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ABSTRACT

STOCHASTIC AND DETERMINISTIC DYNAMICS INVESTIGATION OF THE
MICROSTRUCTURE OF GRANULAR MATERIALS

by
Vishagan Ratnaswamy

Granular materials are ubiquitous in one's daily life. They can be found in the cereal you eat, the

sugar you put in your coffee or the sand you walk on in the beach. The study of granular

materials has a rich history dating back to the 17 th century where Kepler studied the packing of

particles. The compaction of granular materials is a problem that is studied by using theory,

experiments and simulations. While these studies have yielded some important results, there still

are many details about the mechanisms of granular compaction that are unknown.

In this thesis, the density relaxation phenomenon is modeled using both Monte Carlo and

discrete element simulations to investigate the effects of regular taps applied to a vessel having a

planar floor filled with monodisperse spheres. Results suggest the existence of a critical tap

intensity which produces a maximum bulk solids fraction. A key result that is found in this thesis

is the mechanism responsible for the relaxation phenomenon is an evolving ordered packing

structure propagating upwards from the plane floor.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Overview

The evolution of the bulk density of granular materials is a phenomenon that is heavily

studied. The importance of those density studies have impacts in areas of industry such

as pharmaceuticals, bulk process handling, as well as in the agricultural industry. Every

year the bulk processing industry loses money because of the waste in handling granular

materials, so there is a vast interest in understanding how these materials behave whether

one needs to transport them, or pack them into dense configurations.

The way that granular materials arrive at various densities depends very much on

their material parameters such as their restitution coefficient, inter-particle friction, size

and geometry of the grain size and so forth. In addition to those properties, the type of

vessel whether it is cylindrical or parallelepiped, along with the system size (how tall and

wide the vessel is) plays a strong role in how dense the structure of the material becomes.

The dryness of the material can also provide different effects on how these granular

systems compact as well as the roughness of the base of the system. The way that one

perturbs a system of granular material can also impact the way such systems arrive at

their packed states. For example, one can perturb a vessel by continuously vibrating the

floor of the vessel, or applying discrete taps to the vessel through the floor.

Continuous vibrations involve applying a sinusoidal pulse to a granular material

repeatedly without any time of relaxation of the material. The bulk density, otherwise

known as the solids fraction, of the system of particles is then measured after one decides

1
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to stop vibrating the vessel. Discrete vibrations are perturbations in which the system of

particles is perturbed by a sinusoidal pulse; however, there is a period of relaxation of the

media in between pulses and the solids fraction is measured after the system is measured

in the time after the system is relaxed and before the next tap is applied.

The compaction of granular materials has been studied in the three typical ways:

experiments, theory, and simulations. Experiments have covered vibrating as well as

discrete perturbations to a vessel of material [23, 26]. The theory that has been

developed has come from a statistical mechanics approach and has looked at the

compaction of granular systems from a 1 -D view [71]. In addition to theory and

experiments, researchers have studied the compaction process through both stochastic as

well as deterministic means. Such stochastic means are through Monte Carlo method and

for the deterministic methods; researchers have used dissipative molecular dynamics.

1.2 Evolution of Solids Fraction in Published Literature

The compaction process of the granular matter has an extensive history and the time

evolution of bulk solids fraction is widely represented in the literature. The formation of

regular and irregular configurations of particles during granular compaction is naturally

accompanied by study of the microstructure geometry. The following sections and

subsections are constructed to provide an overview of the experimental, and simulation

approaches that have been applied to the problem of density relaxation. More

specifically, experiments involving discrete taps and continuous vibrations of particulate

systems will be reviewed, following by related numerical simulations involving Monte

Carlo and discrete element methods.
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1.3 Experimental Work

This subsection provides a concise review of the experimental results reported in the

literature in which continuous vibrations and discrete taps have been used.

1.3.1 Continuous Vibration

An early study was done by Stewart [15] where they found a maximal improvement in

the solids fraction by continuously vibrating a bed of particles with a low amplitude-high

frequency protocol. Results obtained by Stewart were also found by Evans [16]. Those

results gave why to a dimensionless parameter that is used widely in density compaction

called the dimensionless acceleration, which will be called F throughout this thesis. The

dimensionless acceleration is characterized by Equation 1.1 shown below where f is the

frequency of the tap, a is the amplitude of the tap, g is the gravitational acceleration.

(1.1)

Studies in continuous vibration of granular media were also performed by Zhang

et al [20], where a cylindrical vessel of acrylic monodispersed spheres were vibrated for

approximately ten minutes, where after the solids fraction was measured. In their studies,

they performed a wide variety of amplitudes and frequencies to investigate which

amplitude-frequency pair gave the most dense solids fraction. Experiments in [20] looked

at the improvement in solids fraction which is the ratio of the difference in the final and

initial solids fraction to the initial solids fraction.
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1.3.2 Discrete Tapping of Granular Matter 

Ribiere et al [61] experimentally studied granular dynamics subjected to gentle 

mechanical taps. They determined the compactivity using the fluctuations in the packing 

fraction in the equilibrium (stationary state). Their experiments consisted of a cylindrical 

vessel of diameter 10 em filled with glass spheres of diameter 1 mm. A picture of the 

experimental setup is shown in Figure 1.1 below. 

Figure 1.1 Experimental setup to apply discrete taps to a cylindrical vessel taken from 
[61 ]. 

The tapping is brought about by an electromagnetic exciter that is connected to a 

voltage that induces vertical displacements to the moving part of the container and the 

beads. Each tap is an entire cycle of a sin wave at a fixed frequency of 30 Hertz. After 

every tap, there is a period of one second of relaxation. The authors compare their results 

to those experiments using flow pulses [66]. The experiments conducted in [61] produced 

a steady state and may correspond to a balance between convection and compaction. In 

the Ribiere's experiments [61], they ran cases for different dimensionless accelerations 
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by varying the amplitude of the tap with a constant frequency of 30 Hz. It was observed

in their results that to reach a high value of solids fraction, a small tapping intensity

should be used.

Ribiere et al [61] then discussed the influence of the initial state (poured state). To

investigate the influence of the initial state, they looked at two states: one with a high

packing fraction ( ρ0  0.6 3 ) and one with a low packing fraction ( ρ0 0.5 82 ). They

showed that both states reach essentially the same bulk equilibrium state as shown in

Figure 1.2. In [61], the authors observed that the number of taps is larger for

decompaction (going from high density to lower density) than for compaction which is

because compaction is aided by gravity.

Figure 1.2 Plot of the evolution of the solids fraction of two different states. It can be
seen that the final state is the same even though the initial state is different taken from
[61].

Another aspect in their studies that was discussed in [61] was the influence of the

tap duration. For the tap duration analysis the authors looked at frequencies of 30, 60 and

90 Hertz and their corresponding gammas. They looked at the equilibrium packing
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fraction versus the corresponding gamma for each frequency and showed that the

equilibrium packing fraction decreases for each frequency as the gamma increases.

The authors in [61] plotted the fluctuations as a function of the stationary solids

fraction, and showed that it produced a single master curve implying that the fluctuations

and the stationary solids fraction are linked and do not depend on the values of frequency

and gamma. Their results are in agreement with Ciamarra et al [66] where they used

numerical simulations of granular packings using flow pulses.

The results obtained in [61] strongly support the idea that the stationary state can

be described by one parameter, the packing fractions. The preceding statement is only

true for the stationary state. In [61], the authors use the fluctuations and the stationary

packing fraction to obtain the compactivity described by Edwards. Ribiere et al [61]

plotted the compactivity versus the stationary solids fraction, and showed that the

compactivity decreases as the stationary solids fraction increases. The compactivity for

tapping intensities for a frequency = 30 Hertz was plotted and the authors showed that the

compactivity is linked to the tapping intensity.

They note that an increase in gamma increases the average solids fraction for an

acceleration less than three. For accelerations larger than three, there is a slow decrease.

The authors only recovered the reversible branch (frequency used is 30 Hertz) as shown

in Figure. 1.3. They explained it because the number of taps used was large enough to

allow the system to reach the stationary stage.
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Figure 1.3 Plot of the equilibrium solids fraction versus the acceleration F. The authors
were able to obtain the reversible branch by reducing the acceleration taken from [611.

1.4 	 Simulation Studies

In what follows, a succinct review of Monte Carlo and Discrete Element simulations of

the density relaxation phenomenon is given. Both simulation methods have been used

extensively to study the compaction of granular materials. While, Monte Carlo

(stochastic) simulations and the discrete element method (DEM) are based on very

different principles, both methods give results that have been verified by experiments.

There sometimes is a stronger preference to use DEM simulations because the method is

governed by Newton's equations of motion and would hence provide a realistic portrait

of the dynamics taking place in the particle system being investigated.

1.4.1 Monte Carlo Simulation

The Monte Carlo simulation method has been used to study granular systems by

randomly applying displacements to particles which results in similar "dynamics" that
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can be obtained by using Newton's laws of motion. However, one important point to

note is that for the Monte Carlo simulation method, there is no real concept of time or

forces because the algorithm is not based upon deterministic dynamics.

Another use of the Monte Carlo simulation was done by Rosato et al [46] where

he studied the size segregation of a system of polydispersed particles which undergoes

vibration. Mehta and Barker [52] also used the Monte Carlo simulation to study granular

packings where they used a linear expansion for the system of particles along with lateral

displacements.

Ribiere et al [60] also performed MC numerical simulations where they have the

following parameters: 4096 monodispersed spheres of radius R. Container is a box with a

flat square bottom measuring 32 particle radii's in each of the lateral dimension. Periodic

Boundary conditions are imposed on the horizontal directions. There is a free interface at

the top of the packing. A tap is simulated in two stages, the first stage is where the

packing is dilated vertically given by Equation 1.2, where s is the dilation parameter that

is proportional to the square of .

(z — R) -->(z— R)(1 + s) (1.2)

The next stage simulates the gravitational re-deposition using a nonsequential

algorithm. The model only takes into account the steric constraints because that's

important for compaction to occur. They found that their simulations as well as their

experiments show the cage motions as well as the jumps. Cage motion is where a grain is

always surrounded by the same neighbors. A jump is a displacement where the grain
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moves significantly more than the mean square displacement of a grain. The simulations

in [60] confirm that jumps as well as caging occurs. The characteristics of the caging

motion change during the simulation due to the evolution of the packing fraction.

The authors in [60] found that jumps always yield a large displacement in the

direction of gravity. The above statement corresponds to the fall of a bead in a hole

located beneath it. This is correlated to the compaction mechanism. In Ribiere et al's

[60] simulation of 10000 taps only about 100 jumps occurred which happened during the

beginning of the simulation. That corresponds to when the packing fraction is farm from

the steady state value. They then seek to understand the evolution of the jumps by

comparing the jumps that are inhibited in the simulations to normal jumps. In [60] the

authors modified their algorithm to inhibit jumps, and then checked their results to that

obtained using molecular dynamics. The results showed that when without significant

jumps, the increase of packing fraction was slower.

The packing obtained after a large number of taps is less dense with jumps than

one without jumps. The authors in [60] explained the above using energy landscape in

which two states are separated by potential barriers that cannot be avoided by many slow

events.

Jumps play an important role in the evolution of media. The number of jumps

decreases as the system compacts. In [60], the effect of jumps was studied by looking at

the mean squared displacement of a grain. The authors looked at a modified random walk

model to describe the cage motion to look at the diffusive properties without jumps, in

which cage motions are the only allowed displacement. Their conclusions are that jumps

play an important role in the macroscopic behavior of media. Their simulations showed
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that compaction is slower and that the state reached after long time is less dense if the

jumps are inhibited.

That observation is surprising because such rare behavior in an equilibrium system

have little effect on the overall evolution. The above results for out-of-equilibrium

granular media can also be valid for out-of-equilibrium systems such as glasses, colloids,

etc, and can be useful when studying granular media under shearing.

In addition to tapping using the Monte Carlo simulation, there was also the use of

flow pulses where a system of particles were submerged and then tapped using the pulses

to measure the solids fraction as one of the quantities of interest. Such cases have been

done by Ciamarra et al [66].

1.4.2 Discrete Element and Molecular Dynamics Modeling

The use of the discrete element method (DEM) that was developed in 1971 took shape

from molecular dynamics that is used the statistical physics community. The DEM is

used to model the behavior of bulk solids. The main premises of the DEM is to solve

Newton's equations of motion for a system of particles where such particles are modeled

using a dissipative force model. Unlike molecular dynamics, DEM accounts for the

dissipation in energy in the collisions between particles.

The studies that have been conducted using DEM can be seen in Luding [46],

Roasto [49], and Liu [47]. In addition, studies done by An et al [58] where they studied

three dimensional systems subjected to vibrations. The focus of their work was to look at

how the vibration conditions such as the amplitude and frequency as well as inter-particle

friction play a role in the packing of the system of particles. They showed that increasing

the amplitude or frequency of the vibration will cause the packing fraction to increase
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then decrease. Also, the sliding and rolling friction had an effect of decreasing the

density of the packings. In addition, they found that a loose packing had a smaller

coordination number, a less peaked radial distribution function.

1.5 Objective

In this thesis, the study of density relaxation of granular materials will be investigated

through simulations. The simulations that will be used are broken into two categories:

stochastic and deterministic. For the stochastic simulation, we will use a Monte Carlo

method with a Metropolis approach to simulate a three dimensional system of spheres

subjected to several uniform expansions. To measure how dense the system is the use of

a combination of techniques such as the solids fraction, vertical center distribution and

coordination number will be employed.

Dissipative molecular dynamics was also used to model the compaction of

granular materials by using a discrete tapping protocol. For that method, the discrete

element method was used where the interactions of particles are modeled using a spring-

dashpot model, and the equations of motion are integrated to obtain velocities and

accelerations. Then, the same quantities such as the solids fraction, coordination number

distribution and vertical center distribution is computed as they were for the Monte Carlo

simulations. The investigation was performed for various amplitudes as well as

frequencies to determine how the systems of particles behave.
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1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the Monte

Carlo simulation method and the results that were obtained by employing it. Chapter 3

describes the discrete element method along with a kinetic energy analysis of the tapping

parameters. Chapter 4 describes the results that were obtained using the DEM

simulations. In Chapter 5, the summary of the results as well as the conclusion is

presented. Additionally, suggested future directions with regard to the research done are

presented in chapter 5.



CHAPTER 2

MONTE CARLO SIMULATION METHODOLOGY AND RESULTS

2.1 Introduction

In this chapter, the behavior of granular materials will be modeled by using a stochastic

simulation technique, the Monte Carlo method. In [96], the Monte Carlo method was

used to investigate the expansion of a system of monodisperse spheres in a parallelepiped

using various lifting protocols such as a linear expansion, or a combination of a linear and

uniform expansion. The purpose of this work is to investigate the process by which the

system density increases, and in parallel to carefully examine the evolving microstructure

using techniques such as coordination number, radial distribution function as well as the

vertical center distribution, and solids fraction analysis.

The results described in this chapter represent a continuation of what was done in

[96], where tapping is modeled by uniformly lifting the particle assembly. In this chapter,

the behavior of such systems will be analyzed using a global measure such as the solids

fraction, as well as by the vertical center distribution, a local measure.

2.2 Bulk Solids Fraction of a Granular Assembly

The solids fraction of a vessel of particles is defined as the ratio of the volume of

particles that occupy a vessel to the volume of the vessel itself as define in Equation 2.1.

(2.1)

13
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The value of such a measurement allows one to determine how dense a structure of

particles is. In determining how dense a system is one could now gain insight into which

structures would give have the densest formation depending on what tapping procedures

are used whether they are continuous vibrations or discrete taps.

Figure 2.1 below shows four typical crystal structures, e.g., body-centered cubic

(BCC), face-centered cubic (FCC), cubic and hexagonal close-packed (HCP).

Figure 2.1 a) BCC crystal b) FCC crystal c) Cubic crystal d) HCP crystal
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The two structures having the densest packing are the Hexagonal Close Pack (HCP) and

the Face Centered Cubic (FCC) crystals with a solids fraction of  /r 0 . 7 4
3 VT

	 •

However, it has been reported in [51] that while both have the densest structures, it is the

FCC structure that is the most stable because of how the structure is ordered.

2.3 Vertical Center Distribution

The solids fraction analysis is an indicator of the bulk density of the assembly. However,

that does not lend insight into microstructure of the assembly of particles. For example,

although HCP and FCC have the same solids fraction, each has a different crystal

structure. Thus, a local measure is needed to observe differences in the arrangement of

the spheres.

The vertical center distribution is such a measure because it allows one to see the

distribution of particle centers in a given layer thickness. The control is partitioned

volume in the vertical direction into layers of thickness 8 as shown in Figure. 2.2, after

which the number of particle centers in each layer in calculated.

(2.2)

The number of centers in each layer is then normalized by the total number of particles in

the system N. The exact computation is given in Equation (2.2).
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Figure 2.2 Partition of a Control Volume in calculating the VCD

The VCD of some common crystals such as cubic crystals, face centered crystals,

body centered crystals, and hexagonal closed pack crystals, which are shown in Figures.

2.3 — 2.6 below. For each VCD for the aforementioned crystals, one should note that

there is a periodicity with regard to the peaks that are present. That result is not a

surprise because there is a definitive pattern when it comes to creating those structures.

Figure 2.3 VCD of Cubic Crystal — 1728 particles



Figure 2.4 VCD of Body Centered Crystal — 3456 particles
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Figure 2.5 VCD of HCP Crystal — 1728 particles
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Figure 2.6 VCD of Face Centered Crystal — 6912 particles

2.4 Monte Carlo Simulation Model

The Monte Carlo simulation consists of first generating a random initial configuration of

spheres. In this configuration, the spheres are hard spheres meaning that they are not

allowed to overlap. After the initial configuration is determined, the system of particles

is allowed to move down to the floor of the vessel by means of gravity. To ensure that

there are no overlaps, the following criterion is used:

1) Compute the distance between particle centers given in Equation 2.3:

d(i, j)= (xi — xj)² +(y, yj)²+(zi — z J ) 2 	(2.3)

2) Check that the distance between particles is greater than the diameter, i.e.

d(i, j) 2r + 8 where r is the radius of the particle, and 8 is equal to 10 -4 .
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The computational domain used for the simulations is a box having a solid plane

floor, and periodic boundary conditions in the lateral directions (x and z; 12d x 12d).

These periodic conditions are used to eliminate the ordering effect of the side walls, as

commonly done. The poured assembly is then subjected to a series of taps of intensity y.

A typical assembly after the application of several taps is depicted in Figure. 2.7.

Figure 2.7 a) Poured Assembly. b) System after many taps.

In the MC simulation, a single step in the algorithm consists of the random

selection of a particle x. = (x., y., z. ), followed by its assignment to a trial position given

by Eq. 2.4, where is a random vector with each component sampled from a uniform

distribution on (0,1) and 8 is the maximum allowed displacement.
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(2.4)

The trial position is accepted unconditionally (provided that an overlap does not occur) as

the new location if the change in the system energy given in Eq. 2.5 below.

(2.5)

Otherwise, if the change in energy is positive ( AE > 0 ), the trial position is accepted with

probability CI' . For the macroscopic particles under study, 13 is very large so that the

likelihood of an accepted upward displacement is small. Another particle is then selected

at random, and the above procedure is repeated. As this settling process advances through

many thousands of MC steps, the mean free path decreases resulting in a drastically

slowed rate of approach to a local equilibrium. Therefore, the parameter 6 is modified

every 104 MC steps in accordance to 8' = 0.9956 if fewer than half of these steps are

accepted.

The effect of a single tap applied to a containment vessel filled with spherical

particles of diameter d is idealized by lifting the entire particle assembly from the floor

by an amount A, whose normalized value is Aid . The assumption here is that a tap is

sufficiently energetic to cause a small separation of the assembly from the floor. That is,

y physically represents the lift that a granular mass will experience as it is energetically

tapped. Within a single tap n of intensity y, the bulk solids fraction v j(n;y) was

monitored (i.e., the fraction of volume occupied by spheres) at MC step j every 106 steps.

The settling process was terminated when the difference in the bulk solids
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enforcing the latter criterion twice to ensure that premature termination could not occur.

2.5 Solids Fraction Computation

The solids fraction as was previously defined in this chapter is the ratio of the volume of

matter occupied to the volume of that contains the particles. In this process, the solids

fraction is computed by measuring the solids fraction from the base of the vessel until 80

percent of the height of the stack of particles. Measuring the solids fraction that way

ensures that the "top effect" is removed from the evolution of the solids fraction.

The "top effect" is where one has disordered layers of particles on the top of the

stack. If such a measure were included, then one would lose information about the

evolution of the majority of the stack of particles. To calculate the solids fraction, 80

percent of the control volume is partitioned into slices and the volume distribution is

found in each slice. Then the volumes in each slice is summed up and divided by the

total control volume. A more detailed analysis is done in [96].

2.6 Monte Carlo Results

In all cases reported here, poured assemblies consisting of 3,456 particles with

solids fractions v o in the range 0.56 to 0.58 filled the periodic box to a depth of

approximately 22d. For each tap n, the ensemble averaged bulk solids fraction (v(n; y))

over M realizations(where M is 100) is computed, and its standard deviation is given by

Eq. 2.6 where (v(n; 7)) is given by Eq. 2.7
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(2.6)

(2.7)

The equilibrium bulk solids fraction v. 0 (0 was found by increasing the number of

realizations over a sufficient number of taps NT until the condition (a (N T ; 7)) < 0.001

was satisfied.

The MC tapping procedure differs from that used in [34], where vertical position-

dependent displacements of the particles ( y' = ) were applied in sync with random

lateral perturbations. In an earlier paper [26], it was reported that statistically equivalent

solids fractions were obtained with or without application of these random lateral

displacements. Furthermore, for the packings (-22d high) reported here, application of

taps consisting of the vertical position-dependent displacements produced little or no

increase in solids fraction in the upper portion of the bed, so that the bulk solids fraction

remained relatively low. This behavior is attributed to an overly aggressive vertical

displacement of the particles with distance from the floor, so that after each tap, the

system tends to lose memory of its previous microstructure. Physically, this corresponds

to the situation in which vigorous taps or shakes are applied so that the system relaxes to

nearly the same or lower bulk density.

The simulated mean coordination number (i.e., average number of contacts per

particle) versus solids fraction is shown in Figure. 2.8.
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Figure 2.8 Mean Coordination Number for Uniform Expansion

The behavior of these simulation results is in reasonably good agreement with the

experimental measurements of Aste et al. [1], showing the same trend over a range of v.

Since the error of the experimental results was not reported, one can not comment on the

significance of the slight shift of the two lines shown in Figure. 2.5. Additionally, results

were found that further corroborated (reported in [26]) the simulation results in the fit of

the solids fraction evolution data at low tap intensities to the inverse log

phenomenological law reported in [5-8].

In addition to the bulk density analysis, fits to a stretched exponential were also

done to corroborate the data with that of those that were performed in experiments by

[26] . The fits that were done were primarily the KWW (Kohlrausch-Williams-Watts) fit

given in Equation 2.8 below.
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(2.8)

The parameters of Equation 2.8 are summarized in Table 2.1 below. The KWW

fit is one that is widely used in many studies for granular packings when it comes to

fitting the time evolution of the solids fraction.

Table 2.1 Summary of the Fit Parameters of the KWW Law

Parameter Description of Parameter

Vn
Solids fraction at a particular time.

v Equilibrium Solids fraction predicted by the KWW fit.

v0
Initial Solids fraction of the poured state.

t Time corresponding to the tap, or lift etc.

Z Compaction Time.

fl A fitting parameter from the KWW law.
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Figure 2.9: Fits to the Unifrom Expansion Curves for a poured structure

In Figure. 2.9, the main plot consits of the MC evolution for y 	0 .1, 0 .2, 0.2 5

along with the KWW fit for each of the aforementioned lifts. In addition, there is an inset

figure for Fig. 2.9 which shows the predicted final solids fraction from the fits. The trend

of the data in the inset suggests that there is an optimal lift intensity that yields a dense

structure. The parameters that were done with the fits are shown in Table 2.2 below.

Table 2.2 Fitting Parameters of the Data for the KWW Law

7 v. v0 tf (taps) 13

0.1 0.6396 0.5705 27180 0.2

0.2 0.658 0.5416 1985 0.2558

0.25 0.6567 0.55 1083 0.2715
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An important aspect of the simulations is that the low tap intensities

y = 0.1, 0.2, 0.25 have not reached equilibrium. One way in which one can see this is to

rewrite the stretched exponential in the form given in Equation 2.10 below.

(2.10)

v
A graph of the normalized solids fraction  v—  V  versus (t / -OD would then show if the

v„ — v o

data follows a decaying exponential law. Figure. 2.7 shows the result for

y = 0.1, 0.2, 0.25 .

Figure 2.10 Graph of versus (t /-c) 13 for 7 = 0.1, 0.2, 0.25 .

For the y's shown in Figure. 2.10, it is clear that the graphs have not leveled out

so that more taps are needed to reach equilibrium values. Another observation from the

graph is that for smaller y values, the time scale to attain equilibrium is longer.
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2.7 Independence of the Initial Configuration

To further explore the hypothesis of the equilibrium solids fraction's dependence on the

initial state, the simulation process was reversed by starting with a hexagonal crystal

structure (v 0 a= 0.74 ), which was subsequently tapped at the same intensities

( 0.1 0.5) previously used. After only a few taps, the dense crystal structure is

disrupted thereby causing a significant reduction in solids fraction. This is shown in the

inset of Figure. 2.11. After many thousands of taps, the solids fraction graphs flatten as

shown for intensity values y = 0.20, 0.25 of Figure. 2.11.

For large intensities, equilibration is attained for less than 104 taps. The results of

this study which are summarized in Figure. 2.12 reveal a trend very similar to that visible

in Figure. 2.9. That is, the graph peaks at roughly the same range of intensity values as in

Figure. 2.9. This finding regarding the existence of a critical intensity is also supported

by experiments reported elsewhere [28] and by the conjecture [30] that bulk density is

related to impact velocity.

Figure 2.11 Density evolution in which the initial state was an HCP crystal.
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Tap Intensity y

Figure 2.12 Final solids fraction as a function of tap intensity y.

The behavior of the solids fraction versus number of tap for y e [0.3, 0.5] are

shown in Figures. 2.13 to 2.17. Here, one observes that equilibrium is reached quickly in

contrast to what took place for the smaller values of y (=0.1, 0,2 and 0.25).

Number of Taps



Figure 2.13: Density and Standard Deviation curve for y = 0.3.
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Number of Taps



Figure 2.14: Density and Standard Deviation curve for 7 = 0.33.
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Number of Tags



Figure 2.15: Density and Standard Deviation curve for y = 0.35.
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Number of Taps



Figure 2.16: Density and Standard Deviation curve for y = 0.4.

Number of Taps
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Figure 2.17: Density and Standard Deviation curve for y = 0.5.

To gain some insight into the structure of the two densest configurations which

correspond to y = 0.2 and 7=0.25, a VCD analysis is carried out using the

configuration data. Figure. 2.18 to 2.19 show the distributions for 7= 0.2 and y = 0.25

for 20,000 and 30,000 taps respectively . In both cases, there is an ordering that starts

from the floor and propagates upwards. A similar effect was observed when starting

from a poured configuration and applied the same uniform lift expansion parameters as

seen in [281.



Figure 2.18: VCD for y = 0.2
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Figure 2.19: VCD for y = 0.25

2.8 Perturbation of the Tap Intensity

In this study, the effect of perturbing an equilibrated system by changing the tap intensity

y was examined. For this purpose, y = 0.33 was chosen, which equilibrated to a bulk
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density (v). = 0.6195 in 30,000 taps. Then, the intensity was decreased to 0.3 and

another 20,000 taps were applied, resulting in approximately 1.6% increase in bulk solids

fraction to (v).0 = 0.6295 The ensemble-averaged density and its standard deviation

versus the number of taps for this process are shown in Figure. 2.20a and 2.20b,

respectively.

10000 	 20000 	 30000

Number of Taps

FIGURE 2.20. (a) Monte Carlo evolution of the ensemble-averaged solids fraction <v>
versus the number of taps: y = 0.33, (v) G0 = 0.6195; y = 0.3, (v) oo = 0.6295 ; (b). Standard

deviation versus number of taps.
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A substantial jump in solids fraction (Figure. 2.20a) takes place where the y was

reduced to 0.3, accompanied by a corresponding pronounced reduction in the standard

deviation and its fluctuations (Figure. 2.20b). A further reduction in y to 0.25 at 50,000

taps produces a substantially reduced rate of increase in solids fraction to 0.6425 as

shown in Figure. 2.21, after the application of 110,000 additional taps. Although not

shown here, the standard deviation in this case indicated that the system had not yet

equilibrated.

FIGURE 2.21: MC evolution of (v).



CHAPTER 3

DESCRIPTION OF THE DISCRETE ELEMENT MODEL

3.1	 Introduction

This chapter contains a description of the Discrete Element simulation model, beginning

with a concise background on the method itself and the force models used. This is

followed by introducing the physical properties of system. Details of the modifications

made to an existing discrete element code are described, consisting of how discrete taps

were implemented. Finally, the analyses of the particle layer responses to the taps via

maximum displacements are provided.

3.2 Background

The discrete element method (DEM) is based on the numerical solution of Newton's laws

for a set of discrete, interacting particles. A recent and detailed review of this method and

applications can be found in [46, 47]. In the study discussed here, particles were inelastic,

frictional, monodisperse spheres obeying binary, soft-sphere interactions [48] in which

normal and tangential impulses are functions of a small overlap between colliding

particles. Energy loss in the normal direction (i.e., along center line of contacting

spheres) is produced by linear loading (K1) and unloading springs (K2), corresponding to

a constant restitution coefficient e= K1/K2  . This model has been shown to reproduce

the nearly linear loading behavior for a spherical surface that experiences plastic

deformation of the order of 1 % of a particle diameter. In the tangential direction, a



Mindlin- Deresiewicz-like model [49] is used in which tangential stiffness, given by

Equation 3.1 below,

(3.1)

(where Ko = 0.8K1), decreases with tangential displacement until full sliding occurs at

the friction limit 11 [50]. Here, T is initially equal to zero; subsequently, it is set to the

value of the total tangential force when the tangential displacement changes direction.

The computational domain is again a laterally periodic box (12d x 12d) in which

particles randomly placed at t = 0 within the box are allowed to settle under gravity to a

fill height of approximately 22 particle diameters as shown in Figure. 3.1. The different

color particles that are present have the sole purpose of aesthetics.

12

10

$6

Fig. 3.1. A snapshot of a system of particles as described above with a fill height of
approximately 22d.



The number of spheres in these studies was the same as for the MC simulations.

By tuning the value of the friction coefficient it is possible to obtain a wide range of

solids fractions. This is demonstrated in the simulation results summarized in Figure. 3.2,

which were obtained by averaging twenty independent realizations of poured particles.

Friction Coefficient

Fig. 3.2. A wide range of bulk densities can be obtained by changing particle friction
properties. Each point on the graph represents an average taken over 20 discrete element
realizations, with the vertical lines representing the deviation from the average.

For large friction coefficients, less dense systems are produced after pouring due

to the formation of bridges and arches within the structure. For smooth particles (II = 0),

the bulk solids fractions obtained are in good agreement with the value (0.6366 ± 0.0005)

normally attributed to a random packing of spheres [28]. It should be noted that the

dependence of the solids fraction on friction coefficient has been reported for spheres [9]

and for disks [71].



For the remainder of the discussion, the focus of the simulation studies will be

primarily on spheres for which e = 0.9 µ = 0.1 and p = 1200 kg/m 3 . It is understood that

these material properties may also have significant influence on system behavior.

3.3 Tapping Protocol

The assembly of spheres is tapped by prescribing impulses to the floor. In particular, a

half-sine displacement wave of frequency f is applied to the floor, so that the period tb is

(1/2f ) . The equation for the velocity of the impulse particle is by equation (3.2), where

vamp is maximum magnitude of the velocity of the floor, tp is the relaxation time, Q is

angular frequency ( 2πf ), it is the tap number, and tc is the time duration of a "cycle".

Here, the term "cycle" refers to the period of the tap plus the time required for the system

to relax to a quiescent state, i.e., tc = tb + tp .

(3.2)

When the system of particles is tapped, the impulse from the floor is transmitted

to the particles resting on the floor. The resulting impulse then engenders collisions

between particles in the system thereby causing an increase in the kinetic energy of the

system. The system then settles down during the relaxation time scale tp so that the

kinetic energy of the system is zero for all practical purposes. An example of the floor

motion is shown in Figure. 3.3 for the case f = 5 Hz , tb = 0.1 sec, tp = 0.3 sec and tc is

0.4 sec.



Figure 3.3. The evolution of the vertical position of the floor level yf. The floor particle
is positioned below yf at one particle radius taken from [93] .

3.4	 Kinetic Energy Analysis

The behavior of a system of particles is influenced by a number of parameters that

includes the restitution coefficient e, inter-particle friction coefficient [t, mass

overburden, frequency f, dimensionless displacement amplitude of the floor (ald) and

aspect ratio (Lld) of the vessel. Because of the size of the parameter space and the

availability of computing resources, it was necessary to fix some of these parameters

while varying others that were deemed to have a more substantial influence on system

behavior.

A kinetic energy study was done to determine the role that e, f and aid played on

the behavior of a system, for which the aspect ratio was 12d x 12d for the lateral



dimensions of the vessel and the fill height was H 12d (1728 particles). While the study

was not exhaustive, interesting trends were identified.

From the first case of f = 30 Hz and e = 0.3, one can see in Figure. 3.4 the

formation of a secondary peak in the kinetic energy distribution at the large aid values.

However, there is quite a bit of energy dissipation since the restitution coefficient is

somewhat small ( 0 < e < 1).

Figure 3.4: Kinetic Energy Distribution for a frequency of 30 Hz and restitution
coefficient of 0.3.

The second case is for a frequency of 30 Hz and restitution coefficient of 0.5 in

Figure. 3.5, one can see that there is a secondary peak in the kinetic energy distribution

forming for larger a/d ratios. The secondary peaks in the energy distribution are more

prominent compared to the case of a restitution coefficient of 0.3 since the restitution

coefficient is higher in this case.



Figure 3.5: Kinetic Energy Distribution for a frequency of 30 Hz and restitution
coefficient of 0.5.

The third case is for a frequency of 30 Hz and restitution coefficient of 0.7 in

Figure. 3.6, one can see that there is a secondary peak in the kinetic energy distribution

forming for larger aid ratios. The secondary peaks in the energy distribution are seen in

this case.

Figure 3.6: Kinetic Energy Distribution for a frequency of 30 Hz and restitution
coefficient of 0.7

Figure 3.7 below is for a frequency of 30 Hz and restitution coefficient of 0.9.

One can see that there is a secondary peak in the kinetic energy distribution forming for



larger a/d ratios. Compared to the cases of e= 0.3, 0.5 and 0.7 the secondary peak for

0.9 is larger, which can be attributed because there is not as much energy loss since 0.9 is

the highest restitution coefficient that was investigated.

Figure 3.7: Kinetic Energy Distribution for a frequency of 30 Hz and restitution
coefficient of 0.9.

In Figure 3.8 below, the kinetic energy distribution is represented as a surface and

contour plot for a frequency of 40 Hz and restitution coefficient of 0.3. One can see that

there is a secondary peak in the kinetic energy distribution forming for larger a/d ratios.

Additionally, the secondary peaks still form even with a different frequency.

Figure 3.8: Kinetic Energy Distribution for a frequency of 40 Hz and restitution
coefficient of 0.3.



Figure 3.9 below is for a frequency of 40 Hz and restitution coefficient of 0.5. In

that figure, can see that there is a secondary peak in the kinetic energy distribution

forming for larger a/d ratios. Secondary peaks are more prominent for a restitution

coefficient of 0.5 than 0.3 for 40 Hz just as was seen for 30 Hz.

Figure 3.9: Kinetic Energy Distribution for a frequency of 40 Hz and restitution
coefficient of 0.5.

In Figure 3.10, the kinetic energy distribution is done for a frequency of 40 Hz

and restitution coefficient of 0.7. It should be noted again that there is a secondary peak

in the kinetic energy distribution forming for larger a/d ratios.

Figure 3.10: Kinetic Energy Distribution for a frequency of 40 Hz and restitution
coefficient of 0.7.



Figure 3.11 represents the kinetic energy distribution for a frequency of 40 Hz and

restitution coefficient of 0.9 in Figure. 3.10, one can see that there is a secondary peak in

the kinetic energy distribution forming for larger aid ratios. Additionally, as was seen for

a frequency of 30 Hz, the restitution coefficient of 0.9 had the largest secondary peak in

the kinetic energy distribution because there is less energy dissipation for the higher

restitution coefficient.

Figure 3.11: Kinetic Energy Distribution for a frequency of 40 Hz and restitution
coefficient of 0.9.



CHAPTER 4

DEM CASE STUDIES OF DENSITY RELAXATION IN GRANULAR
MATERIAL

4.1	 Introduction

In this chapter, the results that are presented are obtained by using the DEM method to

simulate a system of particles that are subjected to the aforementioned tapping protocol.

The system of particles will be tapped using two different accelerations and in one case

the mass overburden will be doubled to determine how the bulk density behaves for a

larger fill height. In addition, microstructure tools will be presented and applied to

analyze the behavior of such system of particles that are subjected to tapping.

4.2	 Motivation of Analysis

The process of how disorganized systems of particles become dense is one that is not

thoroughly understood. Even with widely used techniques that include the solids fraction

as well as the nearest neighbor distribution and the free volume distribution, there still

remain many questions on how a system reorganizes to arrive at dense structures. Tools

that have been developed to analyze that problem have included the vertical center

distribution which has been inspired by P. Singh et al [98, 99]. In addition another tool

will be used that is called the local density evolution of the system which makes use of

the Voronoi tessellation.



4.3	 Dependence on Amplitude and Frequency for Single Realizations

The phase space of the parameters in the DEM simulation is quite large. To understand

how each parameter plays a role in the behavior of the system of particles, a study was

done to investigate how the amplitude, and frequency affect the way a system organizes

from a loose to a dense state. The cases were run at different frequencies and different

amplitudes for only one realization.

The first case that was run for an acceleration of F = 1.0. The results are shown

below for each frequency in Figures 4.1 and 4.2.

Figure 4.1: Single Realizations for F = 1.0 for frequencies of 3.75, 7.5, 11.25 and 15.0
Hz.



Figure 4.2: Single Realizations for F = 1.0 for frequencies of 18.75, 22.5, 26.25 and 30.0
Hz.

For F = 1.0, the solids fraction evolution as a function of time indicates that the system

of particles hasn't reached its equilibrium solids fraction since the curves in Figures 4.1

and 4.2 are still increasing.

The next acceleration that was investigated was for F = 1.5 at different

frequencies. The results of the solids fraction are displayed in the plots below in Figures

4.3, 4.4 and 4.5. For a frequency of 3.75 Hz, there is a gradient that occurs that causes a

"jump" in the solids fraction from 0.68 to approximately 0.705.



Figure 4.3: Single Realizations for F = 1.5 for frequencies of 3.75, 7.5, 11.25 and 15.0
Hz.

Figure 4.4: Single Realizations for r = 1.5 for frequencies of 18.75 and 22.5 Hz.



Figure 4.5: Single Realizations for F = 1.5 for frequencies of 26.25 and 30 Hz.

An acceleration of 2.0 is presented in the following results in Figures 4.6 and 4.7.

It should be noted that a frequency of 3.75 Hz produces a somewhat noisy density

evolution because the system was not quiescent during the long time scale due to the

insufficient time that was used for the relaxation phase. In addition, a frequency of 7.5

Hz produces a large gradient in the solids fraction evolution.

Figure 4.6: Single Realizations for F = 2.0 for frequencies of 3.75 and 7.5 Hz.



Figure 4.7: Single Realizations for F = 2.0 for frequencies of 11.25, 15, 18.75, 22.5,
26.25, and 30 Hz.



An acceleration of 2.25 is presented in the following results in Figures 4.8 and

4.9. It should be noted that a frequency of 3.75 Hz produces a somewhat noisy density

evolution because the system was not quiescent during the long time scale due to the

insufficient time that was used for the relaxation phase. Frequencies of 7.5 and 11.15 Hz

have gradients that produces increases of the solids fraction as was previously shown.

Figure 4.8: Single Realizations for F = 2.25 for frequencies of 3.75, 7.5, 11.25 and 15.0
Hz.



Figure 4.9: Single Realizations for F = 2.25 for frequencies of 18.75, 22.5, 26.25 and
30.0 Hz.

An acceleration of 3.0 is presented in the following results in Figures 4.10, 4.11

and 4.12. It should be noted that a frequency of 7.5 Hz produces a somewhat noisy

density evolution because the system was not quiescent during the relaxation phase. In

addition, a frequency of 11.25 Hz starts to produce a density curve that contains larger

gradients in the solids fraction evolution.



Figure 4.10: Single Realizations for F = 3.0 for frequencies of 7.5, 11.25, 15.0 and 18.75
Hz.

Figure 4.11: Single Realizations for F = 3.0 for frequencies of 22.5 and 26.25 Hz.



Figure 4.12: Single Realizations for F = 3.0 for a frequency of 30 Hz.

An acceleration of 3.5 is presented in the following results in Figures 4.13, 4.14,

4.15 and 4.16. It should be noted that a frequency of 7.5 Hz produces a somewhat noisy

density evolution because the system was not quiescent, while frequencies of 11.25, and

15 show sharp increases in the solids fraction. Additionally, a frequency of 18.75 begins

to show an onset of gradients in the solids fraction.

Figure 4.13: Single Realizations for F = 3.5 for frequencies of 7.5 and 11.25 Hz.



Figure 4.14: Single Realizations for C = 3.5 for frequencies of 15 and 18.75 Hz.

Figure 4.15: Single Realizations for F = 3.5 for frequencies of 26.25 and 22.5 Hz.

Figure 4.16: Single Realizations for F = 3.5 for a frequency of 30 H2



An acceleration of 3.75 is presented in the following results in Figures 4.17, 4.18,

and 4.19. It should be noted that a frequency of 7.5 Hz produces a somewhat noisy

density evolution with large jumps in the solids fraction. Accelerations corresponding to

frequencies of 11.25, and 15 show sharp increases in the solids fraction.

Figure 4.17: Single Realizations for F = 3.75 for frequencies of 7.5 and 11.25 Hz.
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Figure 4.18: Single Realizations for F = 3.75 for frequencies of 15 and 18.75 Hz.



Figure 4.19: Single Realizations for F = 3.75 for frequencies of 22.5, 26.25 and 30 Hz.

An acceleration of 4.5 is presented in the following results in Figures 4.20 and

4.21. It should be noted that a frequency of 11.25 Hz produces a somewhat noisy density

evolution because the total kinetic energy of the system hasn't reached a minimum.

However, there still are gradients in the evolution of the solids fraction that result in high

densities for that frequency. In addition, there are also gradients in the solids fraction for

frequencies of 15 and 22.5 Hz.



Figure 4.20: Single Realizations for F = 4.5 for frequencies of 11.25, 15, 18.75 and 22.5
147

Figure 4.21: Single Realizations for F = 4.5 for frequencies of 26.25 and 30 Hz.



An acceleration of 5.0 is presented in the following results in Figures 4.22, 4.23 and

4.4. It should be noted that a frequency of 11.25 Hz and 15 Hz produces a somewhat

noisy density evolution because the system was not quiescent during the long time scale

due to the insufficient time that was used for the relaxation phase. For this acceleration, a

frequency of 18.75 showed sharp increases in the solids fraction.

Figure 4.22: Single Realizations for F = 5.0 for frequencies of 11.25 and 15.0 Hz.

Figure 4.23: Single Realizations for F = 5.0 for frequencies of 18.75 and 22.5 Hz.



Figure 4.24: Single Realizations for F = 5.0 for frequencies of 26.25 and 30 Hz.

An acceleration of 6.0 is presented in the following results in Figs. 4.25 and 4.26.

It should be noted that a frequency of 11.25, 15 and 18.75 Hz produces a somewhat noisy

density evolution because the system was not quiescent during the long time scale due to

the insufficient time that was used for the relaxation phase. The frequency of 22.5 for

this acceleration begins to show an onset of gradients in the solids fraction.

Figure 4.25: Single Realizations for F = 6.0 for frequencies of 11.25 and 15.0 Hz.



Figure 4.26: Single Realizations for F = 6.0 for frequencies of 18.75, 22.5 and 26.25 Hz.

An acceleration of 6.75 is presented in the following results in Fig. 4.27. It

should be noted that a frequency of 15 Hz and 18.75 Hz produces a noisy density

evolution because the system was not quiescent during the long time scale due to the

insufficient time that was used for the relaxation phase. For the aforementioned

acceleration, frequencies of 22.5, and 26.25 show sharp increases in the solids fraction.



Figure 4.27: Single Realizations for F = 6.75 for frequencies of 315, 18.75, 22.5, 26.25
and 30 Hz.



4.4	 Ensemble-Average Bulk Density Evolution

It was found that for poured configurations which are statistically indistinguishable

regarding their initial bulk solids fractions and distributions of nearest neighbors and free

volume, significant variations in the solids fraction evolutions were observed. This is not

surprising since intuition suggests that the details of the microstructure have a dominant

influence on how the system advances to a dense configuration. It was demonstrate this

with an ensemble of 20 poured realizations with bulk solids fractions in the range 0.6088

± 0.0035.

For each realization, the Voronoi diagram was constructed, from which the

distribution of nearest neighbors (i.e., coordination number distribution) was obtained.

The distributions for all realizations were individually fit ( R 2 0.9906) to a normal form

in Equation 4.2, with fit parameters of a and b were found for each realization. The mean

and standard deviation for these parameters was

a = 7.2713 ± 0.0558 and b= 1.2550±0.0262.

(4.2)

Although not shown here, each of these individual distributions was statistically

indistinguishable from the coordination number distribution computed from the ensemble

average of the distributions (R2 = 0.9975, a = 7.271, and b = 1.256). Figure 4.28 shows

this ensemble average coordination number as well as the normal fit to this data.



Fig. 4.28. The points are ensemble-averaged coordination numbers for 20 poured

1
realizations. The solid line is a fit (R2 = 0.9975) to f (n)=. 	 exp (n — a)2	

where
27t	 1'

a = 7.271, b = 1.256 .

Another measure of the microstructure is the free volume, defined here as the

difference between the volumes of the polyhedron and the encapsulated sphere. Although

not shown in this paper, it was also observed very little visual difference between the free

volume distributions of the ensemble of 20 realizations, which were quite similar (both

qualitatively and quantitatively) to the ensemble-averaged distribution given in Figure

4.29.



Fig. 4.29.	 Ensemble-averaged free volume (normalized by the volume of the
spherical particle) distribution for 20 poured discrete element realizations.

Thus, from the perspective of bulk density, coordination number, and free volume

distribution, each realization in the ensemble was very similar. And yet, the bulk solids

fraction trajectories of the realizations were rather different. Taps were applied to each

realization for the same time duration using identical vibration parameters, i.e.,

a/d= 0.4413 and f= 7.5 Hz, corresponding to F = 2. The ensemble-averaged trajectory

of the bulk solids fraction (for which (v)	 = 0.6997 ± 0.0058) is given in Figure. 4.30,1-680

where the inset shows the standard deviation.



Time(s)

Fig. 4.30. Evolution of the ensemble-averaged bulk solids fraction over 20 discrete
element simulations in which f 7.5 Hz, aid = 0.4413, F =2. The inset shows the
standard deviation.

In some of the trajectories, rather dramatic jumps or steep gradients in the solids

fraction (see Figure. 4.31) occurred, which at first glance appeared to be spurious.

However, further consideration of these trajectories suggested that the jumps were caused

by collective reorganizations of the microstructure that took place over small time

durations relative to the time of tapping.



Fig. 4.31. Several trajectories from the ensemble of 20 realizations.

The later study demonstrates the sensitive dependence of the trajectories on the

details of the microstructure, and the importance of using ensemble averages (rather than

only single realizations) in these simulations to obtain statistically meaningful evolution

curves. It is expected (in agreement with [51, 66]) that the equilibrium or final solids

fraction of the assembly is not consequent on the initial microstructure. However, the tap

parameters do have a significant effect on the final state as will be shown in the next

section.



4.5 Dependence on Tap Amplitude and Frequency

After a poured assembly is obtained, the system is tapped by applying harmonic

displacement oscillations to the floor consisting of a half-sine wave (amplitude a and

period t), followed by a relaxation time t r of sufficient duration to ensure that upon

collapse a quiescent state of minimal kinetic energy is attained. The occurrence of

densification strongly depends on the choice of the tap amplitude; the plot in Figure. 4.32

demonstrates the striking difference between the evolution of bulk solids fraction for

F = 0.5 (f = 7.5 Hz, a/d = 0.1103) and F = 2.0 (f = 7.5 Hz, a/d = 0.4413).

Time(s)

Fig. 4.32. Ensemble averaged solids fraction as a function of time for (a) F = 0.5 (f = 7.5
Hz, a/d =0.1103) and (b) F = 2 (f= 7.5 Hz, a/d = 0.4413).

This is further illustrated in Figure. 4.33, which shows the dependence (as a

function of y/d) of the solids fraction at several tap numbers for the two cases of Figure.

4.32. The qualitative behavior of ii (the number of sphere centers at a given position y/d

from the floor) at F = 2.0 shown in Figure. 4.34 is comparable to the MC results



presented in chapter 2; that is, as the taps progress, one observes that the density

increases starting from the floor. Moreover, after application of hundreds of taps, the

effective height of the system is reduced by approximately two particle diameters

(analogous to what took place in the MC simulations).

Fig. 4.33. Ensemble averaged solids fraction as a function of yid for the initial
configuration, and at tap numbers 100, 200 and 800 for (a) F = 0.5 (f = 7.5 Hz, a/d =
0.1103) and (b) F = 2 (f = 7.5 Hz, a/d = 0.4413).

It is note that formation of ordered structures in shaken granular system was

discussed in some detail recently [50], although in that work the authors have found that



more complicated horizontal or horizontal/vertical vibrations were required in order to

produce order. Instead, the concentration is focused on the influence of the parameters

governing the vibrations, as discussed in what follows.

In order to further illustrate the influence of a reduced amplitude (at constant

frequency) on the development of ordered layers and the eventual increase in bulk

density of the system with increasing number of taps, and carefully monitored the

evolution of particle centers as a function of distance y/d from the floor for the two

example cases already discussed, i.e., f = 7.5 Hz, a/d = 0.1103, r = 0.5 and f = 7.5 Hz,

a/c/ = 0.4413, F = 2.0. This evolution for the case r = 2.0 is presented in Figure. 4.34,

where the vertical axis (n) represents the ensemble-averaged (over 20 realizations)

number of particle centers (normalized by the number of particles in the system) as a

function of the position.

Fig. 4.34. Ensemble-averaged (over 20 realizations) distributions of the particle centers
measured from the floor (y/d = 0) to the top surface for aid = 0.44I 3,f = 7.5 Hz ( F = 2.0 )
at t = Os, t = 149.3s, t 299.3s and t 599.3s.



It is observed that as the number of taps grew, there was an increase in the

number of layers (starting from the floor) in which the location of the peaks closely

corresponded with those for a hexagonal close-packed structure. Figure 4.35 shows the

structural evolution, where (v) 0.7 upon completion of 898 taps.

Fig. 4.35. Evolution of the ensemble-averaged distribution of particle centers for F = 2
(f = 7.5 Hz, a/d = 0.4413).

However, for the case with the smaller amplitude (a/d = 0.1101) no definitive

organization was present upon completion of thousands of taps. This behavior supports

the finding in the MC simulations of a critical value of the tap amplitude that optimizes

the formation of an ordered microstructure. Within the context of the DEM simulations,

it is interpreted this amplitude as being related to a peak dilation of the system. Indeed,



one can imagine two extremes that engender no microstructure development or

appreciable increase in bulk density: (i) an aggressive, energetic tap that greatly expands

the system so that any existing microstructure is destroyed upon contraction and, (ii) a

low energy tap that merely transmits a stress wave through the contact network, but does

not dislodge or disturb the structure to any appreciable degree. Thus, one can

hypothesize that the densification process is regulated by the degree of dilation, and that

ordering of the microstructure occurs within some narrow range of values of dilatations.

The results of a study to explore this conjecture will be reported in a future paper.

Of particular relevance to the results reported here are the studies of Zhu et al.

[50], who report on experiments and discrete element simulations of the density

relaxation process through the application of continuous vibrations. In particular, those

authors employ a procedure in which very dense structures (solids fraction ~ 0.7 and

higher) are built up by vibrating sequentially deposited thin poured layers (of

approximately one diameter). This procedure differs from our approach, in which the

entire system is exposed to taps, resulting in its evolution to a dense structure ( (v) ~ 0.7 )

as in Figure. 4.30. Their findings are essentially in agreement with our earlier reported

discrete element investigation [20] in that high solids fractions (greater than ~ 0.66) were

not found in relatively deep systems through the application of continuous vibrations.

This can be seen in the phase portrait of Figure. 4.36 (redrawn from [20]) for a system of

8000 particles (e = 0.9 and µ = 0.1) within a laterally periodic box (aspect ratio Lid = 25),

in which the improvement in solids fraction (v_ — v o )/v 0 is mapped as a function of the

vibration amplitude ( 0.02S a.d S 0.48) and frequency (10S f S 90 Hz).



Frequency (Hz)

Fig. 4.36. The color scale shows the improvement in bulk solids fraction (v_ —v o )/v o as

a function of amplitude ( 0.02 a / d 5 0.48 ) and frequency ( 10 Hz f 90 Hz) for
continuously sinusoidal vibrations applied the floor (taken from [20]).

Distinct regions are visible according to the color scale corresponding to various

improvement levels, with a maximum value of only approximately 5%. Although not

shown here, results from this study also indicated a correlation between these regions

with depth profiles of granular temperature, solids fraction and ratio of the lateral to

vertical components of the kinetic energy. Figure 4.28 may represent a typical phase

portrait associated with the density relaxation process, albeit quantitative differences are

expected based on the mode of energy input (tapping as opposed to continuous

vibrations), and on material properties, aspect ratios and mass overburdens.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Density relaxation phenomena were investigated using two different types of methods:

Monte Carlo simulations and the Discrete Element Method. For the Monte Carlo method

the lift expansion that was used was a uniform expansion where the entire assembly was

lifted off the base of the vessel. For such an expansion, many taps were done for various

lift expansions.

As a result, the Monte Carlo evolution for each lift expansion was obtained as a

function of tap number. The ensembled average curve was calculated and the solids

density evolution was obtained. The results were fit well to two phenomenological fits:

the inverse natural log fit, and the KWW fit. For the inverse log fit, the data for the low

lift intensities were fit well. However, the estimated equilibrium solids fraction obtained

from that fit was larger than expected.

Another important result obtained through the MC simulations was that there was

evidence to suggest that there might be a critical tap intensity. Even when the estimated

equilibrium solids fraction was found from the KWW fit, the behavior of the equilibrated

solids fraction vs. the tap intensity still suggested there might be an optimal intensity to

produce a dense packing. An important result that the MC simulations pointed is that if

one were to lift the system with a large intensity such as y = 0.4, 0.5 then there will not

be an improvement in the solids fraction of the system of particles. Moreover, if one



were to lift the system with a small tap intensity such as 7 = 0.1, then the density of the

system would improve, albeit at a slower rate.

The time that it took for the system to equilibrate the lower lift expansions for

7 = 0.1,0.2, 0.25 was substantially longer than that of the higher lift expansions. That

could be attributed because the nature of the expansion is smaller which would

correspond to a system with a less energetic tap. In addition to analyzing the bulk

density, the microstructure of the system of particles was analyzed. It was found that for

systems where the density was large, such as in the case of the y = 0.25 , the vertical

center distribution found that there was an ordering of the system of particles beginning

from the base of the system and progressing upwards through the system as time evolved.

An important result that was verified in Monte Carlo simulations is that the final

bulk state is independent of the initial state. That result was tested by starting with one of

the most dense packing configurations: an HCP crystal and then applying the same lift

expansions. It was found that the equilibrium solids fraction matched up well with the

solids fraction corresponding to the same tap that was obtained when one started with a

random loose packed system.

In the DEM simulations, the results that were obtained suggested that by changing

the inter-particle friction, one could obtain either a denser poured configuration, or a

looser poured configuration. In addition to looking at the solids fraction, the kinetic

energy of the system of particle could be analyzed to obtain different kinds of behavior.

One such behavior is that if one were to increase the H/d ratio of the system, the kinetic

energy would change for different accelerations. Other parameters that were investigated

were the amplitude of the pulse as well as the frequency of the pulse. It was found that



for higher accelerations, one needed a longer relaxation time to ensure that the system

settled down to a quiescent state.

Results that were obtained for the DEM showed that one can obtain different

trajectories of the bulk density as a function of time depending on the initial state.

However, for each of the realizations, the final bulk density was quite similar thus

suggesting that the final state is independent of the initial state as was seen in the Monte

Carlo results. In addition, dense packings were obtained for an acceleration of F = 2.0

which gave a solids fraction of approximately 0.69. Additionally, when compared to a

case that was run at the same frequency of 7.5 Hz but at a I , = 0.5, then density was not

as high (-0.63), which also suggested that there might be an optial amplitude

corresponding to a frequency that produces a dense packing. In addition, the mass

overburden played a role in obtaining high densities as was shown in the DEM results a

higher fill height.

Microstructure analysis were also done for the DEM simulations, and there was

an ordering of the system starting from the base and progressing upwards as was also

seen from the MC results. A new tool that was used to look at the microstructure, the

local density analysis, showed that there was an increase in density as time progressed for

the system of particles that progressed upwards.



5.2 Future Work

The results that are discussed in this thesis could point to other areas that can be looked

into with regard to the density relaxation of granular media. Such areas can also be

analyzed using the microstructure tools that have been discussed. Possible areas of future

work are mentioned below:

1. Analyze the role of the phase space of the system as well as tap parameters play in

influencing the bulk behavior of the system. Such parameters include the

restitution coefficient, the aspect ratio, mass overburden, fill height, frequency of

the tap, amplitude of the tap, as well as the acceleration.

2. Exploring the dilation of the system of particles to capture the way particles

rearrange themselves into denser packings. The dilation analysis should be

performed on two time scales: the application of the pulse time scale and the

relaxation time scale.

3. An alternative measure of exploring the microstructure of the system by looking

at the normal interactions between particles in the relaxed time scale.

4. Reproducing the reversible branch that was obtained by Nowak et al [26] and

Ribiere et al [61] for different frequencies using the DEM simulation.

5. Constructing a phase space of the frequency, amplitude and solids fraction to

determine which frequencies should be matched to an amplitude to obtain the

densest structure.

6. Exploring the role of how the mass overburden comes into play when applying

taps to a system of particles, and how the increased mass scales with the solids

fraction.



7. Application of the local density distribution during the short time scale to see

examine the local phase space of each particle to determine if there are any early

indicators of dense structures forming as time increases.



APPENDIX A

MODIFICATIONS TO THE DEM CODE

This appendix documents some of the changes the DEM code has undergone throughout
this thesis. Changes are described a brief header that indicates the subroutine, the
modification made to the subroutine, and the reason for the modifications.

Main Program 3dshear.f
The following lines of code initialize parameters for the restarted run. The old values of
tmax, istart, tstart, nout, dsump, dtdump, nrun, vamp, frq, vamp, fmu, fmub, dtout are
replaced by the new values. These variables are the only ones allowed to change during a
restart.

c 	 initalize parameters for new run

tcycle = tbump + tpour
tmax = tpour + nrcg*tcycle
tbump 1 = tbump
tcycle 1 = tcycle
tmax2 = tmax
frq2 = frq
vamp2 = vamp
dtdump2 = dtdump
fmu2 = fmu
fmub2 = fmub
dtout2 = dtout

Subroutine forces f
The following lines of code are for the purpose of extracting the linked list features such
as the linked list neighbors, normal forces, overlaps, and tangential forces.

open(unit=18,FILE='normalforce.txt',status='unknown', access =
'APPEND')
write(18,17)t, i,jdxl
write(18,22) t,i,jdx,j,idx,nxt,a(jdx),a0(jdx),fn(jdx),tfx(jdx),

tfy(jdx),tfz(jdx),tm(jdx),nbor
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APPENDIX B

SAMPLE INPUT FILE FOR THE DEM CODE

This appendix gives a sample input file.

$var np = 	 3203 $Total number of particles in cell
$var bdry = 	 1 	 $flag for boundry type (1;cubic, 2;tringular)
$var nxby0 =	 1 	 $No of boundary particles in x-dir. at y = 0
$var nzby0 = 	 1 	 $No of boundary particles in y-dir. at y = 0
$var nxby1 =	 0 	 $No of boundary particles in x-dir. at ycell
$var nzby1 = 	 0 	 $No of boundary particles in x-dir. at ycell
$var nxbz0 = 	 0 $
$var nybz0 = 	 0 $
$var nxbz 1 = 	 0 $
$var nybz 1 = 	 0 $
$var nybx0 = 	 0 $No of boundary particles in y-dir. at x = 0
$var nzbx0 = 	 0 $No of boundary particles in z-dir. at x = 0
$var nybx 1 = 	 0 $No of boundary particles in y-dir. at xcell
$var nzbx 1 = 	 0 	 $No of boundary particles in z-dir. at xcell
$var nfix = 	 0 $ number of fixed particles
$var nzcyl = 	 0 $ number of fixed cylinders parallel to z-axis
$var nycy1 = 	 1 	 $ number of fixed cylinders parallel to y-axis
$var ncomp = 	 1 	 $ the particle used for axial compression
$var ncmax = 	 0 $number of collisions during entire run
$var nowt = 	 0 	 $No. of time to print out results
$var nczero = 	 0 $number of collisions before start cum. ave.
$var ntcol = 40 	 $number of time steps during a collision
$var nvel = 	 20 	 $number of intervals for vel. distrib.
$var nyzone = 5 	 $number of y zones
$var mzcell = 4 	 $number of z cells
$var nycell = 1 	 $numner of y cells
$var itervm = 	 1 	 $max iterations per time step
$var icoord = 	 0 	 $flag for coordinates print out
$var itty = 	 0 	 $flag for tty interaction
$var ixyz = 	 0 	 $flag to read init coords of fxd & bnd particles
$var istart = 0 	 $to restart the code rename d3ds to d3ds1000 and set istart=1000
$var tmax = 30.00 	 $max time for calculation
$var tpour = 0.5 	 $time for pouring
$var dt = 0. 	 $time step
$var dtout = 0.5 	 $time interval for printing out results
$var dtdump = 30.0 	 $time interval for dumping
$var tzero = 10.0 	 $restart long-term cum. ave.
$var search = 0.05 	 $search distance for near neighbors
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$var ycell = 3.00 	 $cell height (m)
$var xyrat = 100.0 	 $ratio used to compute xcell
$var zyrat = 100.0 	 $ratio used to compute zcell
$var vave = 0.0 	 $average deviatoric transl. velocity
$var vseed = 0.9 	 $seed for random initial particle velocities
$var vxzero = 0.0 	 $initial velocity in the x-direction (ave)
$var vyzero = 0.0 	 $initial velocity in y-direction (ave)
$var vzzero = 0.0 	 $loading stiffness K1
$var sknl = 2.8e+06 $normal force coefficient
$var elast = 0.971 	 $coefficient of restitution
$var slope = 0. 	 $alternative parameter for unloading
$var ratk = 0.8 	 $ratio of tangential/normal stiffness
$var fmu = 0.1 	 $coefficient of friction
$var fmub = 0.00 	 $friction for boundary and fixed particles
$var power = 0.3333333 $tangential force exponent
$var rmassz = 10891 	 $mass of unit sphere
$var tstart= 0.1 	 $time to initialize long term averages
$var gravx = 0.0 	 $acceleration of gravity in x direction
$var gravy = -9.81 	 $acceleration of gravity in y direction
$var gravz = 0.0 	 $acceleration of gravity in z direction
$var vxby0 = 0.0 	 $x velocity of real boundary at y = zero
$var vxby1 = 0.0 	 $x velocity of real boundary at y = ycell
$var vyby0 = 0.0 	 $y velocity of real boundary at y = zero
$var vyby 1 = 0.0 	 $y velocity of real boundary at y = ycell
$var t2move = 70.0 	 $time to start moving the floor/wall
$var t2stop = 2000.0 	 $time to stop the floor from moving
$var vyfloor = 0.0001 	 $velocity of the floor/wall when moving
$var draddt = 20. 	 $rate of increase of particle radii
$var compforce = 0.00001 $axial force to be applied (N)
$var number(1) = 3200 $number of particles in group 1
$var radius(1) = 0.05 	 $particle radii for group 1
$var number(2) = 1 	 $number of particles in group
$var radius(2) = 0.05 	 $radius of particles in group
$var number(3) = 1 	 $number of particles in group
$var radius(3) = -0.6667 $radius of cylindrical boundry
$var number(4) = 1 	 $number of particles in group
$var radius(4) = 0.05 	 $radius of large particle
$var skn lb = 2.8e+06 	 $
$var elastb= 0.83 	 $
$var slopeb= 0. 	 $
$var vamp = 0.115080997 $velocity amplitude of boundary
$var frq = 30. 	 $frequency of bump
$var tbump = 0.0166667 	 $duration of one bump
$var nrcg = 5 	 $number of bumps to be processed
$var finis = 1. 	 $end



APPENDIX C

SCRIPT FILES IMPLEMENTED ON THE OPEN SCIENCE GRID

This appendix details the files that are needed to run the DEM code on the Open Science
Grid.

The following lines of code are for the first file called the "job-wrapper."

#!/bin/bash

set -x

function create_work_dir()
{

TARGETS="$OSG_WN_TMP $OSG_DATA"
if [ "x$TMPDIR" != "x" ]; then

TARGETS="$TMPDIR $TARGETS"
unset TMPDIR

fi
echo "Possible targets for work dir: $TARGETS"
for DER in $TARGETS; do

WORKDIR='/bin/mktemp -d -p $DER engage.XXXXXXXXXX'
if [ $? = 0 ]; then

echo "Created workdir in $DER"
export WORKDIR
return 0

fi
echo "Failed to create workdir in $DER"

done
return 1

1

function cleanup()
{

cd $STARTDIR
rm -rf $WORKDIR II /bin/true

}

# run id is the first argument
RUNID=$1
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# job id
JOBID=$2

# keep the exit code to the end
EXITCODE=1

# remember start dir
STARTDIR='pwd'

# output file (so staging always works)
touch $STARTDIR/../$JOBID.tar.gz

# we need a local temp directory to do the actual work in
# it is important to try to use local filesystems as much as
# possible during jobs, instead of using the shared $OSG_DATA
create_work_dir
if [ $? != 0 ]; then

exit 1
fi

# is it very important to do the cleanup in case of failure
trap cleanup 1 2 3 6

# copy inputs to work directory
cd $WORKDIR
cp $STARTDIR/mds
cp $STARTDIR/i3ds

cp $STARTDIR/poured.txt

chmod 755 mds
time ./mds >mds.output 2>&I
EXITCODE=$?

if [ "x$EXITCODE" != "x0" ]; then
tail -n 100 mds.output

fi

# create output tar
mkdir $JOBID
for FILE in 'find . -type f -maxdepth 1'; do

my $FILE $JOBID/
done
tar cvzf $STARTDIR/../$JOBID.tar.gz $JOBID

# cleanup
cleanup



# signal the sucess/failure of the job
if [ "x$EXITCODE" = "x0" ]; then

# give the all good signal to the post-job script
echo "=== RUN SUCCESSFUL ==="

else
echo "Job failed with exit code $EXITCODE"

fi

The second file is the "pre-job" file.#! /bin/sh

set -e

RUN_DIR=$1
JOB ID=$2

mkdir -p $RUN_DIR/logs/$JOB_ID
touch $RUN_DIR/alljobs.log
chmod 644 $RUN_DIR/alljobs.log

The following lines of code are for the first file called the "post-job."

#!/bin/sh

set -e

RUN_DIR=$1JOB_ID=$2

TIMESTAMP='/bin/date +'%y%m%d_%H:%M'

LOG_DIR=$RUN_DIR/logs/$JOB_ID

if grep "=== RUN SUCCESSFUL ===" $LOG_DIR/job.out; then
cd $RUN_DIR
my $JOB_ID.tar.gz $RUN_DIR/outputs/tars/
cd $RUN_DIR/outputs/untarred
tar xzf ../tars/$JOB_ID.tar.gz
exit 0

else
# keep copies
cp $LOG_DIR/job.out $LOG_DIR/job.out.checked.$TIMESTAMP
cp $LOG_DIR/job.err $LOG_DIR/job.err.checked.$TIMESTAMP
exit 1

fi



The following lines of code are used to submit the jobs to run on the OSG system for the
first file called the "submit."

#!/bin/bash

set -e

########################################################################
#####

# SETTINGS

# number of jobs to run
NUMBER_JOBS=1

# max runtime (in minutes)
MAX_RUN_TIME=1000

########################################################################
#####

# top dir
TOP_DIR='pwd'

# runid
RUN_ID='/bin/date +'%F_%H%M%S'"pwd I sed 's:/home/ [a-z0-9]*::' I sed 's:/ :_:g"
echo "Run id is $RUN_ID"

# run dir
RUN_DIR=$TOP_DIR/runs/$RUN_ID
mkdir -p $RUN_DIR/logs

# output dir

OUTPUT_DIR=/scratch/scratch1/users/$USER/osg-output/$RUN_ID
mkdir -p $OUTPUT_DIR/tars
mkdir -p $OUTPUT DIR/untarred
In -s $OUTPUT_DIR $RUN_DIR/outputs

for JOB_ID in 'seq 1 $NUMBER_JOBS'; do

echo "Generating job $JOB_ID"
mkdir -p $RUN_DIR/logs/$JOB_ID



# create a self extractable executable - this makes stage in easy
cd $RUN_DIR
mkdir $JOB_ID
cp ../../job-wrapper $JOB_ID/
cp ../../mds $JOB_ID/
cp ..1../i3ds $JOB_ID/
cp ../../poured.txt $JOB_ID/
makeself --nox11  --gzip --notemp $JOB_ID $JOB_ID.sh \

"Job Run: $RUN_ID Job: $JOB_ID" \
./job-wrapper >logs/$JOB_ID/makeself.out 2>&1

rm -rf $JOB_ID

# condor submit file
cd $RUN_DIR
cat >$JOB ID.condor «EOF

universe	 = grid
grid_type	 = gt2
globusscheduler = \$\$(GlueCElnfoContactString)
globusrsl = (maxWallTime=$MAX_RUN_TIME)
requirements = ( (TARGET.GlueCElnfoContactString =!= UNDEFINED) && \\

(TARGET.Rank > 300) && \\
( isUndefined(TARGET.OSGMM Success Rate_$USER > 75) \\

(TARGET.OSGMM_Success_Rate_$USER > 75) )

# when retrying, remember the last 5 resources tried
match_list_length = 5
Rank	 = (TARGET.Rank) - \\

((TARGET.Name =?= LastMatchName0) * 1000) - \\
((TARGET.Name =?= LastMatchNamel) * I000) - \\
((TARGET.Name =?= LastMatchName2) * 1000) - \\
((TARGET.Name =?= LastMatchName3) * 1000) - \\
((TARGET.Name =?= LastMatchName4) * 1000)

# make sure the job is being retried and rematched
periodic_release = (NumGlobusSubmits < 5)
globusresubmit = (NumSystemHolds >= NumJobMatches)
globus_rematch = True

# only allow for the job to be queued for a while, then try to move it
# GlobusStatus==16 is suspended
# GlobusStatus==32 is submitting
# JobStatus==1 is pending
# JobStatus==2 is running
periodic_hold = ( (GlobusStatus==I6) II \\

( (GlobusStatus==32) && (Matched==True) && \\



((CurrentTime - EnteredCurrentStatus) > (15*60)) ) II \\
( (JobStatus==1) &&

((CurrentTime - EnteredCurrentStatus) > (60*60)) ) II \\
( (JobStatus==2) &&

((CurrentTime - EnteredCurrentStatus) > ($MAX_RUN_TIME*60)) ) )

# stay in queue on failures
on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

executable = $JOB_ID.sh
arguments = $RUN_ID $JOB_ID

stream_output = False
stream error = False

WhenToTransferOutput = ON_EXIT
TransferExecutable = true
transfer_output_files = $JOB_ID.tar.gz

output = logs/$JOB_ID/job.out
error = logs/$JOB_ID/job.err
log = alljobs.log

notification = NEVER

queue
EOF

# keep a list of all the jobs we want in the dag
JOB_LIST="$JOB_LIST $JOB_ID"

done

# generate condor dagman to manage jobs
echo
cd $RUN_DIR
for JOB_ID in $JOB_LIST; do

echo "JOB job_$JOB_ID $JOB_ID.condor" >>master.dag
echo "SCRIPT PRE job_$JOB_ID $TOP_DIR/pre-job $RUN_DIR $JOB_ID"

>>master.dag
echo "SCRIPT POST job_$JOB_ID $TOP_DIR/post-job $RUN_DIR $JOB_ID"

>>master.dag
echo "RETRY job_$JOB_ID 5" >>master.dag

done
condor_submit_dag -notification Never master.dag
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