New Jersey Institute of Technology Digital Commons @ NJIT

Mathematical Sciences Syllabi

NJIT Syllabi

Fall 2019

MATH 227-003: Mathematical Modeling

J. Luke

Follow this and additional works at: https://digitalcommons.njit.edu/math-syllabi

Recommended Citation

Luke, J., "MATH 227-003: Mathematical Modeling" (2019). *Mathematical Sciences Syllabi*. 90. https://digitalcommons.njit.edu/math-syllabi/90

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mathematical Sciences Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 227: Mathematical Modeling Fall 2019 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: An introduction to the theory and practice of mathematical modeling. Techniques include scaling and dimension, fitting of data, linear and exponential models, elementary dynamical systems, probability, optimization, Markov chain modeling. Models are drawn from applications including biology, physics, economics, finance, and chemistry.

Number of Credits: 4

Prerequisites: MATH 112 with a grade of C or better or MATH 133 with a grade of C or better and CS 115with a grade of C or better or CS 113 with a grade of C or better or CS 100 with a grade of C or better or CS 101 with a grade of C or better.

Course-Section and Instructors

Course-Section	Instructor
Math 227-001	Professor J. Luke
Math 227-003	Professor J. Luke

Office Hours for All Math Instructors: Fall 2019 Office Hours and Emails

Required Textbook:

Title	No Book
Author	
Edition	
Publisher	
ISBN #	

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, November 11, 2019. It will be strictly enforced.

COURSE GOALS

Course Objectives

- Students should learn how to create a mathematical model.
- Students should learn various mathematical techniques to analyze models.
- Students should be able to interpret mathematical results in terms of the model.
- Students should be able to use MATLAB to do computer simulations.

Course Outcomes

- Students have improved logical thinking, problem-solving, and teamwork skills.
- Students are prepared for further study in mathematics as well as science, engineering, computing, and other areas.

Course Assessment: The assessment of objectives is achieved through in-class participation, homework, labs, exams, and a project.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework, Labs, and In-Class Participation		
Midterm Exam I	20%	
Midterm Exam II		
Final Exam (Project)	30%	

Your final letter grade will be based on the following tentative curve.

A	90 - 100	С	60 - 69
B+	85 - 89	D	50 - 59
В	75 - 84	F	0 - 49
C+	70 - 74		

Attendance Policy: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced.

MATLAB: MATLAB is a mathematical software program that is used throughout the science and engineering curricula. Students should download it to their computers from the **IST software downloads page**. For this class, you are required to write code using this software.

Exams: There will be two midterm exams held in class during the semester and one comprehensive final exam. The final exam will be held during the following week:

Midterm Exam I	October 29, 2019
Midterm Exam II	December 6, 2019
Final Exam Week	December 14 - 20, 2019

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you

read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Fall 2017 Hours)

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for **Instructor** Office Hours and Emails.

All students must familiarize themselves with and adhere to the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. The Department of Mathematical Sciences takes these policies very seriously and enforces them strictly.

Accommodation of Disabilities: Disability Support Services (DSS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please contact Chantonette Lyles, Associate Director of Disability Support Services at 973-596-5417 or via email at lyles@njit.edu. The office is located in Fenster Hall Room 260. A Letter of Accommodation Eligibility from the Disability Support Services office authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Disability Support Services (DSS) website at:

https://www.njit.edu/studentsuccess/accessibility/

Important Dates (See: Fall 2019 Academic Calendar, Registrar)

Date	Day	Event
September 3, 2019	Т	First Day of Classes
September 13, 2019	F	Last Day to Add/Drop Classes
November 11, 2019	М	Last Day to Withdraw
November 26, 2019	Т	Thursday Classes Meet
November 27, 2019	W	Friday Classes Meet
November 28-29, 2019	R-F	Thanksgiving Recess
December 11, 2019	W	Last Day of Classes
December 12, 13 2019	R & F	Reading Days
December 14-20, 2019	F-R	Final Exam Period

Tentative Schedule of Topics for F19

#	WD	М	D	Topic	
1	Т	9	3	Introduction to Modeling and Exponential Models	
L1	R	9	5	Getting Started and Exponential Growth and Decay	
2	F	9	6	Iterates of the Logistic Map	
3	Т	9	10	Discrete-Time Dynamical Systems on the Line	
L2	R	9	12	Simulating Iterates of the Logistic Map	
4	F	9	13	Deterministic Discrete-Time Financial Models	
5	Т	9	17	Linear Maps on the Plane	
L3	R	9	19	Iterates of Linear Maps and Paying Off Loans	
6	F	9	20	Discrete-Time Dynamical Systems on the Plane	
7	Т	9	24	Discrete-Time Predator-Prey Models	
L4	R	9	26	Simulating Predator-Prey Models	
8	F	9	27	Planetary Motion	
9	Т	10	1	Simulating Continuous-Time Dynamical Systems	
L5	R	10	3	Applying the Methods of Euler and Heun	
10	F	10	4	Guiding a Spacecraft	
11	Т	10	8	Dimensional Analysis and Scaling I	
L6	R	10	10	Simulating the Solar System	
12	F	10	11	Dimensional Analysis and Scaling II	
13	Т	10	15	Traffic flow	
L7	R	10	17	Simulating Basic Traffic Flow	
14	F	10	18	Flocking and Schooling	
15	Т	10	22	Simulating Large Schools	
L8	R	10	24	Simulating School of Fish	
16	F	10	25	Review	
17	Т	10	29	Midterm I	
L9	R	10	31	Simulating Large Schools	
18	F	11	1	Random variables	
19	Т	11	5	Strong Law of Large Numbers and Central Limit Theorem	
L10	R	11	7	Simulating Sums of IID Random Variables	
20	F	11	8	Random Walks and Brownian Motion	
21	Т	11	12	Models of Stock Prices	
L11	R	11	14	Simulating Stock Trading	
22	F	11	15	Discrete-Time Markov Chains	
23	Т	11	19	Queuing Models	
L12	R	11	21	Arranging the Lines	

24	F	11	22	Model Fitting
L13	R	11	26	LLS
25	W	11	27	Settling Cloud of Particles
26	Т	12	3	Review
L14	R	12	5	TBD
27	F	12	6	Midterm II
28	Т	12	10	Project Presentation Session I
				Project Presentation Session II

Updated by Professor J. Luke - 8/29/2019 Department of Mathematical Sciences Course Syllabus, Fall 2019

.....