New Jersey Institute of Technology Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Fall 2019

ME 343-001: Mechanical Laboratory I

P. Singh

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Singh, P., "ME 343-001: Mechanical Laboratory I" (2019). Mechanical and Industrial Engineering Syllabi. 85. https://digitalcommons.njit.edu/mie-syllabi/85

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

ME 343 Mechanical Laboratory I

Dr. P. Singh MEC 316

Email: singhp@njit.edu

Office Hours: F, 4-5 pm, or by appointment

Textbook: J. P. Holman, <u>Experimental Methods for Engineers</u>, 8th Edition, McGraw Hill, 2011

Course Content

Topic	Reading Assignment	Key concepts	
Introduction;	15.4; 2.7, 3.3,3.4, 3.6, 3.8,	Lab report writing; linear aggression; Uncertainty	
Data analysis	3.9, 3.11-3.14, Notes 1-3	analysis	
Speed Measurements and	4.12, 4.15	Filtration theory; Oscilloscope applications	
Signal Filtration	Notes 4-5		
Temperature measurements	8.5,8.6, 8.8, 8.9, 2.7	Thermocouple; thermo-resistance; pyrometers	
	Notes 6-7		
Force and Torque	10.3-10.8	Strain-stress relationship; strain gage; Wheatstone	
Measurements (Strain gage)	Notes 8-9	bridge	
Flow rate & Velocity	7.3, 7.4, 7.6, 7.13	Bernoulli equation; Venturi meter; Pitot tube; Laser	
Measurements	Note 10; supplements	Doppler Velocimetry; Flow visualization	
Control (PLC & PID)	Note 12; supplements	PLC, Ladder logic diagram; PID	
Acoustics	11.5; Note 11	Sound pressure level (dB); attenuation	

Course Arrangement

Week	CArrangement					
	Topic	Homework	Topic	Report Due		
1	Introduction: Chap 15, Chap 3	-	-	-		
2	Data analysis Chap 3, Chap 4	HW#1	Dotation amond &	-		
3	Sample analysis	-	Rotation speed & signal filtration	HW#1		
4	Thermometry: Chap 8, Chap 2	HW#2	Temperature	Rot. Sp. & Fil.		
5	Sample analysis of Temperature	-		HW#2		
6	Strain gage: Chap 10	-	Strain 1; Mid-term	Temperature		
7	Strain gage (continue)	HW#3	Strain 2	-		
8	Sample analysis of Strain Gage	-	Suam 2	HW#3		
9	Pressure and flow: Chap 7	HW#4	Flow	Strain gage		
10	Sample analysis of Flow -		HW#4			
11	Acoustics: Chap 11	-	Acoustics	Flow		
12	Control Theory (PLC; PID)	HW#5	PLC Control	Acoustics (abstract)		
13	Sample analysis		PID Control	HW#5, PLC (Abstract)		
14	Review	-	-	PID (Abstract)		
	Final Exam					

ME 343 Mechanical Lab I

Course requirements and grading

(1) Grading:

50% Lab Report (5) and 5% Lab Abstract (1)

- Lab attendance is required; you cannot be more than 30 minutes late.
- There will be no makeup labs, except when the student has a legitimate reason for missing a lab. The makeup lab must be done under the TA's supervision.

5% Class Attendance (14)

10% Homework (5)

15% Mid-term Examination

15% Final Examination

Final Grade:

90% and above "A" grade; and below 60% "F" grade.

(2) Lab Report Requirement

All reports should be completed individually and submitted on time. Group discussions are encouraged, but you must write your own report. Resubmitted Lab reports will be accepted (final grade will be the average of the grades on the original and resubmitted reports)

- (3) Homework and Lab Report Requirements
 - (a) Five Assignments will be given, with 4-5 problems per assignment.
 - (b) Assignments are due biweekly.
 - (c) Late submission will be accepted, but you will lose 50% points.
 - (d) Homework grade will be based on the effort.
 - (e) Homework will be returned in about one week.
- (4) Mid-term/Final Exam Requirement
 - (a) A 1.5 hour mid-term exam: It will cover the following topics: Uncertainty Analysis, Filtration Theory, and Theory for Temperature Measurement.
 - (b) A 1.5-hour final exam: It will cover the following topics: Strain-gage Theory, Theory of Flow Measurement, PLC & PID Control Concept, and Theory of Acoustics Measurement.
 - (c) Both exams will be open book/notes.