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ABSTRACT 

EMG-BASED DETERMINATION OF UPPER EXTREMITY VIRTUAL 

TRAJECTORY 

 

by 

                                    Akshata Anand Korgaonkar 

Movement and position of the limbs of the human body are controlled by the interaction 

between the muscle and the peripheral and central nervous system. This interaction is 

nothing but the neural signals. Neural signals are electrical in nature and referred as 

action potentials. An EMG is a summation of action potentials from the muscle fibers 

under the electrode placed on the skin. Thus it is easy to estimate the nature and timing of 

the movement from the firing of an EMG signal. Kai Chen in his dissertation has built the 

model to represent the arm movement with stiffness, damping, actual trajectory and 

Virtual Trajectory. 

          Virtual trajectory is the representation of the actual movement and thus its onset 

and offset timings are obtained on the basis of EMG. This study is the extension of the 

Chen study in order to automate the system by changing the subjective method of finding 

onset and offset timing of the VT to computational method by means of MATLAB. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Many neuromotor studies suggest that human arm movement can be represented with the 

control parameters such as trajectories of dynamic equilibrium point in combination with 

specified damping and stiffness associated with each joint. Kai Chen, in his dissertation 

(Chen, 2010) has worked on such (Hinder Milner, 2003) motor control model which will 

be helpful in executing most of the human arm movement planning, not only for 

neurologically healthy subject but also for children with cerebral palsy. In this study he 

has built a model which takes inputs such as intrinsic damping, relative damping, 

stiffness, moment of inertia,  (angle of movement in radian) and trajectories. Moment 

of inertia is been calculated using each subject’s anthropometrics where as damping and 

stiffness are obtained by optimizing the model in order to get the good experimental 

match. 

 Feldman in his study (Feldman AG, 1986) was working on the mechanism by 

which the neural input to the muscle changes the movement of the limb. For this study he 

examined the elbow movement. When this elbow movement was displaced, muscle 

produced a monotonically increasing force with the characteristics that were similar to 

the non linear spring. Later it was examined that the CNS uses the time series of function 

that define a sequence of equilibrium states of the system based on the threshold ( ) of 

the tonic stretch reflexes of the participating muscle beyond which the muscle produces 

the force.  Chen has followed this approach in which the gradually descending neuron 
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signal for a joint movement is a simple instantaneous difference between the arm’s actual 

position and the equilibrium position specified by the neural activity which is nothing but 

the monotonic virtual trajectory. Chen has improved earlier model (Chen, 2009) with the 

addition of a feedback element which produces torque based on the difference between 

the actual joint and virtual trajectory velocities. To plot the VT he has visually assessed 

the timing and amplitude of EMG signal of agonist and antagonist muscle. A less 

subjective method is required to describe this VT. 

 

1.1 Objective 

Movement and position of the limbs of the human body are controlled by the interaction 

between the muscle and the peripheral and central nervous system. This interaction is 

nothing but the neural signals. Neural signals are electrical in nature and referred as 

action potentials. An EMG is a summation of action potentials from the muscle fibers 

under the electrode placed on the skin. Thus it is easy to estimate the nature and timing of 

the movement from the firing of an EMG signal. Since VT is the representation of the 

actual movement one can estimate the start time and end time from the EMG firing. 

 EMG signal is stochastic in nature and it always has the some amplitude ranging 

from -10 milivolts to 10 milivolts. When EMG signal is collected it also collects the 

motion artifacts and noise. Thus to estimate the start and end of the EMG, it is essential 

to process the data. 

Kai Chen in his study has made use of EMG timings to obtain the virtual 

trajectory. He has done this manually, but due to EMG nature and its features data 

processing is essential; also manual estimation of these timings might not be accurate and 
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is not easy. Thus objective of this study is to process the data and obtain the start and end 

time of the VT using the MATLAB code. 
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         CHAPTER 2 

BASIC INFORMATION OF EMG 

 

Movement and position of the limbs of the body are controlled by electrical signals 

traveling between the muscles and the peripheral and central nervous system. The path of 

conduction in the motor system consists of spinal cord, motor neurons, muscles and the 

neuromuscular junction. Electromyography (EMG) is a diagnostic measure used to 

record the electrical activity of the muscle to find abnormalities in muscle and motor 

system and interpret muscle action potential. It gives a voltage difference or difference in 

electrical potential (E=Ir) measured between recording electrodes. The signal's origins 

include electrical activity in various tissues like Potentials in motor units (muap) of 

muscle fibers. 

 

2.1 Features of Raw EMG Signal 

It is well established that the EMG signal is stochastic (random) in nature and is never 

zero in amplitude. The amplitude of the signal can range from 0 to 10 mV (peak-to-peak) 

or 0 to 1.5 mV (rms).The usable energy of the signal is limited to the 0 to 500 Hz 

frequency range, with the dominant energy being in the 250-500 Hz range. Usable signals 

are those with energy above the electrical noise level. An example of the frequency 

spectrum of the EMG signal is shown in Figure2.1.  
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Figure 2.1 Frequency spectrum of the EMG signal detected from the Tibialis Anterior 

muscle during a constant force isometric contraction at 50% of voluntary 

maximum.(Source: Google image) 

 

2.2 Application of the EMG Signal 

Currently there are three common applications of the EMG signal. They are: 

 To determine the activation timing of the muscle; that is, when the excitation to 

the muscle begins and ends. 

  

 To estimate the force produced by the muscle.  

 To obtain an index of the rate at which a muscle fatigues through the analysis of 

the frequency spectrum of the signal. 

 

From the diagnostic EMG we could get the following information: 

 Strength-duration curves to test nerve and muscle integrity  
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 Nerve conduction velocity to test for nerve damage / compression.  

 Firing characteristics of motor neurons and motor units, including analysis of 

motor unit action potentials (muaps) to detect signs of pathology such as 

fibrillation potentials and positive sharp waves 

 

2.3 Electrode Geometry 

Throughout the history of electromyography, the shape and the layout of the detection 

surface of the electrode have not received much attention. Most likely past users of 

electromyography must have been interested only in the qualitative aspects of the EMG 

signal. The advent of new processing techniques for extracting quantitative information 

from the EMG signal requires greater focus on the configuration of the electrode. The 

major (but not all) points to consider are: 

 The signal to noise ratio of the detected signal, 

 The bandwidth of the signal, 

 The muscle sample size, and 

 The susceptibility to crosstalk. 

  

2.3.1 Signal-to-Noise Ratio 

The signal-to-noise ratio is a function of complicated interactions between the 

electrolytes in the skin and the metal of the detection surfaces of the electrode. This is an 

involved topic that is beyond the scope of this short treatise. Suffice it to say that there 

are several approaches for reducing the noise, such as using large surface areas for the 

detection surfaces, employing conductive electrolytes to improve the contact with the 

skin, and removing dead (less conductive) dermis from the surface of the skin.  

 The amplitude of the EMG signal is directly proportional to the distance between 
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the detection surfaces. Hence, this distance should be maximized. But, increasing this 

distance introduces undesirable characteristics to the electrode design. As the electrode 

becomes larger, it becomes unwieldy and cannot be used to detect EMG signals from 

relatively small (in width as well as in length) muscles such as those found in the hand, 

forearm and the leg. Thus, a compromise is necessary.  

 

2.3.2 Muscle Sample Size 

The muscle sample size need not be large because the muscle fibers of motor units are 

distributed throughout most of the muscle cross-section. Therefore, it is not necessary to 

cover a large portion of the muscle with the detection surface of the electrode to obtain a 

representative sample of the EMG signal for a particular set of active motor units. 

 

2.3.3 Cross-talk Susceptibility 

The susceptibility to cross-talk is an often overlooked design aspect of EMG electrodes. 

The greater the width and length of the detection surfaces and the greater the inter-

detection surface distance the closer the electrode will be to adjacent muscles. Thus, 

larger electrodes are more susceptible to detecting signals from adjacent (lateral and 

below) muscles. In situations where this issue is of concern, it is advisable to reduce the 

size of the electrode. 
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2.4 EMG Electrode Placements 

 

Figure 2.2 The preferred electrode location is between the motor point (innervations 

zone) and the tendinous insertion, with the detection surfaces arranged so that they 

intersect as many muscle fibers as possible. (Source: goggle image) 

 

2.4.1 Location and Orientation of the Electrode  

 The electrode should be placed between a motor point and the tendon insertion or 

between two motor points, and along the longitudinal midline of the muscle. The 

longitudinal axis of the electrode (which passes through both detection surfaces) should 

be aligned parallel to the length of the muscle fibers. Figure 2.2 provides a schematic 

representation of the preferred electrode location. 

 

2.4.2 NOT On or Near the Tendon of the Muscle  

 As the muscle fibers approach the fibers of the tendon, the muscle fibers become thinner 

and fewer in number, reducing the amplitude of the EMG signal. Also in this region the 

physical dimension of the muscle is considerably reduced rendering it difficult to 

properly locate the electrode, and making the detection of the signal susceptible to 

crosstalk because of the likely proximity of agonistic muscles. 
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2.4.3 NOT on the Motor Point  

 During the past one-half century it has been thought that for the purpose of detecting a 

surface EMG signal the electrode should be located on a motor point of the muscle. The 

motor point is that point on the muscle where the introduction of minimal electrical 

current causes a perceptible twitch of the surface muscle fibers. This point usually, but 

not always, corresponds to that part of the innervations zone in the muscle having the 

greatest neural density, depending on the anisotropy of the muscle in this region. 

Presumably, the motor points have been used as landmarks because they were 

identifiable and provided a fixed anatomical landmark. Unfortunately from the point of 

view of signal stability, a motor point provides the worst location for detecting an EMG 

signal. In the region of a motor point, the action potentials travel caudally and rostrally 

along the muscle fibers, thus the positive and negative phases of the action potentials 

(detected by the differential configuration) will add and subtract with minor phase 

differences causing the resulting EMG signal to have higher frequency components. In 

the time domain, the signal appears as more jagged and with more sharp peaks. The loss 

of stability occurs from the fact that a minor displacement (0.1 mm) will affect in an 

unpredictable fashion the amount of change in the frequency characteristics of the signal. 

A note of caution about the motor points and innervations zones, most muscles have 

multiple innervations zones throughout the muscle. They can be identified by applying 

electrical stimulation to the skin above the surface of the muscle or by other more 

technically complicated surface mapping techniques. If neither procedure is convenient, 

then place the electrode in the middle of the muscle between the origin and insertion 

point. 
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2.4.4 NOT at the Outside Edges of the Muscle 

In this region, the electrode is susceptible to detecting crosstalk signals from adjacent 

muscles. It is good practice to avoid this situation. For some applications, crosstalk 

signals may be undesirable. 

 

2.5 Orientation of the Electrode with Respect to the Muscle Fibers 

 The longitudinal axis of the electrode (which passes through both detection surfaces) 

should be aligned parallel to the length of the muscle fibers. When so arranged, both 

detection surfaces will intersect most of the same muscle fibers. Hence, the spectral 

characteristics of the EMG signal will reflect the properties of a fixed set of muscle fibers 

in the region of the electrode. Also, the frequency spectrum of the EMG signal will be 

independent of any trigonometric factor that would provide an erroneous estimate of the 

conduction velocity. The resultant value of the conduction velocity affects the EMG 

signal by altering the temporal characteristics of the EMG signal, and consequently its 

frequency spectrum. 

 

2.6 Reference Electrode 

The reference electrode (at times called the ground electrode) is necessary for providing a 

common reference to the differential input of the preamplifier in the electrode. For this 

purpose, the reference electrode should be placed as far away as possible and on 

electrically neutral tissue (say over a bony prominence).Often this arrangement is 

inconvenient because the separation of the detecting electrode and reference electrode 
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leads requires two wires between the electrodes and the amplifier. It is imperative that the 

reference electrode make very good electrical contact with the skin. For this reason, the 

electrode should be large (2 cm x 2 cm). If smaller, the material must be highly 

conductive and should have strong adhesive properties that will secure it to the skin with 

considerable mechanical stability. Electrically conductive gels are particularly good for 

this purpose. Often, power line interference noise may be reduced and eliminated by 

judicious placement of the ground electrode. 

 

2.7 Causative Factors that Affect the Quality of EMG Obtained 

The causative factors are those which have a basic or elemental effect on the signal. 

These are divided into two groups: extrinsic and intrinsic. The extrinsic causative factors 

are those associated with the electrode structure and its placement on the surface of the 

skin above the muscle. They include: 

 The electrode configuration which describes: 

 the area and shape of the electrode detection surfaces which determine the 

number of active motor units that are detected by virtue of the number of 

muscle fibers in their vicinity;  

 the distance between the electrode detection surfaces which determines the 

bandwidth of the differential electrode configuration;  

 

 The location of the electrode with respect to the motor points in the muscle and 

the myotendonous junction which influences the amplitude and frequency 

characteristics of the detected signal.  

 

 The location of the electrode on the surface of the muscle with respect to the 

lateral edge of the muscle which determines the possible amount of crosstalk that 

may be detected by the electrode; and  

 

 The orientation of the detection surfaces with respect to the muscle fibers which 

affects the value of the measured conduction velocity of the action potentials and, 

consequently, the amplitude and frequency content of the signal. 
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The intrinsic causative factors are the physiological, anatomical and biochemical 

characteristics of the muscle. Unlike the extrinsic factors, they cannot be controlled due 

to limitations of current knowledge and technology. They include: 

 The number of active motor units at any particular time of the contraction which 

contributes to the amplitude of the detected signal; 

 

 The fiber type composition of the muscle which determines the change in the pH 

of the muscle interstitial fluid during a contraction; 

 

 The blood flow in the muscle which determines the rate at which metabolites are 

removed during the contraction; 

 

 The fiber diameter which influences the amplitude and conduction velocity of the 

action potentials that constitutes the signal; 

 

 The depth and location of the active fibers within the muscle with respect to the 

electrode detection surfaces -- this relationship determines the spatial filtering, 

and consequently the amplitude and frequency characteristics, of the detected 

signal; 

 

 The amount of tissue between the surface of the muscle and the electrode which 

affects the spatial filtering of the signal; and  

 

The length of the depolarization zone and ionic fluxes across the membrane, etc are 

factors that are yet to be identified. In this category, the firing characteristics of the motor 

units (which include the behavior of the firing rates of the motor units and any interaction 

among the firing rates, such as synchronization of motor unit firings) and the motor unit 

twitch are also included. These latter causative factors are presented in a dashed-line box 

because although they are causative, they are also deterministic in that they affect the 

EMG signal directly. The intermediate factors represent physical and physiological 

phenomena which are influenced by one or more of the causative factors, and in turn 

influence the deterministic factors. These include:  

 The band-pass filtering aspects of the electrode which is an inherent characteristic 
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of a differential electrode configuration; 

 

 The detection volume of the electrode which determines the number and weight 

of the motor unit action potentials that compose the signal; 

 

 Superposition of action potentials in the detected EMG signal which influences 

the characteristics of the amplitude and frequency of the signal; 

 

 Crosstalk from nearby muscles which contaminates the signal and may mislead 

the interpretation of the information in the signal; 

 

 The conduction velocity of the action potentials that propagate along the muscle 

fiber membrane; the conduction velocity affects the amplitude and frequency 

characteristics of the signal; and 

 

 The spatial filtering effect due to the relative position of the electrode and the 

active muscle fibers. 

 

The latter two factors are emphatically important because they dramatically affect the 

characteristics of the signal. As the distance between the active fibers and the electrode 

detection surfaces varies, two important concerns arise. Firstly, the spatial filtering 

characteristics of the detection arrangement change, thus altering the amplitude and 

frequency characteristics of the motor unit action potentials (MUAPs) which are within 

the detection volume of the electrode. Secondly, the relative movement of the electrode 

and the active fibers may be sufficient to place a new set of active motor units within the 

detection volume of the electrode and to remove some of the motor units from the 

detection volume. This consideration requires that if the muscle fibers change length 

during a contraction, then the electrode position must change similarly. With current 

detection techniques, it is difficult to satisfy this requirement because the electrode is 

affixed to the surface of the skin which does not change length in concert with the muscle 

fibers during a contraction. Thus, for practical reasons, signal stability can only be 

approached if the contraction remains isometric. If signal stability is not a consideration 
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for the analysis being performed, such as determining the activation time, then the 

limitation of the isometric contraction need not be a concern. The deterministic factors 

are those which have a direct bearing on the information in the EMG signal and the 

recorded force. These include: 

 The number of active motor units, 

 The motor unit force-twitch, 

 The mechanical interaction between muscle fibers, 

 The motor unit firing rate, 

 The number of detected motor units, 

 The amplitude, duration and shape of the MUAPs, and 

 The recruitment stability of motor units. 

When one studies the rich and convoluted interaction between the many factors that 

influence the information content of the EMG signal, it is reasonable to ask if there is any 

hope of using the EMG signal in a constructive fashion to describe the state of the 

muscle. The answer is a confident "yes" for some applications and a guarded "maybe" for 

other applications. For example, we can have confidence in measurements where an 

electrode, which does not detect significant crosstalk from adjacent muscles, is placed on 

the surface of the muscle between the innervations zone and the myotendonous junction 

for the purpose of: 

 Determining, in a particular subject, when the muscle turns "on and off" or 

 Describing if the muscle is increasing or decreasing its force output over a period 

of time when the fatigue processes of the muscle do not significantly affect the 

characteristics of the signal. If, however, the circumstances change from this 

specific condition, the interpretation becomes complicated and caution is 

required. 
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2.8 Correlation of EMG with Virtual Trajectory Timings 

 

As mentioned earlier EMG is an indication of muscle fiber depolarization and is therefore 

describing the activity of muscle. 

 

 B (   vtK (  vt i 

 

Equation (2.1) shows that activation and braking of joint action is described by active 

viscous damping (B) stiffness (K) and is  i passive damping which is due to the 

muscle property. i.e. EMG results from B(   vtand K (  vt.  Hence EMG can be 

present only when (   vtand/ or (  vt are non zero. 

Assuming that prior to movement ( vt), EMG in both agonist and antagonist 

muscle groups is minimum. A change in EMG amplitude relative to the minimum resting 

EMG thickness indicates a non- zero ( vt), and/or ( vt). Observations of the this 

experimental data showing joint trajectories and agonist EMG shows onset of the EMG 

burst prior to the onset of movement. This is referred to as the physiologically well 

established neuromuscular delay (Chen, 2010). A gradually descending signal must have 

arrived at this muscle to initiate the change in EMG. Following this EPH model put forth 

by Chen, this onset time of the Agonist indicates the latest time at where VT can begin. 

Just before VT starts, ( vt) and ( vt) is equal to zero and as soon as VT 

starts this becomes greater than zero. For this term to become non zero the slopes of theta 

and VT must either be different (different velocity) or theta and VT must be separated. 
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Also as VT further approaches vt becomes zero and  is maximum this is nothing but 

the point at which velocity peak and experiment peak shows that at this point antagonist 

EMG reaches to its maximum amplitude which is taken as the offset of the EMG.  

Agonist and antagonist EMG roughly refers to the torque pattern as sinusoidal 

waveform.  However, due to co-contraction, we say that agonist and antagonist bursts are 

not exclusively on and off.  This constitutes the overlap. Hence onset of antagonist EMG 

cannot be used to determine the VT. 
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CHAPTER 3 

RESEARCH DESIGN, HARDWARE AND METHODS 

 

 This study is extension of the Chen study. In order to obtain the accurate VT and to 

compare it with Chen’s result after obtaining manually, same data is processed in this 

study. Chen has collected data from neurologically intact college students. All of them 

were healthy right handed subjects. They were informed about the experiment and were 

allowed to do five practice sessions in order to get the exact idea of the movement and 

speed. 

 

3.1 Research Design 

In his design subject was asked to sit in to the chair comfortably, facing to the table. An 

adjustable arm support was attached on the table top and subject was supposed to rest 

arm on it. Movement positions were marked on the table as shown in figure. Buzzer was 

used to indicate the start of the movement.  

Two computers were used in the experiment, one was for controlling and 

initializing the haptic master and other was for data collection and EMG amplification. 

EMG from two muscles, position and force was recorded during each trial for all 

subjects. Both the computers were synchronized and kept ready before each trial. Few 

practice trials were carried before collecting the data to check the subjects comfort. To 

track the position and orientation of each segment trackstar sensor was mounted on haptic 

master cylindrical handle.  
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Figure 3.1 Experimental Design (Cited from Chen, 2010). 

 

3.2 Electrode Placement 

In order to collect proper EMG signal it’s highly important where we place the 

electrodes. Four electrodes were used for collecting EMG signal in Chen study. Two 

electrodes were placed on biceps, with 3cm distance in between and other two on triceps 

again with 3 cm distance. One electrode was used as ground/reference electrode and was 

placed on shoulder. Ground /reference electrode is necessary for providing a common 

reference to the differential input of the preamplifier in the electrode.  

Bellies of the biceps and triceps were cleaned with alcohol swabs before placing 

the electrodes, to ensure the better signal to noise ratio there by reducing the skin 

resistance. Pre-gelled general purpose electrocardiographic adhesive electrodes were 

used.  
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3.3 Hardware 

For above mentioned design, following instruments were used in Chen study. 

 EMG system 

 Trackstar position measurement system 

 Haptic Master (HM) 

 

3.3.1 EMG System 

A Grass Technologies® Model 15LT Bipolar Physiodata Amplifier System was used in 

the study. The Model 15A54 and 15A94 Quad Neuro-amplifiers, in the long line of high 

performance amplifiers from Grass are designed specifically for neuro-physiological 

measurements. The 15A54 has extended high frequency response to 6 kHz. The 15A94 

has high frequency response to 100 Hz, suitable for clinical applications in EEG and 

PSG. This EMG system was used to collect the EMG from four electrodes and to amplify 

it. 

 

3.3.2 Trackstar Position Measurement system 

Figure 3.2 shows the Trackstar position measurement system. This system uses a sensor 

to track the arm movement. Sensor was attached to the handle of the HM. Sensor and 

transmitter has to align in proper direction before collecting the data. The data collection 

program was used with this system. Programming was done in MATLAB by Kai Chen. 

With the data obtained from trackstar, time vs. radian plot can be obtained and is used to 

find the .  is the difference between starting angle and the angle at the end of the arm 
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movement in radian.  is also used as one of the input in the model. Also upper 

threshold  

Figure 3.2 TrakSTAR Device Introductions from Ascension Technology. 
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value is estimated from this system which is used to optimize the experimental result in 

model. 

 

3.3.3 Haptic Master (HM) 

The Haptic MASTER is 6 degrees of freedom, force-controlled haptic interface. It 

provides the user with a crisp haptic sensation and the power to closely simulate the 

weight and force found in a wide variety of human tasks. The programmable robot arm 

utilizes the admittance control (force control) paradigm, giving the device unique haptic 

specifications. 

The workspace of the Haptic MASTER is depicted in Figure 3.3. The kinematic 

chain from the bottom up yields: base rotation, arm up/down, arm in/out, illustrated in 

Figure 3.3. This makes 4 degrees of freedoms at the end effectors, which spans a 

volumetric workspace. 
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Figure 3.3 Haptic MASTER Workspace (cited from H3D, 2010). 

       Table 3.1 Specification of the Haptic Master (cited from H3D, 2010). 

Position resolution 4x10
-6

 - 12x10
-6

 [m] 1.6 X 10
-4

 [in] 

Stiffness 10x10
3
 - 50x10

3
 [N/m] 285.5 [lbf/in] 

Nominal/max force 100/250 [N] 22.5/56.2 [lbf] 

Minimal tip inertia 2 [kg] 4.4 [lb] 

Maximum velocity 1.0 [m/s] 39.4 [in/s] 

Maximum deceleration 50 [m/s
2
] 39.4 [in/s

2
] 

Force sensitivity 0.01 [N] 2.25x10
-3

 [lbf] 
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Source:http://www.h3dapi.org/modules/mediawiki/index.php/MOOG_FCS_HapticMAS

TER 

 

 

The Haptic MASTER measures the Cartesian forces exerted by the subject, 

measured close to the human hand, with a sensitive force sensor. An internal model then 

calculates the Cartesian Position, Velocity, and Acceleration (PVA), for which a (virtual) 

object touched in space would behavior as a result of this force. The PVA-vector is 

commanded to the robot, which then makes the movement by means of a conventional 

control law. The general control algorithm is illustrated in Figure 3.4. The internal model 

typically contains a certain mass, to avoid commanding infinite accelerations. The inner 

servo loop cancels the real mass and friction of the mechanical device. 

 

 

 

Figure 3.4 The General Control Scheme of the Haptic MASTER Comprises an Outer 

Control Loop, and an in Inner Servo Loop. A (virtual) model converts the force sensor 

signal to a Position/Velocity/Acceleration set point vector. The inner servo loop controls 

the robot to the PVA set point values (Vander Linde, 2002). 

 

http://www.h3dapi.org/modules/mediawiki/index.php/MOOG_FCS_HapticMASTER
http://www.h3dapi.org/modules/mediawiki/index.php/MOOG_FCS_HapticMASTER
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The Cartesian velocity, position and forces of the robot’s endpoint are measured 

1000 HZ are available as output via the Haptic MASTER Application Programming 

Interface (API). The API allows one to program the robot to produce haptic effects, such 

as spring, damper and constant force and to create haptic objects like blocks, cylinders 

and spheres as well as walls, floors, ramps and complex surfaces. These effects can be 

used to provide a haptic interface with realistic haptic sensation that closely simulates the 

forces found in upper extremity tasks (Adamovich et al., 2009). 

An important goal for the utilization of the Haptic Master was to take advantage 

of its multi-planar, 3-D workspace. To accomplish this goal and to accommodate subjects 

with both normal subject and the subject with a variety of impairments it was necessary 

to design several mechanical attachments to interface the upper extremity with the Haptic 

Master robotic arm (Adamovich et al., 2009). The Haptic MASTER can be fitted with 

any customized end effectors, facilitating different applications. Any self-made end 

effectors below 3 kg can be mounted at the end of the Haptic MASTER robot arm. Two 

different sized forearm supports were fabricated for different arm shape and one universal 

articulating arm support was purchased to support the forearm effectively, counteracting 

gravity. Subjects with arm function simply grasp a stationary 1.2 inch diameter, 6 inch 

height cylinder connected to the Haptic Master. The HM was programmed by Chen using 

a set of MATLAB functions (written by Ramirez) that implemented the HM’s C++ 

functions. 
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3.4 Methods 

In Chen study, he collected data from 10 subjects in four methods. 

 Unobstructed Fast Elbow Movement without Haptic Master 

 Unobstructed Fast Elbow Movement with Haptic Master 

 Unexpected Perturbed Movement 

 Arrested Arm Movement 

During these methods he collected raw EMG from biceps and triceps muscle, force, 

angular displacement in radians, HM force and position. Using this data he built the 

model for unobstructed fast elbow movement with HM. In the model (figure 3.5) he has 

entered all anthropometric data, starting time of the movement (estimated from the actual 

virtual trajectory, fig 3.6), saturation of the actual trajectory (estimated from the trackstar 

position plot) and to obtain VT plot, slope was calculated using the difference of starting 

and end point and dividing it to the saturation (manually estimated from the EMG). The 

main goal  
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Figure 3.5 Simulink Model.  

 

                  Figure 3.6 Actual Trajectory. 
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of the model was to replicate the actual trajectory in order to prove the efficiency of the 

model in planning the arm movement. 
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CHAPTER 4 

DATA PROCESSING AND MATLAB PROGRAMMING 

 

4.1 Data Processing 

In order to obtain reliable data, the calibration of the system was necessarily done in 

Chen study. He ran the system calibrations before the data collection, with procedures 

including calibrations of EMG, trakSTAR, HM and device synchronization hardware and 

programs. The typical calibration results are shown in the Figure 4.1. 

 

Figure 4.1 The Calibration of HM Forces, trakSTAR Positions and System 

Synchronization (cited from Kai 2010). 
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4.2 Trouble Shooting in Data Collection System 

In the data obtained by the Chen, (Figure 4.2) the noise of EMG was found to be much 

higher than the expected. It seems that the strength of signal was weaker than the noise,so 

the signal had been covered by the noise. The source of noise has been concluded to be 

from the transmitter of trackStar. After investigation, moving the trackStar transmitter to 

its 1 meter expired range can lead to inaccurate data, although it significantly reduced the 

EMG noise. 

 

Figure 4.2 the Recorded Environmental Noise. 
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Figure 4.3 the Filtered EMG Signal. 

Thus after getting raw data from Chen, each trail was analyzed and was filtered using 6
th

 

order Butterworth filter. As mentioned earlier for each subject 5 to 6 trials were recorded 

out of these trials good trials were selected for father processing. 

 

4.3 Synchronization Details 

Chen in his study optimized the onset and offset timings after synchronizing the data with 

trackstar position data. Thus in this study after obtaining the timings from the program, 

synchronization delay was added to it to get the correct start and end time. To calculate 

the synchronization delay timing of the start of the data collection for HM was checked. 

Then using this factor, matrix was obtained in which EMG starting time and HM data 

collection time was represented. First value of this particular matrix was the 

synchronization delay. Hence it was added to the time estimated by the program. 
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4.4 Programming Detail 

Filtfilt command is used in the program for filtering the raw EMG. Filtfilt performs zero-

phase digital filtering by processing the input data, both the forward and reverse 

directions. The result has the following characteristics: 

 Zero-phase distortion 

 A filter transfer function, which equals the squared magnitude of the original 

filter transfer function 

 A filter order that is double the order of the filter specified by b and a. 

 Filtfilt minimizes start-up and ending transients by matching initial conditions, 

and can be used for both real and complex inputs. Cut of frequencies used for low pass 

filter and high pass filter are 10Hz and 500 Hz respectively. 

   

4.4.1 Starting Point 

The majorities of studies evaluating the EMG do not report the methods used for the 

identification of EMG onset (Belenkii et al, 1967). In studies where the EMG onset 

determination method is described is usually performed by the visual evaluation of the 

EMG trace, generally without reporting the criteria on which this visually determined 

decision is made. Several studies reports criteria such as the earliest detectable rise in 

EMG activity above the steady state (Bowrsset and Zottarer, 1981) or the point where the 

signal first deviates, more than 1.5 to 2 Standard Deviation from the level recorded 

during the steady state. Some of the studies have also estimated it by using baseline of the 

EMG signal and multiplying it by some factor and then compared it to get the rise 

(Studenski et al, 1991). 
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Primarily looking at the previous study majority of them has dealt with the initial 

signal just before the actual movement as a basic element to estimate the major change in 

the amplitude of the EMG. Thus from the history of obtaining the onset and from the 

nature of EMG obtained from the subjects, the onset of EMG is nothing but the earliest 

detectable rise. As stated in the chapter 2, EMG amplitude is never zero to obtained the 

exactact rise in amplitude of EMG following algorithm is been used in this study.                       

 

           Figure 4.4 Standard deviation of the low amplitude EMG.  

 

 After filtering the EMG data, standard deviation of the initial low amplitude EMG 

(signal obtained during resting arm) was obtained (fig.4.4). 

 

 MATLAB function std was used to calculate the standard deviations and saved as 

a. Later this result was multiplied by 2.  

 

 Then each point of the EMG signal was compared with (2*a) to check the 

deviation of the signal amplitude from this factor and all results were saved. 

 Matrix was made of this results using temp (t). 

 Finally the first value of this matrix which is nothing but the deviation of the 

signal from the resting signal was divided by 1000 to get the actual time and 
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displayed as the start point of the EMG. It was divided by 1000 because during 

data collection sampling frequency was 1000 Hz. 

 

 The first value of t_emg matrix (synchronization delay) was then added in the 

final result obtained from the temp (1) and the starting point was displayed. 

 

 

MATLAB Code 

%%Starting Point of EMG 

clc  

clear all 

%%Loading the EMG data saved in text format 

data1=load('mar51.txt'); 

%% Filetering the data using butterworth filter 

[Bh Ah]=butter(6,2*10/1000,'high'); 

[Bl Al]=butter(6,2*500/1000,'low'); 

dh=filtfilt(Bh,Ah,data1); 

dl=filtfilt(Bl,Al,dh); 

plot (dl) 

%% Obtaining the standard deviation of initial points 

a=dl(1:2000); 

b=std(a,1); 

c=size(dl); 

t=1; 

%%Comapring each point of EMG with the 2*b 

for i=1:c 
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           if dl(i) >(b*2); 

          temp(t)=i; 

         t=t+1; 

     end 

 end 

%Synchronization 

%%sync function is made to calculate the t_emg matrix for synchronization 

starting_point =(temp(1)+(t_emg(1)))/1000; 

display(starting_point) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 
 

4.4.2 End Point 

 

Figure 4.5 Joints angle kinematics and EMG of Triceps and Biceps with start 

time and end time of VT (Cited from Chen, 2010). 

 

 

According to Chen study t1 is the start and t2 is the end point of VT (figure 4.5). As 

mentioned in earlier chapter VT offset time occurs at the peak of the velocity of the 

actual trajectory (Ghafouri and Feldman, 2001).  

 Experimental result shows that peak velocity occurs at the peak of antagonist 

EMG. Hence in this study peak of the antagonist EMG is taken as the end point of the 

VT. Following algorithm is used in this study to find the respective end point. 

 After filtering the EMG data envelope was obtained using Butterworth filter with 

cut off frequency 2 and order 6.envelope was obtained in order to get the linear 

plot of the signal. 
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 Each point of envelope was then compared with the next subsequent point until 

the peak point is obtained. 

 

 This peak point was then divided by 1000 to get the actual end point. 1000 was 

selected since the sampling frequency during data collection was 1000 Hz. 

 

 For synchronization first value of t_emg was added in to the peak point to get the 

actual end point. 

 

MATLAB code 

%%End Point 

close all 

clear all 

%%Loading the data 

data1= load ('nap22.txt'); 

%%Filtering using butterworth filter 

[Bh Ah]=butter(6,10/1000,'high'); 

[Bl Al]=butter(6,2*500/1000,'low'); 

 dh=filtfilt(Bh,Ah,data1); 

dl=filtfilt(Bl,Al,dh); 

%%To plot the envelope 

[Be Ae]=butter(6,2*2/1000); 

de=filtfilt(Be,Ae,abs(dl)); 

figure  

plot (dl) 

hold on 

plot(de,'r') 
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 a=size(d); 

 t=1; 

 %% Comapring each point of envelope to get the maximum point  

for i=2:(i+1):a-1 

   if de(tend)<=de(i) 

       t=i; 

   end 

end 

%% Synchronization using sync function 

end_point =(tend+(t_emg(1)))/1000; 

display(end_point) 

After obtaining the t1 and t2 from the MATLAB program, they were compared 

with the manual data. Also virtual trajectory plot was plotted for two subjects to check 

the accuracy of the program. Detailed results are shown in later chapter. 
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CHAPTER 5 

RESULT AND DISCUSSION 

 

5.1 Results 

After estimating the t1 and t2 from the MATLAB code for all the subjects they were 

compared with the manually obtained values. Table 5.1 shows the tabulated data of 

manually and automatically obtained values and the difference between both. Average of 

the absolute difference was taken and it was approximately 67 msec for t1 and 28msec for 

t2. 

     Table 5.1 Comparison of Hand and Automatically obtained t1 and t2. 

Subject t1_Hand t1_Code Diff in t1 t2_Hand t2_Code diff in t2 

S1 0.97 1.01 0.04 1.67 1.66 0.01 

S2 2.32 2.32 0 2.744 2.77 0.026 

S3 2.32 2.34 0.02 2.81 2.808 0.002 

S4 2.232 2.3 0.068 2.67 2.63 0.04 

S5 0.96 1.09 0.13 1.642 1.61 0.032 

S6 3.96 4.08 0.12 4.5 4.47 0.03 

S7 3 3.1 0.1 3.68 3.7 0.02 

S8 2.55 2.6 0.05 3.11 3.16 0.05 

S9 1 1.06 0.06 1.5 1.54 0.04 

S10 3.23 3.31 0.08 3.63 3.6 0.03 

 

            Later using MATLAB graphs are plotted to show the comparison of hand 

obtained and automatically obtained t1 and t2. Figure.5.1 and figure 5.2 shows the graph 

for t1 and t2 respectively. From graph it is clear that the difference between hand obtained 

and automatically obtained values is negligible. 
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                   Figure 5.1  Comparison between hand and automatically obtained t1. 

 

                   Figure 5.2 Comparison between hand and automatically obtained t2.  
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Table 5.2 Paired T- test for t1. 

                                          

Paired T for 

t1_Hand – 

t1_code        

        

        

 N Mean STD SE Mean    

        

t1_Hand 10 2.253 1.023 0.323    

        

t1_Code 10 2.321 1.032 0.326    

        

Difference 10 -0.0668 0.0419 0.0133    

        

95% CI for mean difference: (-0.0968, -0.0368)    

T-Test of mean difference = 0 (vs not = 0): T-Value = -5.04 P-Value =0.001  

 

Also paired T-Test was taken for the both the hand obtained and automatically obtained t1 

and t2. Table 5.2 shows the result of the paired test. From the results it is clear that t1 hand 

obtain values and automatically values are significantly values. Whereas for t2, (Table 

5.3) there was no significant difference; also hand estimated t1 values are little before the 

automatically obtained t1. 
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   Table 5.3 Paired T- test for t2. 

                                         

Paired T for 

t2_Hand – 

t2_code       

       

       

 N Mean STD SE Mean   

       

t2_Hand 10 2.795 0.988 0.312   

       

t2_Code 10 2.796 0.983 0.311   

       

Difference 10 0.0008 0.0328 0.0104   

       

       

95% CI for mean difference: (-0.0227, 0.0243)   

T-Test of mean difference = 0 (vs not = 0): T-Value = 0.08 P-Value = 0.940 

 

 Thus to check the accuracy of the MATLAB, VT was obtained from 

automatically obtained timings and it was plotted next to hand estimated VT. Figure 5.3 

shows the comparison of both the VT. In the figure blue color line shows the hand 

estimation and red line shows the automatic estimation of VT. There was slight 

difference in the slopes, but the automatically obtained VT is more parallel to actual 

trajectory as compared to that of the hand estimated VT. 
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Figure 5.3 Comparison of VT plot using hand and automatically obtained values for 

subject # 8. 

 

Further automatically obtained timings were put in to the model to see the model output. 

In the model, ramp block is used to input the slope for the VT. Slope is calculated by 

dividing the saturation time of actual trajectory by the difference of t2 and t1. Thus for 

subject # 4 calculated slope by hand determined values was 2.17 and that of values 

obtained by program was 2.31. 

       Table 5.4 Model Results for Subject #4. 

 Before Optimization After Optimization 

 Hand Code Hand Code 

SSE 0.36 0.3 0.33 0.29 

Damping 6.5 6.5 7 6 

Stiffness 16 16 22 19 
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Table 5.4 illustrates the result of the model before optimization and after optimization. 

For both the time SSE (sum square error for actual trajectory and modeled trajectory) 

with hand estimated timings were higher than the automatically obtained time. This 

indicates that the automatically obtained timings are more accurate than the manually 

estimated values. After optimization new damping (B) and stiffness (K) values were 

obtained. There was approximately 10%   to 15 % change in the B and K values. Figure 

5.4 shows the model result of both the inputs. The plots are almost similar to each other. 

 

                       Figure 5.4 Model output. 
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Figure 5.5 Hand estimated t1 and t2 for one subject done for several time to see the range. 

 

 

Finally to check how close the automatically obtained timing to the hand estimated 

timing, 9 hand estimations were done and plotted. Result shows all of them were close to 

the automatically estimated timings (Automatically obtained t1 = 2.300 sec and t2=2.774 

sec). 

 

5.2 Discussion 

Muscle co-contraction or co-activation is primary means by which the nervous system 

stabilizes the position of the limb. With this fact a relative damping model, for the 

planning of the limb movement was designed. As mentioned earlier stiffness, damping 

and trajectories plays an important role to replicate the movement of limb. In Chen 2010, 

he has enhanced this model with an EMG based determination of virtual trajectory and 

with physiologically realistic delays. In his study he used the perturbed and arresting 

movement to prove that the control parameters (VT, damping, stiffness) remains almost 

same even though kinematics and EMG changes. 
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            In this study on set and off set time of VT is obtained automatically to improvise 

the model output and then analyzed to see if the automated system gives the same result. 

To verify this all subjects hand estimated and automatically obtained timings were 

compared; also the model result was analyzed to check the accuracy of the automated 

system. All the result shows that the automatically obtained timings are more accurate 

than hand estimations and are easy to obtain. Thus this timings can be use to obtain VT 

and this VT can be used in to the model to get the better result. 
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APPENDIX A 

MATLAB FUNCTION FOR SYNCHRONIZATION 

 

Sync function used for synchronization in the main program. 

T_force=HMtest(:,[3 5 7]); 

If_F=size(T_force,1); 

F_fingdif=difnum(T_force,3,If_F,.001,1,1,1); 

F_Tangvel=(sqrt(sum((F_fingdif.^2)')))'; 

F_Tangvel=procfilt(F_Tangvel,1000); 

F_Tangvel=F_Tangvel'; 

t_hm=HMtest(:,1); 

% Plot the HM resultant force and displacement 

F_M = [t_hm'; F_Tangvel'/2000]; % make a matrix for data analysis 

figure; plot(t_hm,F_Tangvel/2000,'k'); 

hold on 

%% HMframe is used to identify the Matlab data collection from HMtest 

% This is used to find where the Matlab star first simple data 

flag = true;  

k=1; 

while ((flag) && (k<=100)) 

     if ((sum(HMforce(1,:)==HMtest(k,[3 5 7]))>=2) && ... 

            (sum(HMposition(1,:)==HMtest(k,[2 4 6]))>=2)) 

      HMframe=k
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      flag=false;       

     end 

    k=k+1; 

end 

% In 

 the extrmely case, HMframe may not available, then HMframe is equal 10 

if ~exist('HMframe','var') == 1 

    HMframe = 10; 

end 

td_emg=HMtest(HMframe,1)+45+(ceil(td*100))*10-(ceil(min(timeemg)*100))*10; 

t_emg=td_emg+round(timeemg*1000); 
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