Spring 1-1-2020

MNET 315-002: Industrial Statistics

Ajit Chaudhuri

Follow this and additional works at: https://digitalcommons.njit.edu/saet-syllabi

Recommended Citation
https://digitalcommons.njit.edu/saet-syllabi/91

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in School of Applied Engineering and Technology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
New Jersey Institute of Technology
Department of Engineering Technology
MNET 315 Industrial Statistics

COURSE NUMBER
MNET 315

COURSE DESCRIPTION
Industrial Statistics

COURSE STRUCTURE
(2-2-3) (lecture hr/wk - lab hr/wk – course credits)

COURSE COORDINATOR/INSTRUCTOR
Dr. S. Lieber/A. Chaudhuri

COURSE DESCRIPTION
This course introduces students to the basic statistical concepts, definitions, methodologies, formulas and tables that are used throughout industry. Major topics include descriptive and inferential statistics, probability, confidence intervals, hypothesis testing, correlation and regression, and nonparametric tests. Students study various Discrete and Continuous Distributions. They learn to use the z, t, χ², and F tests, and ANOVA. Case studies and examples show how statistics are used to solve problems in the real world.

PREREQUISITE(S)
Per Guidelines

COREQUISITE(S)
None

REQUIRED MATERIALS
2. Statistical Calculator
3. MOODLE http://moodle.njit.edu

COMPUTER USAGE
Excel (optional), Minitab (optional), PowerPoint

COURSE LEARNING OUTCOMES
By the end of the course students should be able to:
1. Define, comprehend, use basic Statistical terminology.
2. Design a basic statistical sampling plan.
3. Create, graph and analyze frequency distributions.
4. Create, graph and interpret histograms, stem & leaf diagrams, box plots, Pareto Diagrams and similar displays of quantitative data.
5. Calculate, interpret & use various measures of central tendency, variation, and position. (Mean, Median, Mode, Range, Standard Deviation, Variance, etc.)
6. Explain and use the basic concepts of probability and counting, including the Multiplication and Addition Rules, Combinations, Permutations and Distinguishable Permutations.
7. Differentiate between continuous distributions and discrete distributions.
8. Correctly apply the binomial, geometric and Poisson distributions to real world situations, using the appropriate formulas and tables.
9. Use the Gaussian curve, Standard Normal Table, the Z-formula and transformations, to find probabilities and values, as part of a problem solving process.
10. Understand and apply the Central Limit Theorem.
11. Know when, and how, to use the normal approximation to the binomial, including the correction for continuity.
New Jersey Institute of Technology
Department of Engineering Technology
MNET 315 Industrial Statistics

12. Understand, calculate and interpret confidence intervals for the mean (large and small samples), population proportions, variance and standard deviation.
13. Calculate minimum sample sizes.
14. Select correct critical values from the binomial table, Poisson table, Standard Normal table, (student) t-table, Chi-Square table, and F-Tables, and use those values as input to hypothesis testing.
15. Conduct hypothesis tests using both the critical value and P-value methods.
16. Use technology (Scientific Calculator, Excel and / or Minitab) to perform Hypothesis Tests.
17. Correctly reject - or fail to reject - the Null Hypothesis, and make correct decisions about Claims.
18. Understand the difference between Causation and Correlation.
19. Perform calculations required for correlation analysis, linear regression and multiple regression.
20. Create Scatter Plots, and graphically display best fit regression.
21. Conduct Chi-Square Tests for Goodness of Fit and Independence.
22. Compare two variances using the F-test.
23. Perform One-Way Analysis of Variance Tests and correctly interpret the resultant ANOVA Table.
24. Under the difference between Parametric and Non-Parametric Tests.
25. Perform basic Non-Parametric Tests, using the appropriate calculations and tables.
26. Analyze, solve and present answers to an assigned team case study via PowerPoint to the rest of the class.

CLASS TOPICS
Data Classification, Experimental Design, Frequency Distributions, Stem & Leaf, Box Plots, Measures of Central Tendency, Variation and Position, Counting Principle, Multiplication and Addition Rules, Permutations and Combinations, Binomial, Geometric, and Poisson Distributions, Normal Probability, Central Limit Theorem, Confidence Intervals for the mean, population proportions, variation and standard deviation, Hypothesis Testing with One and Two Samples, Correlation, Linear and Multiple Regression, Chi Square Tests, F-Test, ANOVA, Sign Tests, Wilcoxon Tests, Kruskal-Wallis Test, Rank Correlation and the Runs test.

STUDENT OUTCOMES
The Course Learning Outcomes support the achievement of the following MET Student Outcomes and TAC of ABET Criterion 9 requirements:

Student Outcome b - an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies;

Related CLO – 1 thru 26
New Jersey Institute of Technology
Department of Engineering Technology
MNET 315 Industrial Statistics

Student Outcome e - an ability to function effectively as a member or leader on a technical team;
Related CLO – 26

Student Outcome g - an ability to apply written, oral, and graphical communication in both technical and nontechnical environments; and an ability to identify and use appropriate technical literature.
Related CLO – 26

Grading Policy
<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance & Participation</td>
<td>10%</td>
</tr>
<tr>
<td>Homework / Quiz (4)</td>
<td>20%</td>
</tr>
<tr>
<td>Team Case Study</td>
<td>10%</td>
</tr>
<tr>
<td>Tests (T-1, Mid Term, T-3 & Final)</td>
<td>60% (10+15+10+25)</td>
</tr>
</tbody>
</table>

Quiz/HW/Test will be announced in The Class / Moodle. Mid-term will be 1 wk before last drop date and Final as per schedule.

*Note:
1. These % might be changed depending on overall performance of the class.
2. Extra Credit: Might be considered in the later part of the semester. These are discretion of the instructor.

* Please remember that a grade is earned not given out. So, students must own responsibility to complete tasks, and perform best in the HW/Quiz/Test

Academic Integrity
NJIT has a zero-tolerance policy regarding cheating of any kind. Student behavior that is disruptive to the learning environment will not be tolerated. Incidents will be reported to the Dean of Students. Honor Code violations may result in failure in the course, disciplinary probation, and/or expulsion from NJIT. Refer to http://www.njit.edu/academics/honorcode.php.

Student Behavior
- Students expected to arrive on time & stay entire class.
- Electronic communication devices turned off.
- Laptop/ computers for academic/class purposes, are OK.
- Class time should be participative.
- You should try to be part of the discussion
- Just dropping a mail to notifying inability to come to the class, does not earn attendance. Exceptions are only for any exigency or emergency in family or medical reasons (needs documents/proofs); and considered only for test and make-up (only one time)

Modification to Course
The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be consulted if any changes occur.
New Jersey Institute of Technology
Department of Engineering Technology
MNET 315 Industrial Statistics

PREPARED BY
Ajit Chaudhuri

COURSE COORDINATED BY
Dr. S. Lieber

CLASS HOURS
Tuesday 8:30 AM to 10:35 AM CKB 315
Thursday 8:30 AM to 10:35 AM CKB 315

OFFICE HOURS
Before Class After Class or By Appointment:
Email chaudhur@njit.edu

GRADING LEGEND

<table>
<thead>
<tr>
<th>GRADE</th>
<th>NUMERIC RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 to 100</td>
</tr>
<tr>
<td>B+</td>
<td>85 to 89</td>
</tr>
<tr>
<td>B</td>
<td>80 to 84</td>
</tr>
<tr>
<td>C+</td>
<td>75 to 79</td>
</tr>
<tr>
<td>C</td>
<td>70 to 74</td>
</tr>
<tr>
<td>D</td>
<td>60 to 69</td>
</tr>
<tr>
<td>F</td>
<td>0 to 59</td>
</tr>
</tbody>
</table>
COURSE OUTLINE

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics & Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ch 1 Intro to Stats; Ch 2 Discrete Stats, Ch-3 Probability</td>
</tr>
<tr>
<td>2</td>
<td>Ch 4 Discrete; Quiz -1 / Review</td>
</tr>
<tr>
<td>3</td>
<td>Quiz -1 / Review Test-1 on Chapters 1, 2, 3, 4, 5 (September 19)</td>
</tr>
<tr>
<td>4</td>
<td>Ch 5 Normal Prabability</td>
</tr>
<tr>
<td>5</td>
<td>Ch 5 Normal Prabability Ch 6 Confidence Intervals (Z)</td>
</tr>
<tr>
<td>6</td>
<td>Ch 6 Confidence Intervals (t) and Chi-Square</td>
</tr>
<tr>
<td>7</td>
<td>Quiz 2 and Review Mid Term Test 2 (Ch 5 and 6)</td>
</tr>
<tr>
<td>8</td>
<td>Ch 7 Hypo Testing – 1 Samples</td>
</tr>
<tr>
<td>9</td>
<td>Ch 8 Hypothesis testing - 2 Samples</td>
</tr>
<tr>
<td>10</td>
<td>Quiz 3 and Review Test 3</td>
</tr>
<tr>
<td>11</td>
<td>Ch 9 Correlation and Regression</td>
</tr>
<tr>
<td>12</td>
<td>Ch 10 Chi-Square and F Distribution, Anova, Ch 11 Non Parametric analysis</td>
</tr>
<tr>
<td>13</td>
<td>Ch 11 Non Parametric Quiz 4</td>
</tr>
<tr>
<td>14</td>
<td>Review Our last class, Project Presentation</td>
</tr>
<tr>
<td>TBD</td>
<td>Final Exam, as per registrar’s schedule.</td>
</tr>
</tbody>
</table>

Note:

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/31/2020</td>
<td>Friday</td>
<td>Last day to add/drop and 100% refund</td>
</tr>
<tr>
<td>02/03/2020</td>
<td>Monday</td>
<td>Last day for 90% refund; full or partial withdrawal</td>
</tr>
<tr>
<td>02/17/2020</td>
<td>Monday</td>
<td>Last day for 50% refund, Full withdrawal</td>
</tr>
<tr>
<td>03/09/2020</td>
<td>Monday</td>
<td>Last day for 25% refund, Full withdrawal</td>
</tr>
<tr>
<td>03/15-22/2020</td>
<td>Sunday-Sunday</td>
<td>Spring recess</td>
</tr>
<tr>
<td>04/06/2020</td>
<td>Monday</td>
<td>Last day to withdraw</td>
</tr>
</tbody>
</table>