New Jersey Institute of Technology

Digital Commons @ NJIT

School of Applied Engineering and Technology Syllabi

NJIT Syllabi

Spring 1-1-2020

SET 401-452: Fundamentals of Geodesy

Laramie Potts

Follow this and additional works at: https://digitalcommons.njit.edu/saet-syllabi

Recommended Citation

Potts, Laramie, "SET 401-452: Fundamentals of Geodesy" (2020). *School of Applied Engineering and Technology Syllabi*. 76. https://digitalcommons.njit.edu/saet-syllabi/76

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in School of Applied Engineering and Technology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

SET 401 - Fundamentals of Geodesy

COURSE NUMBER COURSE DESCRIPTION COURSE STRUCTURE COURSE DESCRIPTION	 SET 401 Geometric Geodesy, Map Projection, Surveying with SPCS, Physical Geodesy (3-0-3) (lecture hr/wk - lab hr/wk – course credits) Topics in geometric geodesy include definitions and the geometry of the reference ellipsoid, computations of geodetic coordinates on a reference ellipsoid, application of the <i>geodesic</i> of the direct and inverse problems (i.e., long distances and geodetic azimuth on the reference ellipsoid), geodetic datums, and coordinate systems and transformations. Concepts on map projections include basic properties and characteristics of common map projections (and distortions) with stronger emphasis on the projections used in State Plane Coordinate Systems (SPCS) such as Lambert conformal, transverse Mercator and UTM. Examples of applications of Geodesy include large boundary surveys, precise engineering/defortmation surveys and tunnel surveying and mapping 				
PREREQUISITE(S) CO REQUISITE(S) TEXTBOOK(S)/ REQUIRED MATERIALS COMPUTER USAGE	 CE 200 or equivalent, SET 302 A. Text: Instructor provided materials B. Surveying: Theory and Practice, by Anderson et al., 7th Ed. McGraw Hill C. Geodesy for Geomatics and GIS Professionals by Elithorp and Findorff available from http://xanedu.proquest.com/originalworks/elithorp, 1-800-218-5971, ISBN 1-59399-087-1 Fortran90, MATLAB, Word, Excel 				
CLASS TOPICS	Geometric Geodesy, Definintions of various Geodetic Datums, Radii of Curvature of Reference Ellipsoid, Normal Section Azimuth, Coordinate Transformations, Geodetic Datums, Map projections and surveying with State Plane Coordinates. Gravimetric Geodesy, Geoid, and deflection of the vertical, Applications				
GRADING POLICY	Homework/Computer20 %Reviews (Video/Text)15 %Quizzes15 %Midterms (2 x 10%)20 %Final Exam30 %Note: Cannot pass course if you are having failing grades on Midterms and final examAlso, if you achieve an A for all homeworks, Quizzes and the Midterms, you will not be excused				
Student Behavior	from the final. There will be no makeup exams. NJIT has a zero-tolerance policy regarding cheating of any kind and student behavior that is disruptive to a learning environment. Any incidents will be immediately reported to the Dean of Students. In the cases the Honor Code violations are detected, the punishments range from a minimum of failure in the course plus disciplinary probation up to expulsion from NJIT with notations on students' permanent record. Avoid situations where honorable behavior could be misinterpreted. For more information on the honor code, go to http://www.njit.edu/academics/honorcode.php				
STUDENT BEHAVIOR MODIFICATION TO COURSE PREPARED BY COURSE COORDINATED BY	 Online protocol The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be notified in class of any changes to the outline. Dr. L. V. Potts Dr. L. V. Potts 				

COURSE OUTLINE 2020

Week	Week of	Assignment Due	Reading/Activity	Topics
1.	20-Jan	Video Review Week 1	A: 1 B: Chapter 1 B: Appendix A B: Appendix C C: Chapter 3	Introduction: History of Geodesy Geodesy and Other Sciences, Geodesy for Surveyors Math Review (Parametric Equation of Surfaces)
2.	27-Jan	Review Video Week 2 HW#1	A: 2 B: Appendic C C: Chapter 5 Moodle	Curvature of Reference Surfaces Fundamental Surfaces in Geodesy Types of Latitudes Radius of Curvature of Reference ellipsoid Compute Arc Lengths on the Datum Surfaces
3.	3-Feb	Review Video Week 3	C: Chapter 5	Geodetic Computations: Latitudinal and Meridional Arc Length Areas of Quadrangles
4.	10-Feb	Review Video Week 4 HW#2	A: 3 Chapter 7	Geodetic Computations (cont) The Geodesic Directions & Distances on the Ellipsoid Geodetic Direct Problem Geodetic Inverse Problem
5.	17-Feb	Review Video Week 5 Quiz I	A: 4, 7 B: Chapter 14.1 - 14.3 C: Chapter 5, 8	Geodetic Datums: NAD27, NAD83 NGS Software - NADCON
6.	24-Feb	HW#3 Review Video Week 6	A: 5 B: Chapter 11	Map Projections: Concepts of Map Projections Definition and Uses
7.	2-Mar		Midterm I (covers Weeks 1-4)	Map Projections (cont): Conformal Map Projections Map Projections in Surveying
8.	9-Mar	HW#4 Review SPCS Notes (Part 1)	B: Chapter 9.11 C: Chapter 8	Positioning on SPCS State Plane Coordinate Systems (SPCS) EDM (topocentric) distances vs GPS baselines Geodetic Azimuth vs Grid Azimuth
9.	15-22 Mar	SPRING RECESS		
10.	23-Mar	HW#5 Review SPCS Notes (Part 2)	B: Chapter 11 C: Chapter 4, 10 A: 8 & 9	Position on SPCS (cont.) Total Station Traverse computation with SPCS GPS traverse adjustment
11.	30-Mar	Review Video Week 11 Quiz 2	B: Chapter 4 (Adv)	Geodetic Surveying & Applications Geodetic Survey Data Corrections & Reductions Geodesy Application for Large Boundary Surveys Physical Geodesy Basic Concepts of Physical Geodesy Gravitation, Gravity Potential, gravity anomlies

12.	6-Apr	HW#6 Review Video Week 12	Midterm II (covers Weeks 5- 11a)	Heights Heights Height: Physical vs Geometric Geoid vs Mean Sea Level Orthometric Height & Leveling
13.	13-Apr	HW#7 Review Video Week 13	A: Moodle B: Chapter 5 (Adv)	Height Datums Vertical Datums: NGVD27 & NAVD88, Great Lakes Datums, Datums of Local and State Government Agencies Local Tidal Datum
14.	20-Apr	Review Video Week 14 Quiz 3		Geodesy for Surveyors National Spatial Reference System (NSRS) Purpose & Components of NSRS Surveying on the NSRS Coordinate (Datum) Transformations
15.	27 Apr	HW#8 Review Video Week 15		Geodesy Outlook: Geodesy in the 22 st Century Modern Development in Geodesy Final Review
16.		Final Exam (online exam: Covers Weeks 11b -15) (see Registrar Homepage for schedule details)		

CLASS HOURS

Asynchrounous Online

OFFICE HOURS (GITC 2510)

Mondays 4:00 pm - 5:30 pm

Or by appointment: (973) 596-8191 or lpotts@njit.edu

HOMEWORK - IMPORTANT

SOFTWARE ASSIGNMENTS

You will be required to submit a printout of the code (e.g., Matlab, or Excel worksheet). Submission will include a legible printout of the code and a description (use a flowchart) of how the algorithm was implemented. The first (few) page(s) should show a flowchart with sufficient details to explain how the algorithm(s) are implemented. Be liberal with the comment statement in the computer code. I will go over this in more detail when a programming assignment is given. Each assignment is to be done individually.

Additional Information:

1. <u>Materials Required</u> -- Calculator.

2. <u>Student work and assignments</u> The course will be administered online via course Learning Management System (LMS). CANVAS is the preferred LMS for NJIT. <u>All assignments</u> such as homeworks, quizzes, and video reviews will be in the form of online quizzes. Assignments on programming will require uploads of the programs file (Matlab, Exel etc). Any assignments (HW, Quiz, Reviews or coding) that are submitted past the due date will be subject to penalties ie., -10% per day past due). Homework will be in the form of a quiz – submit your responses via Canvas. Only one chance per homework quiz. It is recommended that you complete your entire homework problems on a separate computation pad and then enter your responses via the Canvas quiz environement. Be sure to detail all calculations and steps in case you wish to resolve conflicts with the solutions from Canvas.

All assignments are due on the date as posted in Canvas.

3. <u>Reviews of Weekly Learning Objects (Videos)</u> is due the Sunday at midnoight of that week. View the learning object in your web browser (e.g., Internet Explorer) automatically. Your review will be a graded quiz administered via Canvas

4. Unexcused <u>omissions</u> of more than three weeks of submissions (videos and HW's) will result in a grade of F.

5. The NJIT <u>*Honor Code*</u> will be upheld, any violations will be brought to the immediate attention of the Dean of Students.

6. Students will be informed of any *changes to syllabus* at least one week in advance.

7. To schedule consultation *outside office hours*, send request via email

9. Grading

Score Assignment D = 51-57 C = 57.1 - 63.0 C+= 63.1 - 70.0 B = 70.1 - 77.0 B+= 77.1 - 85.0A > 85