New Jersey Institute of Technology

Digital Commons @ NJIT

School of Applied Engineering and Technology Syllabi

NJIT Syllabi

Spring 1-1-2020

MET 302-102: Analysis and Design of Machine Elements II

Ahmed Belal

Follow this and additional works at: https://digitalcommons.njit.edu/saet-syllabi

Recommended Citation

Belal, Ahmed, "MET 302-102: Analysis and Design of Machine Elements II" (2020). *School of Applied Engineering and Technology Syllabi*. 88. https://digitalcommons.njit.edu/saet-syllabi/88

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in School of Applied Engineering and Technology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Course Number	MET 302
Course Name Course Structure	Analysis & Design of Machine Elements II (3-0-3) (lecture hr/wk - lab hr/wk – course credits)
Course Coordinator/Instructor Course Description Prerequisite(s)	Dr. A. Sengupta/ Ahmed Belal A continuation of MET 301, including analysis and design of power screws, brakes, clutches, belts, chain drives, gears, gear trains, bearings, and other machine elements. MET 301
Corequisite(s)	
REQUIRED, ELECTIVE OR Selected Elective Required Materials	Text: Design of Machine Elements, 8 th Ed. by M.F. Spotts, T.E. Shoup and L.E. Hornberger, Prentice-Hall, 2004, ISBN 9780130489890
Computer Usage Course Learning Outcomes (CLO)	 By the end of the course students should be able to: 1. Design a helical spring (to determine standard wire diameter, mean helix radius, minimum volume of spring material and number of active coils) if maximum stress, static load and deflection are given. 2. Calculate permissible values of maximum and minimum loads, if a helical spring is carrying fluctuating load. 3. Calculate the stress in a bolt when it is designed to carry an impact load. 4. Determine the pitch of a power screw to raise a given load at a given speed with a given power consumption. 5. Determine the torque a cone clutch can exert, the engaging force required for steady operation and the friction power for a given speed. 6. Determine angle of contact between lining and drum of a band brake exerting certain amount of torque, if the maximum pressure between the lining and the drum and the coefficient of pressure are given. 7. Find the length of leg of a system of fillet welds used to weld a bracket/beam to a support, if the bracket/beam is loaded (steady & fluctuating) eccentrically. 8. Find the permissible load for a riveted joint if the resultant shearing stress for the most highly stressed rivet is given. 9. Evaluate load carrying capacity of 120°, 180° and 360° central partial journal bearings. 9. Compute rating life of a ball bearing subjected to steady load and variable load.

	pressure ang 11. Find the helf diameters are 12. Find the valu the hub when 13. Evaluate the	ttact ratio for a spur gear pair if diametral pitch and e are specified. x angle of a worm gear set if worm and wheel pitch e given. ue of the diametral interference between the shaft and a they are press fitted. maximum stress in the material of a disk fly wheel and hergy delivered due to fluctuation of speed.		
CLASS TOPICS	Connections, Riv	Belts, Clutches, Brakes and Chains, Welded veted Connections, Lubrication, Ball Bearings, Spur sevel and Worm Gears, Shrink fit, Disk Flywheel		
STUDENT OUTCOMES		ning Outcomes support the achievement of the Student Outcomes and TAC of ABET Criterion 9		
	techniques, skills defined engineer Course Learnin	e a - an ability to select and apply the knowledge, s, and modern tools of the discipline to broadly- ing technology activities g Outcome – evaluate load carrying capacity of 120°, ntral partial journal bearings.		
	mathematics, sci technology probl applied procedur Course Learnin	e b - an ability to select and apply a knowledge of ence, engineering, and technology to engineering ems that require the application of principles and es or methodologies g Outcome – determine the pitch of a power screw to d at a given speed with a given power consumption.		
	defined engineer Course Learnin	e f - an ability to identify, analyze, and solve broadly- ing technology problems ag Outcome – determine the torque a cone clutch can ng force required for steady operation and the friction n speed.		
		Student outcome m - technical expertise having added technical depth in mechanical design, solid mechanics, and electro-mechanical devices and controls.		
	lining and drum the maximum J	Course Learning Outcome – determine angle of contact between lining and drum of a band brake exerting certain amount of torque, if the maximum pressure between the lining and the drum and the coefficient of pressure are given.		
GRADING POLICY	Homework Tests	15 % 54 %		

Note: Grading Policy may be modified by Instructor for each Section in the Course)	Final Exam31 %Note: Cannot pass course if you having failing grades on tests and final exam.There are three tests during the semester. The lowest grade will be dropped. However, if you achieve an A for all three tests, you will not be excused from the final. There will be no makeup tests – if you miss one test, then that is the test you will drop.
Academic Integrity	NJIT has a zero-tolerance policy regarding cheating of any kind and student behavior that is disruptive to a learning environment. Any incidents will be immediately reported to the Dean of Students. In the cases the Honor Code violations are detected, the punishments range from a minimum of failure in the course plus disciplinary probation up to expulsion from NJIT with notations on students' permanent record. Avoid situations where honorable behavior could be misinterpreted. For more information on the honor code, go to http://www.njit.edu/academics/honorcode.php
Student Behavior	 No eating or drinking is allowed at the lectures, recitations, workshops, and laboratories. Cellular phones must be turned off during the class hours – if you are expecting an emergency call, leave it on vibrate. No headphones can be worn in class. Unless the professor allows the use during lecture, laptops should be closed during lecture. During laboratory, if you are finished earlier, you must show the professor your work before you leave class Class time should be participative. You should try to be part of a discussion
MODIFICATION TO COURSE Prepared by Course Coordinated by	The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be notified in class of any changes to the Course outline. Ahmed Belal Dr. A. Sengupta

CLASS HOURS

Tuesday 6:00 P	M – 8:50 PM	CKB 217
----------------	-------------	---------

OFFICE HOURS:

By Appointment: asb62@njit.edu

HOMEWORK - IMPORTANT

- 1. Homework practice problems will be assigned each class. These problems will <u>not</u> be collected. A Quiz based on the lecture and practice problems will be given each class.
- 2. Quiz problems should done using the "Given and Find" format and all equations should be defined symbolically prior to calculating any values.

GRADING LEGEND

GRADE	NUMERIC RANGE
А	90 to 100
B+	85 to 89
В	80 to 84
C+	75 to 79
С	70 to 74
D	60 to 69
F	0 to 59

COURSE OUTLINE

WEEK	DATE	TOPICS	SECTIONS	ASSIGNMENTS
1	Jan 21	Springs	4-1 thru 4-12, 4-17	4.1, 4, 9, 10, 12
2	Jan 28	Screws	5-1 thru 5-9	5.2, 3, 4, 9, 16
3	Feb 4	Belts, Clutches, Brakes, and Chains	6-1 thru 6-8	6.1, 3, 8, 10, 11
4	Feb 11	Belts, Clutches, Brakes, and Chains, (Cont.) Quiz No. 1	6-9 thru 6-18	6.13, 15, 27, 28
5	Feb 18	Welded Connections	7-1 thru 7-12	7.2, 3, 5, 8, 9
6	Feb 25	Riveted Connections	7-13 thru 7-18	7.15, 17, 19, 20, 27
7	Mar 3	Lubrication Quiz No. 2	8-1 thru 8-10	8.1, 2, 3, 5, 7
8	Mar 10	Lubrication (Cont.)	8-11 thru 8-17	8.10, 15, 19, 25
		SPRING BREAK 3/15-3	3/22	
9	Mar 24	Ball and Roller Bearings	9-1 thru 9-15	9.1, 5, 6, 9
10	Mar 31	Spur Gears	10-1 thru 10-16	10.3, 5, 6
11	Apr 7	Spur Gears (Cont.)	10-18 thru 10-22	10.10, 13, 25
12	Apr 14	Helical, Bevel and Worm Gears Quiz No. 3	11-1 thru 11-8	11.4, 12, 16, 19, 21
13	Apr 21	Impact Stress Curved Beams	12.7 to 12.10 12.14 to 12.16	12.20, 21, 22, 29
14	Apr 28	Shrink & Press Fits Gaskets & Seals	12-2 12-11	
15	TBD	FINAL EXAM		