New Jersey Institute of Technology Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Fall 2019

ME 315-001: Stress Analysis

K.A.Narh

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Narh, K. A., "ME 315-001: Stress Analysis" (2019). *Mechanical and Industrial Engineering Syllabi*. 76. https://digitalcommons.njit.edu/mie-syllabi/76

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

You may skip to page 3 for ABET format Syllabus

ME-315-001 STRESS ANALYSIS FALL 2019

Tuesday, Thursday: 1:00 PM – 2:20 PM, MEC 221

INSTRUCTOR:	Dr. K.A. Narh, 202 MEC					
	Phone: (973) 596-3353; Email: narh@njit.edu					
TEXTBOOK:	Advanced Mechanics of Materials and Applied Elasticity 5th edition,					
A.C. Ugural and S.K. Fenster, Prentice Hall (2012).						
REFERENCE BOOK	Mechanics of Materials, R. Craig (Wiley), 3rd edition					

HOMEWORK:Homework Assignments are due one week after they are assigned. Solutions to
SOME homework problems will be reviewed in classNOTE:All homework and extra credit assignments must be submitted in person in class,
unless there was prior excuse, which must go through the Dean of Students.

EXAMS: There will be three exams during the semester. There will be **NO** make-up exams.

PREREQUISITE BY TOPIC:

- 1. Differential Equations (Math 222)
- 2. Strength of Materials (Mech 237)
- 3. Engineering Materials and Processes (ME 215)

 FINAL GRADE:
 Course average is based on exams and homework.

 Item
 Weight (%)

	vveight (70)
Examination 1	30
Examination 2	30
Homework	10
Final Examination	30

OFFICE HOURS: Wednesday 2:00 PM - 3:00 PM, or by appointment only. **There will be no office hours a day either before any scheduled exam or during the exam day.**

EXTRA-CREDIT ASSIGNMENTS:

Extra-Credit Assignments will be given periodically. There will also be extra-credits for class participation. These Extra-Credits are added to the final Grade Points.

GRADING SCALE: The grading scale will be as follows: A (90-100); B⁺ (85-89); B (80-84); C⁺ (75-79); C (70-74); D (55-69); F (<55)

CLASS RULES: Late Homework submissions are NOT ALLOWED. Sleeping in class is unacceptable. TURN OFF ALL CELL PHONES

NJIT STUDENT HONOR CODE THIS WILL BE STRICTLY ENFORCED.

NOTE: All the above items may be subject to change on the instructor's discretion. (For example, the Grading Scale may be adjusted to reflect the class average.)

I strongly recommend that you purchase and use a quality graphing calculator capable of performing algebraic manipulation for this course. A TI NSpire Cx-CAS is TI's top of the line calculator, and is fantastic for this course. The TI-89 Titanium is nearly as capable, somewhat cheaper, and quite a bit more available. *Learning to use the features of your calculator is your responsibility.*

ASSIGNMENT SHEET

FALL 2019

Textbook:- Advanced Mechanics of Materials and Applied Elasticity 5th edition.

By A.C Ugural and S.K. Fenster, Prentice Hall, 2012

Prerequisites: Math 222, Mech 237, ME 215

ME 315-001 STRESS ANALYSIS

Note: Solutions for Problems in red will be posted on CANVAS after review in class.

Week	Solutions for Problems in red will be p Subject	Articles	Problems
1, 2 9/3, 9/10	Introduction, Review of fundamentals: forces and their distributions on a body, Static analysis: Internal Moment Equations via Free-body diagrams Stress tensor		
	Equilibrium equations, transformation of stresses, principal stresses	1.1 to 1.7 1.8 to 1.10	1.1, 1.2 1.13, 1.14, 1.21
3 9/17	Mohr's circle for stress Three-dimensional stresses	1.11 1.12 to 1.14	1.26, 1.27, 1.41 1.55, 1.66
4 9/24	Normal and shearing strains, strain tensor, compatibility Transformation of strains	2.1 to 2.4	2.1, 2.3, 2.5, 2.7
5 10/1	Engineering Materials, Stress-strain relations	2.5 to 2.6 2.7 to 2.10	2.9, 2.15, 2.17 2.36, 2.38, 2.40,
6 10/8	Strain gages Strain energy Saint Venant's principle	2.11 to 2.14	2.41, 2.42 2.52, 2.54, 2.59, 2.66, 2.67
<mark>7</mark> 10/17	Review Problems 10/15 Exam #1		
8 10/22	Plane stress, plane strain Airy stress function	3.1 to 3.4 3.5 to 3.6	3.1a , 3.2, 3.3 , 3.4 3.5, 3.8, 3.10 , 3.16
10/24	Stress and strain in polar coordinates Stress concentration	3.8 to 3.9 3.10 to 3.11	3.20, 3.24 3.36
9 10/29 10/31	Failure theories Comparison of yielding criteria	4.1 to 4.8 4.9 to 4.12	4.4, 4.5 (Table D1), 4.6, 4.7, 4.9a, 4.10 4.25, 4.27a
10 11/5 11/7	Axisymmetrically loaded members Shrink fit, composite cylinders	8.1 to 8.4 8.5	8.1, 8.4, 8.6 (Eq. 8.14), 8.10, 8.11 (Eq. 8.18), 8.13 (Hk's law; Eq. 8.8) 8.21, 8.22, 8.32 (Fig. 8.11, and Ex. 8.5)
11 11/12	Rotating disks	8.6 to 8.8	8.36 (Eq. 8.30), 8.37, 8.38, 8.39
<mark>12</mark> 11/26	Review Problems 11/14, 11/19 Exam #2		<mark></mark>
<mark>12</mark> 11/28	THANKSGIVING RECCESS	THANKSGIVING RECCESS	THANKSGIVING RECCESS
13 12/03, 12/05	Energy methods, Castigliano's Theorem Virtual Work, Ritz method	10.1 to 10.4 10.7 10.8 to 10.11	10.2, 10.3, 10.4, 10.5 10.41, 10.42, 10.43
14 12/10, <mark>12/12</mark>	Elastic stability of columns Actual columns Final Exam Review	11.1 to 11.6 11.7 to 11.9	11.2 11.12, 11.13, 11.18, 11.21, 11.35
<mark>15</mark>	12/14 Final Exam		

ABET Format Syllabus

COURSE NUMBER	ME 315					
COURSE TITLE	Stress Analysis					
COURSE STRUCTURE	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)					
COURSE	A. D. Rosato					
COORDINATOR						
COURSE DESCRIPTION	This course provides the theoretical background to stress analysis in mechanical design. Topics include two-dimensional elasticity, transformation of stress and strain, plane stress and plane strain problems, axisymmetric members, buckling criteria and failure theories.					
PREREQUISITE(S)	ME 215 – Engineering Materials and Processes; Mech 237 – Strength of Materials; Math 222 – Differential Equations					
COREQUISITE(S)	None					
REQUIRED, ELECTIVE, OR SELECTED ELECTIVE	Required					
REQUIRED MATERIALS	Mechanics of Materials, R. Craig (Wiley), 3rd edition.					
Materials (not Required)	Power-point lecture notes provided by instructor					
COMPUTER USAGE	MS Excel; MS Word for Homework Assignments					
COURSE LEARNING OUTCOMES/	Course Learning Outcomes	SOs*	Expected Performance Criteria			
EXPECTED PERFORMANCE CRETERIA:	1 Use Mohr's circle to fully analyze the stress/strain state in a body1,		Exam Question (80% of the students will earn a grade of 75% or better on this question)			
	2. Explain how Mohr's circle is related to the stress transformation equations1,2		Homework Assignment (80% of the students will earn a grade of 75% or better on this assignment)			
	3. Solve stress /strain eigenvalue problems	0				
	4. Apply various failure theories needed in the design process	1,2	1) Exam Question (same as 1)			
	5. Explain and describe the relationship between stress and strain tensor1		Homework Assignment (same as 2)			
	6. Define plane stress/ plane strain Explain Airy's Stress function for 2D problems	1	Homework Assignment (same as 2)			
	7. Develop equations for and solve axisymmetric problems - plate with hole, point loads on a half-space	1	Exam Question (same as 1)			
	8. Solve problems involving thick- walled cylinders, shrink-fits, and 1) Exam Ques		Exam Question (same as 1)			

	rotating of	lisks							
	9. Descri energy, d	9. Describe the concepts of strain energy, deformation work and explain Betti's reciprocity theorem				Homework Assignment (same as 2)			
	and apply	10. Explain Castigliano's theorems and apply them to problems on beam deflections, and rotations				Exam Question (same as 1)			
		11. Apply Castigliano's theorems to indeterminate structures			1,2	Exam Question (same as 1)			
	-	12. Explain elastic stability related to column buckling			1,2	Homework Assignment (same as 2)			
	13. Solve problems	-	column bu	ıckling	1,2	Exam Question (same as 1)			
CLASS TOPICS	st 2. M 3. N 4. S 5. S 6. P 7. S 8. A cy 9. T 10. E	 Introduction, stress tensor; Equilibrium, transformation of stresses, principal stresses. Mohr's circle for stress, Three-dimensional stresses. Normal and shearing strains, strain tensor, compatibility, Transformation of strains. Stress-strain relations. Strain energy, St. Venant's principle. Plane stress, plane strain, Airy stress function. Stress & strain in polar coordinates, Stress concentration. Axisymmetrically loaded members, Shrink fit, composite cylinders, rotating disks. Theories of Failure. Energy methods, Castigliano's Theorem, Virtual Work. Elastic Stability of Columns. 							
STUDENT OUTCOMES	1	2	3	4	5		6	7	
(SCALE: 1-3)	3	3	-	-	-		-	-	
	3 – Strongly supported 2 – Supported 1 – Minimally supported								

* Student Outcomes