three times; vector length 32; run on two, four, eight, sixteen and thirty-

two lanes; equivalent to D.2.24. 

 

 

D.4 Matrix Multiplication (MM) 

 

D.4.1 53_01_matmul_vl128_unroll_1mb 

 

CTS; unroll loop once; vector length 128; run on eight, sixteen and thirty-two lanes. 

 

D.4.2 53_02_matmul_vl64_unroll_1mb 

 

CTS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.4.3 53_03_matmul_vl32_unroll_1mb 

 

CTS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.4.4 54_01_matmul_vl128_unroll_2mb 

 

FTS; unroll loop once; vector length 128; run on eight, sixteen and thirty-two lanes. 
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D.4.5 54_02_matmul_vl64_unroll_2mb 

 

FTS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.4.6 54_03_matmul_vl32_unroll_2mb 

 

FTS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.4.7 55_01_matmul_vl128_unroll_4lanes_2mb 

 

VLS; unroll loop once; vector length 128; run on eight, sixteen and thirty-two lanes. 

 

D.4.8 55_02_matmul_vl64_unroll_4lanes_2mb 

 

VLS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.4.9 55_03_matmul_vl32_unroll_4lanes_2mb 

 

VLS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

 

D.5 Matrix Multiplication (MM) with MADD 

 

D.5.1 120_53_02_matmul_vl64_unroll_1mb 

 

CTS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.4.2. 

 

D.5.2 120_53_03_matmul_vl32_unroll_1mb 

 

CTS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.4.3. 

 

D.5.3 120_54_02_matmul_vl64_unroll_2mb 

 

FTS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.4.5. 
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D.5.4 120_54_03_matmul_vl32_unroll_2mb 

 

FTS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.4.6. 

 

D.5.5 120_55_02_matmul_vl64_unroll_4lanes_2mb 

 

VLS; unroll loop once; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.4.8. 

 

D.5.6 120_55_03_matmul_vl32_unroll_4lanes_2mb 

 

VLS; unroll loop once; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes; equivalent to D.4.9. 

 

 

D.6 LU  Decomposition (LU) 

 

D.6.1 60_01_LUDecomp_origMatSize128_matSize128_vl128_1mb 

 

CTS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes. 

 

D.6.2 60_02_LUDecomp_origMatSize128_matSize64_vl64_1mb 

 

CTS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.6.3 60_03_LUDecomp_origMatSize128_matSize32_vl32_1mb 

 

CTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.6.4 61_01_LUDecomp_origMatSize128_matSize128_vl128_2mb 

 

FTS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes. 

 

D.6.5 61_02_LUDecomp_origMatSize128_matSize64_vl64_2mb 

 

FTS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.6.6 61_03_LUDecomp_origMatSize128_matSize32_vl32_2mb 

 

FTS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 
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D.6.7 62_01_LUDecomp_origMatSize128_matSize128_vl128_2mb_vls 

 

VLS; no loop unroll; vector length 128; run on eight, sixteen and thirty-two lanes. 

 

D.6.8 62_02_LUDecomp_origMatSize128_matSize64_vl64_2mb_vls 

 

VLS; no loop unroll; vector length 64; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

D.6.9 62_03_LUDecomp_origMatSize128_matSize32_vl32_2mb_vls 

 

VLS; no loop unroll; vector length 32; run on two, four, eight, sixteen and thirty-two 

lanes. 

 

 

D.7 LU  Decomposition (LU) with DIV 

 

D.7.1 130_60_05_LUDecomp_origMatSize128_matSize128_vl64_1mb 

 

CTS; no loop unroll; vector length 64; run on four, eight, sixteen and thirty-two lanes; 

equivalent to D.6.2. 

 

D.7.2 130_60_08_LUDecomp_origMatSize128_matSize128_vl32_1mb 

 

CTS; no loop unroll; vector length 32; run on four, eight, sixteen and thirty-two lanes; 

equivalent to D.6.3. 

 

D.7.3 130_61_05_LUDecomp_origMatSize128_matSize128_vl64_2mb 

 

FTS; no loop unroll; vector length 64; run on four, eight, sixteen and thirty-two lanes; 

equivalent to D.6.5. 

 

D.7.4 130_61_08_LUDecomp_origMatSize128_matSize128_vl32_2mb 

 

FTS; no loop unroll; vector length 32; run on four, eight, sixteen and thirty-two lanes; 

equivalent to D.6.6. 
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