New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2010

Stochastic and deterministic dynamics investigation of the
microstructure of granular materials

Vishagan Ratnaswamy
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

6‘ Part of the Mechanical Engineering Commons

Recommended Citation

Ratnaswamy, Vishagan, "Stochastic and deterministic dynamics investigation of the microstructure of
granular materials" (2010). Theses. 69.

https://digitalcommons.njit.edu/theses/69

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.


https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.njit.edu%2Ftheses%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/69?utm_source=digitalcommons.njit.edu%2Ftheses%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu







ABSTRACT

STOCHASTIC AND DETERMINISTIC DYNAMICS INVESTIGATION OF THE
MICROSTRUCTURE OF GRANULAR MATERIALS

Vishagan 'llgtnaswamy
Granular materials are ubiquitous in one’s daily life. They can be found in the cereal you eat, the
sugar you put in your coffee or the sand you walk on in the beach. The study of granular
materials Ahas a rich history dating back to the 17™ century where Kepler studied the packing of
particles.' The compaction of granular materials is a problem that is studied by using theory,
experiments and simulations. While these studies have yielded some important results, there still

are many details about the mechanisms of granular compaction that are unknown.

In this thesis, the density relaxation phenomenon is modeled using both Monte Carlo and
‘  discrete element simulations to investigate the effects of regular taps applied to a vessel having a
planar floor filled with monodisperse spheres. Results suggest the existence of a critical tap
intensity which produces a maximum bulk solids fraction. A key result that is found in this thésis .

is the mechanism responsible for the relaxation phenomenon is an evolving ordered packing

structure propagating upwards from the plane floor.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Overview

The evolution of the bulk density of granular materials is a phenomenon that is heavily
studied. The importance of those density studies have impacts in areas of industry such
as pharmaceuticals, bulk process handling, as well as in the agricultural industry. Every
year the bulk processing industry loses money because of the waste in handling granular
materials, so there is a vast interest in understanding how these materials behave whether
one needs to transport them, or pack them into dense configurations.

The way that granular materials arrive at various densities depends very much on
their material parameters such as their restitution coefficient, inter-particle friction, size
and geometry of the grain size and so forth. In addition to those properties, the type of
vessel whether it is cylindrical or parallelepiped, along with the system size (how tall and
wide the vessel is) plays a strong role in how dense the structure of the material becomes.
The dryness of the material can also provide different effects on how these granular
systems compact as well as the roughness of the base of the system. The way that one
perturbs a system of granular material can also impact the way such systems arrive at
their packed states. For example, one can perturb a vessel by continuously vibrating the
floor of the vessel, or applying discrete taps to the vessel through the floor.

Continuous vibrations involve applying a sinusoidal pulse to a granular material
repeatedly without any time of relaxation of the material. The bulk density, otherwise

known as the solids fraction, of the system of particles is then measured after one decides
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to stop vibrating the vessel. Discrete vibrations are perturbations in which the system of
particles is perturbed by a sinusoidal pulse; however, there is a period of relaxation of the
media in between pulses and the solids fraction is measured after the system is measured
in the time after the system is relaxed and before the next tap is applied.

The compaction of granular materials has been studied in the three typical ways:
experiments, theory, and simulations. Experiments have covered vibrating as well as
discrete perturbations to a vessel of material [23, 726]. The theory that has been
developed has come from a statistical mechanics approach and has looked at the
compaction of granular systems from a 1-D view [71]. In addition to theory and
experiments, researchers have studied the compaction process through both stochastic as
well as deterministic means. Such stochastic means are through Monte Carlo method and

for the deterministic methods; researchers have used dissipative molecular dynamics.

1.2 Evolution of Solids Fraction in Published Literature

The compaction process of the granular matter has an extensive history and the time
evolution of bulk solids fraction is widely represented in the literature. The formation of
regular and irregular configurations of particles during granular compaction is naturally
accompanied by study of the microstructure geometry. The following sections and
subsections are constructed to provide an overview of the experimental, and simulation
approaches that have been applied to the problem of density relaxation. More
specifically, experiments involving discrete taps and continuous vibrations of particulate
systems will be reviewed, following by related numerical simulations involving Monte

Carlo and discrete element methods.



1.3  Experimental Work

This subsection provides a concise review of the experimental results reported in the

literature in which continuous vibrations and discrete taps have been used.

1.3.1 Continuous Vibration

An early study was done by Stewart [15] where they found a maximal improvement in
the solids fraction by continuously vibraﬁng a bed of particles with a low amplitude-high
frequency protocol. Results obtained by Stewart were also found by Evans [16]. Those
results gave why to a dimensionless parameter that is used widely in density compaction

called the dimensionless acceleration, which will be called I" throughout this thesis. The
dimensionless acceleration is characterized by Equation 1.1 shown below where fis the

frequency of the tap, & is the amplitude of the tap, g is the gravitational acceleration.

a (1.1)

Studies in continuous vibration of granular media were also performed by Zhang
et al [20], where a cylindrical vessel of acrylic monodispersed spheres were vibrated for
approximately ten minutes, where after the solids fraction was measured. In their studies,
they performed a wide variety of amplitudes and frequencies to investigate which
amplitude-frequency pair gave the most dense solids fraction. Experiments in [20] looked
at the improvement in solids fraction which is the ratio of the difference in the final and

initial solids fraction to the initial solids fraction.



1.3.2 Discrete Tapping of Granular Matter

Ribiere et al [61] experimentally studied granular dynamics subjected to gentle
mechanical taps. They determined the compactivity using the fluctuations in the packing
fraction in the equilibrium (stationary state). Their experiments consisted of a cylindrical
vessel of diameter 10 cm filled with glass spheres of diameter 1 mm. A picture of the

experimental setup is shown in Figure 1.1 below.

Figure 1.1 Experimental setup to apply discrete taps to a cylindrical vessel taken from
[61].

The tapping is brought about by an electromagnetic exciter that is connected to a
voltage that induces vertical displacements to the moving part of the container and the
beads. Each tap is an entire cycle of a sin wave at a fixed frequency of 30 Hertz. After
every tap, there is a period of one second of relaxation. The authors compare their results
to those experiments using flow pulses [66]. The experiments conducted in [61] produced
a steady state and may correspond to a balance between convection and compaction. In

the Ribiere’s experiments [61], they ran cases for different dimensionless accelerations






fraction versus the corresponding gamma for each frequency and showed that the
equilibrium packing fraction decreases for each frequency as the gamma increases.

The authors in [61] plotted the fluctuations as a function of the stationary solids
fraction, and showed that it produced a single master curve implying that the fluctuations
and the stationary solids fraction are linked and do not depend on the values of frequency
and gamma. Their results are in agreement with Ciamarra et al [66] where they used
numerical simulations of granular pacl;ings using flow pulses.

The results obtained in [61] strongly support the idea that the stationary state can
be described by one parameter, the packing fractions. The preceding statement is only
true for the stationary state. In [61], the authors use the fluctuations and the stationary
packing fraction to obtain the compactivity described by Edwards. Ribiere et al [61]
plotted the compactivity versus the stationary solids fraction, and showed that the
compactivity decreases as the stationary solids fraction increases. The compactivity for
tapping intensities for a frequency = 30 Hertz was plotted and the authors showed that the
compactivity is linked to the tapping intensity.

They note that an increase in gamma increases the average solids fraction for an
acceleration less than three. For accelerations larger than three, there is a slow decrease.

The authors only recovered the reversible branch (frequency used is 30 Hertz) as shown

in Figure. 1.3. They explained it because the number of taps used was large enough to

allow the system to reach the stationary stage.







can be obtained by using Newton’s laws of motion. However, one important point to
note is that for the Monte Carlo simulation method, there is no real concept of time or

forces because the algorithm is not based upon deterministic dynamics.

Another use of the Monte Carlo simulation was done by Rosato et al [46] where
he studied the size segregation of a system of polydispersed particles which undergoes
vibration. Mehta and Barker [52] also used the Monte Carlo simulation to study granular
packings where they used a linear expansion for the system of particles along with lateral
displacements.

Ribiere et al [60] also performed MC numerical simulations where they have the
following parameters: 4096 monodispersed spheres of radius R. Container is a box with a
flat square bottom measuring 32 particle radii’s in each of the lateral dimension. Periodic
Boundary conditions are imposed on the horizontal directions. There is a free interface at
the top of the packing. A tap is simulated in two stages, the first stage is where the

packing is dilated vertically given by Equation 1.2, where & is the dilation parameter that

is proportional to the square of I

(z—R)—> (z-R)(1+¢) (12)

The next stage simulates the gravitational re-deposition using a nonsequential
algorithm. The model only takes into account the steric constraints because that’s
important for compaction to occur. They found that their simulations as well as their
experiments show the cage motions as well as the jumps. Cage motion is where a grain is

always surrounded by the same neighbors. A jump is a displacement where the grain



moves significantly more than the mean square displacement of a grain. The simulations
in [60] confirm that jumps as well as caging occurs. The chéfécteristics of the caging
motion change during the simulation due to the evolution of the packing fraction.

The authors in [60] found that jumps always yield a large displacement in the
direction of gravity. The above statement corresponds to the fall of a bead in a hole
located beneath it. This is correlated to the compaction mechanism. In Ribiere et al’s
[60] simulation of 10000 taps only about 100 jumps occurred which happened during fhe
beginning of the simulation. That corresponds to when the packing fraction is farm from
the steady state value. They then seek to understand the evolution of the jumps by
comparing the jumps that are inhibited in the simulations to normal jumps. In [60] the
authors modified their algorithm to inhibit jumps, and then checked their results to that
obtained using molecular dynamics. The results showed that when without significant
jumps, the increase of packing fraction was slower.

The packing obtained after a large number of taps is less dense with jumps than
one without jumps. The authors in [60] explained the above using energy landscape in
which two states are separated by potential barriers that cannot be avoided by many slow
events.

Jumps play an important role in the evolution of media. The number of jumps
decreases as the system compacts. In [60], the effect of jumps was studied by looking at
the mean squared displacement of a grain. The authors looked at a modified random walk
model to describe the cage motion to look at the diffusive properties without jumps, in
which cage motions are the only allowed displacement. Their conclusions are that jumps

play an important role in the macroscopic behavior of media. Their simulations showed
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that compaction is slower and that the state reached after long time is less dense if the
jumps are inhibited.

That observation is surprising because such rare behavior in an equilibrium system
have little effect on the overall evolution. The above results for out-of-equilibrium
granular media can also be valid for out-of-equilibrium systems such as glasses, colloids,
etc, and can be useful when studying granular media under shearing.

In addition to tapping using the Monte Carlo simulation, there was also the use of
flow pulses where a system of particles were submerged and then tapped using the pulses
to measure the solids fraction as one of the quantities of interest. Such cases have been

done by Ciamarra et al [66].

1.4.2 Discrete Element and Molecular Dynamics Modeling

The use of the discrete element method (DEM) that was developed in 1971 took shape
from molecular dynamics that is used the statistical physics community. The DEM is
used to model the behavior of bulk solids. The main premises of the DEM is to solve
Newton’s equations of motion for a system of particles where such particles are modeled
using a dissipative force model. Unlike molecular dynamics, DEM accounts for the

dissipation in energy in the collisions between particles.

The studies that have been conducted using DEM can be seen in Luding [46],
Roasto [49], and Liu [47]. In addition, studies done by An et al [58] where they studied
three dimensional systems subjected to vibrations. The focus of their work was to look at
how the vibration conditions such as the amplitude and frequency as well as inter-particle
friction play a role in the packing of the system of particles. They showed that increasing

the amplitude or frequency of the vibration will cause the packing fraction to increase
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then decrease. Also, the sliding and rolling friction had an effect of decreasing the
density of the packings. In addition, they found that a loose packing had a smaller

coordination number, a less peaked radial distribution function.

1.5  Objective

In this thesis, the study of density relaxation of granular materials will be investigated
through simulations. The simulations that will be used are broken into two categories:
stochastic and deterministic. For the stochastic simulation, we will use a Monte Carlo
method with a Metropolis approach to simulate a three dimensional system of spheres
subjected to several uniform expansions. To measure how dense the system is the use of
a combination of techniques such as the solids fraction, vertical center distribution and
coordination number will be employed.

Dissipative molecular dynamics was also used to model the compaction of
granular materials by using a discrete tapping protocol. For that method, the discrete
element method was used where the interactions of particles are modeled using a spring-
dashpot model, and the equations of motion are integrated to obtain velocities and
accelerations. Then, the safne quantities such as the solids fraction, coordination number
distribution and vertical center distribution is computed as they were for the Monte Carlo
simulations. The investigation was performed for various amplitudes as well as

frequencies to determine how the systems of particles behave.
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1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the Monte
Carlo simulation method and the results that were obtained by employing it. Chapter 3
describes the discrete element method along with a kinetic energy analysis of the tapping
parameters. Chapter 4 describes the results that were obtained using the DEM
simulations. In Chapter 5, the summary of the results as well as the conclusion is

presented. Additionally, suggested future directions with regard to the research done are

presented in chapter 5.




CHAPTER 2

MONTE CARLO SIMULATION METHODOLOGY AND RESULTS

2.1 Introduction

In this chapter, the behavior of granular materials will be modeled by using a stochastic
simulation technique, the Monte Carlo method. Ir} [96], the Monte Carlo method was
used to investigate the expansion of a system of monodisperse spheres in a parallelepiped
using various lifting protocols such as a linear expansion, or a combination of a linear and
uniform expahsion. The purpose of this work is to investigate the process by which the
system density increases, and in parallel to carefully examine the evolving microstructure
using techniques such as coordination number, radial distribution function as well as the
vertical center distribution, and solids fraction analysis.

The results described in this chapter represent a continuation of what was done in
[96], where tapping is modeled by uniformly lifting the particle assembly. In this chapter,
the behavior of such systems will be analyzed using a global measure such as the solids

fraction, as well as by the vertical center distribution, a local measure.

2.2 Bulk Solids Fraction of a Granular Assembly

The solids fraction of a vessel of particles is defined as the ratio of the volume of

particles that occupy a vessel to the volume of the vessel itself as define in Equation 2.1.

Volume @.1)

_ solids

 Volume

occupied
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The two structures having the densest packing are the Hexagonal Close Pack (HCP) and

the Face Centered Cubic (FCC) crystals with a solids fraction of i’/_ ~0.74 -
32

However, it has been reported in [51] that while both have the densest structures, it is the

FCC structure that is the most stable because of how the structure is ordered.

2.3 Vertical Center Distribution

The solids fraction analysis is an indicator of the bulk density of the assembly. However,
that does not lend insight into microstructure of the assembly of particles. For example,
although HCP and FCC have the same solids fraction, each has a different crystal
structure. Thus, a local measure is needed to observe differences in the arrangement of

the spheres.

The vertical center distribution is such a measure because it allows one to see the
distribution of particle centers in a given layer thickness. The control is partitioned
volume in the vertical direction into layers of thickness § as shown in Figure. 2.2, after

which the number of particle centers in each layer in calculated.

1M (2.2)
n(y,6H)= N—Z 5(y-y,)0H

p k=1

The number of centers in each layer is then normalized by the total number of particles in

the system N,. The exact computation is given in Equation (2.2).
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X, =X, +6(1-28) (2.4)

The trial position is accepted unconditionally (provided that an overlap does not occur) as

the new location if the change in the system energy given in Eq. 2.5 below.

N 2.5)
AE=mg) (y/-y)<0 (

i=1

Otherwise, if the change in energy is positive (AE > 0), the trial position is accepted with
probability e . For the macroscopic particles under study, B is very large so that the
likelihood of an accepted upward displacement is small. Another particle is then selected
at random, and the above procedure is repeated. As this settling process advances through
many thousands of MC steps, the mean free path decreases resulting in a drastically
slowed rate of approach to a local equilibrium. Therefore, the parameter § is modified
every 10* MC steps in accordance to 8" =0.9958 if fewer than half of these steps are
accepted.

The effect of a single tap applied to a containment vessel filled with spherical
particles of diameter d is idealized by lifting the entire particle assembly from the floor

by an amount A, whose normalized value is y=A/d . The assumption here is that a tap is
sufficiently energetic to cause a small separation of the assembly from the floor. That is,
¥ physically represents the lift that a granular mass will experience as it is energetically
tapped. Within a single tap » of intensity vy, the bulk solids fraction v j(my) was

monitored (i.e., the fraction of volume occupied by spheres) at MC step j every 10° steps.

The settling process was terminated when the difference in the bulk solids
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fractions|v (D108 (m7) =V, (m7)] < 0.001, £=0,1,2,.... This protocol was validated by

enforcing the latter criterion twice to ensure that premature termination could not occur.

2.5 Solids Fraction Computation

The solids fraction as was previously defined in this chapter is the ratio of the volume of
matter occupied to the volume of that contains the particles. In this process, the solids
fraction is computed by measuring the solids fraction from the base of the vessel until 80

percent of the height of the stack of particles. Measuring the solids fraction that way

ensures that the “top effect” is removed from the evolution of the solids fraction.

The “top effect” is where one has disordered layers of particles on the top of the
stack. If such a measure were included, then one would lose information about the
evolution of the majority of the stack of particles. To calculate the solids fraction, 80
percent of the control volume is partitioned into slices and the volume distribution is
found in each slice. Then the volumes in each slice is summed up and divided by the

total control volume. A more detailed analysis is done in [96].

2.6 Monte Carlo Results

In all cases reported here, poured assemblies consisting of 3,456 particles with

solids fractions v, in the range 0.56 to 0.58 filled the periodic box to a depth of

approximately 22d. For each tap n, the ensemble averaged bulk solids fraction (v(n; y))

over M realizations(where M is 100) is computed, and its standard deviation is given by

Eq. 2.6 where (v(n; y)> is given by Eq. 2.7



\/1 Iy 2 (2.6)
olmy))=,— > |v,(my)—{v(n
(o) =572 [0 = ()]

(v(my)) = %gvkm;y) &7

The equilibrium bulk solids fraction v,_ (y) was found by increasing the number of

realizations over a sufficient number of taps Nt until the condition <G(NT;y)> <0.001

was satisfied.

The MC tapping procedure differs from that used in [34], where vertical position-
dependent displacements of the particles ()’ =Ay) were applied in sync with random
lateral perturbations. In an earlier paper [26], it was reported that statistically equivalent
solids fractions were obtained with or without application of these random lateral
displacements. Furthermore, for the packings (~22d high) reported here, application of
taps consisting of the vertical position-dependent displacements produced little or no
‘ increase in solids fraction in the upper portion of the bed, so that the bulk solids fraction
| remained relatively low. This behavior is attributed to an overly aggressive vertical
\ displacement of the particles with distance from the floor, so that after each tap, the
system tends to lose memory of its previous microstructure. Physically, this corresponds
to the situation in which vigorous taps or shakes are applied so that the system relaxes to
nearly the same or lower bulk density.
The simulated mean coordination number (i.e., average number of contacts per

particle) versus solids fraction is shown in Figure. 2.8.







The parameters of Equation 2.8 are summarized in Table 2.1 below. The KWW

fit is one that is widely used in many studies for granular packings when it comes to

1O

vV, =V, — (Ve — Ve

fitting the time evolution of the solids fraction.

Table 2.1 Summary of the Fit Parameters of the KWW Law

Parameter Description of Parameter
v Solids fraction at a particular time.
n
V. Equilibrium Solids fraction predicted by the KWW fit.
v, Initial Solids fraction of the poured state.
t Time corresponding to the tap, or lift etc.
T Compaction Time.
p A fitting parameter from the KWW law.








































CHAPTER 3

DESCRIPTION OF THE DISCRETE ELEMENT MODEL

3.1 Introduction

This chapter contains a description of the Discrete Element simulation model, beginning
with a concise background on the method itself and the force models used. This is
followed by introducing the physical properties of system. Details of the modifications
made to an existing discrete element code are described, consisting of how discrete taps
were implemented. Finally, the analyses of the particle layer responses to the taps via

maximum displacements are provided.

3.2  Background

The discrete element method (DEM) is based on the numerical solution of Newton’s laws
for a set of discrete, interacting particles. A recent and detailed review of this method and
applications can be found in [46, 47]. In the study discussed here, particles were inelastic,

frictional, monodisperse spheres obeying binary, soft-sphere interactions [48] in which

normal and tangential impulses are functions of a small overlap between colliding

particles.

Energy loss in the normal direction (i.e., along center line of contacting

spheres) is produced by linear loading (K;) and unloading springs (K3), corresponding to
a constant restitution coefficient e =./K,/K, . This model has been shown to reproduce

the nearly linear loading behavior for a spherical surface that experiences plastic

deformation of the order of 1% of a particle diameter. In the tangential direction, a










For the remainder of the discussion, the focus of the simulation studies will be
primarily on spheres for which e = 0.9 .= 0.1 and p = 1200 kg/m’. It is understood that

these material properties may also have significant influence on system behavior.
3.3  Tapping Protocol

The assembly of spheres is tapped by prescribing impulses to the floor. In particular, a

half-sine displacement wave of frequency fis applied to the floor, so that the period ¢, is
(1/2f) . The equation for the velocity of the impulse particle is by equation (3.2), where

Vmp 18 mMaximum magnitude of the velocity of the floor, ¢, is the relaxation time, € is

angular frequency (27 f ), ir is the tap number, and . is the time duration of a “cycle”.

Here, the term “cycle” refers to the period of the tap plus the time required for the system

to relax to a quiescent state, i.e., 7, =1, +¢,.

v () =v

amp

-cos(Q(t—tp+(ir—1)tc)) (3.2)

When the system of particles is tapped, the impulse from the floor is transmitted
to the particles resting on the floor. The resulting impulse then engenders collisions
between particles in the system thereby causing an increase in the kinetic energy of the

system. The system then settles down during the relaxation time scale ¢, so that the

kinetic energy of the system is zero for all practical purposes. An example of the floor

motion is shown in Figure. 3.3 for the case f=5Hz, 7, =0.1 sec, t, = 0.3 sec and ¢, is

0.4 sec.





















CHAPTER 4

DEM CASE STUDIES OF DENSITY RELAXATION IN GRANULAR
MATERIAL

4.1 Introduction

In this chapter, the results that are presented are obtained by using the DEM method to
simulate a system of particles that are subjected to the aforementioned tapping protocol.
The system of particles will be tapped using two different accelerations and in one case
the mass overburden will be doubled to determine how the bulk density behaves for a
larger fill height. In addition, microstructure tools will be presented and applied to

analyze the behavior of such system of particles that are subjected to tapping.

4.2  Motivation of Analysis

The process of how disorganized systems of particles become dense is one that is not
thoroughly understood. Even with widely used techniques that include the solids fraction
as well as the nearest neighbor distribution and the free volume distribution, there still
remain many questions on how a system reorganizes to arrive at dense structures. Tools
that have been developed to analyze that problem have included the vertical center
distribution which has been inspired by P. Singh et al [98, 99]. In addition another tool
will be used that is called the local density evolution of the system which makes use of

the Voronoi tessellation.






















































44  Ensemble-Average Bulk Density Evolution

It was found that for poured configurations which are statistically indistinguishable
regarding their initial bulk solids fractions and distributions of nearest neighbors and free
volume, significant variations in the solids fraction evolutions were observed. This is not
surprising since intuition suggests that the details of the microstructure have a dominant
influence on how the system advances to a dense configuration. It was demonstrate this
with an ensemble of 20 poured realizations with bulk solids fractions in the range 0.6088
+ 0.0035.

For each realization, the Voronoi diagram was constructed, from which the
distribution of nearest neighbors (i.e., coordination number distribution) was obtained.
The distributions for all realizations were individually fit (R* > 0.9906 ) to a normal form
in Equation 4.2, with fit parameters of a and b were found for each realization. The mean

and standard deviation for these parameters was

a="7.2713 £0.0558 and b =1.2550%+0.0262.

1 _(n—a)2 4.2)
f(n)_bm exp[ 2 J

Although not shown here, each of these individual distributions was statistically
indistinguishable from the coordination number distribution computed from the ensemble
average of the distributions (R* = 0.9975, a = 7.271, and b = 1.256). Figure 4.28 shows

this ensemble average coordination number as well as the normal fit to this data.



























one can imagine two extremes that engender no microstructure development or
appreciable increase in bulk density: (i) an aggressive, energetic tap that greatly expands
the system so that any existing microstructure is destroyed upon contraction and, (ii) a
low energy tap that merely transmits a stress wave through the contact network, but does
not dislodge or disturb the structure to any appreciable degree. Thus, one can
hypothesize that the densification process is regulated by the degree of dilation, and that
ordering of the microstructure occurs within some narrow range of values of dilatations.
The results of a study to explore this conjecture will be reported in a future paper.

Of particular relevance to the results reported here are the studies of Zhu et al.
[50], who report on experiments and discrete element simulations of the density
relaxation process through the application of continuous vibrations. In particular, those
authors employ a procedure in which very dense structures (solids fraction ~ 0.7 and
higher) are built up by vibrating sequentially deposited thin poured layers (of
approximately one diameter). This procedure differs from our approach, in which the
entire system is exposed to taps, resulting in its evolution to a dense structure (<v> ~0.7)
as in Figure. 4.30. Their findings are essentially in agreement with our earlier reported
discrete element investigation [20] in that high solids fractions (greater than ~ 0.66) were
not found in relatively deep systems through the application of continuous vibrations.
This can be seen in the phase portrait of Figure. 4.36 (redrawn from [20]) for a system of
8000 particles (¢ = 0.9 and p = 0.1) within a laterally periodic box (aspect ratio L/d = 25),

in which the improvement in solids fraction (v_-v_)/v, is mapped as a function of the

vibration amplitude (0.02 < a.d £0.48) and frequency (10 < f <90 Hz).






CHAPTER §

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Density relaxation phenomena were investigated using two different types of methods:
Monte Carlo simulations and the Discrete Element Method. For the Monte Carlo method
the lift expansion that was used was a uniform expansion where the entire assembly was
lifted off the base of the vessel. For such an expansion, many taps were done for various
lift expansions.

As a result, the Monte Carlo evolution for each lift expansion was obtained as a
function of tap number. The ensembled average curve was calculated and the solids
density evolution was obtained. The results were fit well to two phenomenological fits:
the inverse natural log fit, and the KWW fit. For the inverse log fit, the data for the low
lift intensities were fit well. However, the estimated equilibrium solids fraction obtained
from that fit was larger than expected.

Another important result obtained through the MC simulations was that there was
evidence to suggest that there might be a critical tap intensity. Even when the estimated
equilibrium solids fraction was found from the KWW fit, the behavior of the equilibrated
solids fraction vs. the tap intensity still suggested there might be an optimal intensity to
produce a dense packing. An important result that the MC simulations pointed is that if

one were to lift the system with a large intensity such as ¥ = (.4,0.5 then there will not

be an improvement in the solids fraction of the system of particles. Moreover, if one




“were to lift the system with a small tap intensity such as ¥ = 0.1, then the density of the

system would improve, albeit at a slower rate.
The time that it took for the system to equilibrate the lower lift expansions for

¥ =0.1,0.2,0.25 was substantially longer than that of the higher lift expansions. That

could be attributed because the nature of the expansion is smaller which would
correspond to a system with a less energetic tap. In addition to analyzing the bulk
density, the microstructure of the system of particles was analyzed. It was found that for

systems where the density was large, such as in the case of the y = 0.25, the vertical

center distribution found that there was an ordering of the system of particles beginning
from the base of the system and progressing upwards through the system as time evolved.

An important result that was verified in Monte Carlo simulations is that the final
bulk state is independent of the initial state. That result was tested by starting with one of
the most dense packing configurations: an HCP crystal and then applying the same lift
expansions. It was found that the equilibrium solids fraction matched up well with the
solids fraction corresponding to the same tap that was obtained when one started with a
random loose packed system.

In the DEM simulations, the results that were obtained suggested that by changing
the inter-particle friction, one could obtain either a denser poured configuration, or a
looser poured configuration. In addition to looking at the solids fraction, the kinetic
energy of the system of particle could be analyzed to obtain different kinds of behavior.
One such behavior is that if one were to increase the H/d ratio of the system, the kinetic
energy would change for different accelerations. Other parameters that were investigated

were the amplitude of the pulse as well as the frequency of the pulse. It was found that



for higher accelerations, one needed a longer relaxation time to ensure that the system
settled down to a quiescent state.

Results that were obtained for the DEM showed that one can obtain different
trajectories of the bulk density as a function of time depending on the initial state.
However, for each of the realizations, the final bulk density was quite similar thus
suggesting that the final state is independent of the initial state as was seen in the Monte
Carlo results. In addition, dense packings were obtained for an acceleration of I' = 2.0
which gave a solids fraction of approximately 0.69. Additionally, when compared to a
case that was run at the same frequency of 7.5 Hz but at a I" = 0.5, then density was not
as high (~0.63), which also suggested that there might be an optial amplitude
corresponding to a frequency that produces a dense packing. In addition, the mass
overburden played a role in obtaining high densities as was shown in the DEM results a
higher fill height.

Microstructure analysis were also done for the DEM simulations, and there was
an ordering of the system starting from the base and progressing upwards as was also
seen from the MC results. A new tool that was used to look at the microstructure, the
local density analysis, showed that there was an increase in density as time progressed for

the system of particles that progressed upwards.



5.2 Future Work

The results that are discussed in this thesis could point to other areas that can be looked

into with regard to the density relaxation of granular media. Such areas can also be

analyzed using the microstructure tools that have been discussed. Possible areas of future

work are mentioned below:

1.

Analyze the role of the phase space of the system as well as tap parameters play in
influencing the bulk behavior of the system. Such parameters include the
restitution coefficient, the aspect ratio, mass overburden, fill height, frequency of
the tap, amplitude of the tap, as well as the acceleration.

Exploring the dilation of the system of particles to capture the way particles
rearrange themselves into denser packings. The dilation analysis should be
performed on two time scales: the application of the pulse time scale and the
relaxation time scale.

An alternative measure of exploring the microstructure of the system by looking
at the normal interactions between particles in the relaxed time scale.

Reproducing the reversible branch that was obtained by Nowak et al [26] and
Ribiere et al [61] for different frequencies using the DEM simulation.
Constructing a phase space of the frequency, amplitude and solids fraction to
determine which frequencies should be matched to an amplitude to obtain the
densest structure.

Exploring the role of how the mass overburden comes into play when applying
taps to a system of particles, and how the increased mass scales with the solids

fraction.



7. Application of the local density distribution during the short time scale to see

examine the local phase space of each particle to determine if there are any early

indicators of dense structures forming as time increases.




APPENDIX A
MODIFICATIONS TO THE DEM CODE

This appendix documents some of the changes the DEM code has undergone throughout
this thesis. Changes are described a brief header that indicates the subroutine, the
modification made to the subroutine, and the reason for the modifications.

Main Program 3dshear.f

The following lines of code initialize parameters for the restarted run. The old values of
tmax, istart, tstart, nout, dsump, dtdump, nrun, vamp, frq, vamp, fmu, fmub, dtout are
replaced by the new values. These variables are the only ones allowed to change during a
restart.

c----- initalize parameters for new run
tcycle = tbump + tpour
tmax = tpour + nrcg*tcycle
tbump1 = tbump
tcyclel = tcycle
tmax?2 = tmax
frq2 = frq
vamp2 = vamp
dtdump2 = dtdump
fmu2 = fmu
fmub2 = fmub
dtout2 = dtout

Subroutine forces.f
The following lines of code are for the purpose of extracting the linked list features such
as the linked list neighbors, normal forces, overlaps, and tangential forces.

open(unit=18,FILE="'normalforce.txt',6 status="'unknown', access =

'APPEND')

write(18,17)t, 1i,jdx1

write(18,22) t,i,jdx,Jj,idx,nxt,a(jdx),a0(jdx),fn(jdx),tfx(jdx),
tfy (jdx) ,tfz (jdx) ,tm(jdx) ,nbor
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APPENDIX B
SAMPLE INPUT FILE FOR THE DEM CODE

This appendix gives a sample input file.

$var np = 3203 $Total number of particles in cell

$var bdry = 1 $flag for boundry type (1;cubic, 2;tringular)
$var nxby0 = 1 $No of boundary particles in x-dir. at y = 0
$var nzby0 = 1 $No of boundary particles in y-dir. at y = 0
$var nxbyl = 0  $No of boundary particles in x-dir. at ycell
$var nzbyl = 0  $No of boundary particles in x-dir. at ycell
$var nxbz0 = 0 3

$var nybz0 = 0 $

$var nxbzl = 0 $

$var nybzl = 0 $

$var nybx0 = 0  $No of boundary particles in y-dir. at x = 0
$var nzbx0 = 0  $No of boundary particles in z-dir. at x =0
$var nybxl = 0  $No of boundary particles in y-dir. at xcell
$var nzbxl = 0  $No of boundary particles in z-dir. at xcell
$var nfix = 0  $ number of fixed particles

$var nzcyl = 0  $ number of fixed cylinders parallel to z-axis
$var nycyl = 1 $ number of fixed cylinders parallel to y-axis
$var ncomp = 1 $ the particle used for axial compression
$var ncmax = 0  $number of collisions during entire run
$var nout = 0  $No. of time to print out results

$var nczero= 0  $number of collisions before start cum. ave.
$var ntcol= 40  $number of time steps during a collision
$var nvel= 20  $number of intervals for vel. distrib.

$var nyzone= 5 $number of y zones

$var mzcell= 4 $number of z cells

$var nycell= 1 $numner of y cells

$var itervm= 1  $max iterations per time step

$var icoord= 0  $flag for coordinates print out

$var itty = 0  $flag for tty interaction

$var ixyz = 0  $flag to read init coords of fxd & bnd particles
$var istart= 0  $to restart the code rename d3ds to d3ds1000 and set istart=1000
$var tmax = 30.00 $max time for calculation

$var tpour =0.5 $time for pouring

$var dt= 0. $time step

$var dtout = 0.5 $time interval for printing out results

$var dtdump = 30.0 $time interval for dumping

$var tzero= 10.0 $restart long-term cum. ave.

$var search = 0.05 $search distance for near neighbors
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$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var
$var

ycell= 3.00 $cell height (m)
xyrat= 100.0  $ratio used to compute xcell
zyrat = 100.0  $ratio used to compute zcell

vave= 0.0 $average deviatoric transl. velocity

vseed = 0.9 $seed for random initial particle velocities
vxzero = 0.0 $initial velocity in the x-direction (ave)
vyzero = 0.0 $initial velocity in y-direction (ave)
vzzero = 0.0 $loading stiffness K1

sknl = 2.8¢+06 $normal force coefficient
elast= 0.971 $Scoefficient of restitution

slope = 0. $alternative parameter for unloading
ratk = 0.8 $ratio of tangential/normal stiffness
fmu= 0.1 $coefficient of friction

fmub = 0.00 $friction for boundary and fixed particles
power = 0.3333333 $tangential force exponent
rmassz = 10891 $mass of unit sphere

tstart= 0.1 $time to initialize long term averages
gravx = 0.0 $acceleration of gravity in x direction
gravy = -9.81 Sacceleration of gravity in y direction
gravz= 0.0 $acceleration of gravity in z direction

vxbyO = 0.0 $x velocity of real boundary at y = zero
vxbyl = 0.0 $x velocity of real boundary at y = ycell
vybyO= 0.0 $y velocity of real boundary at y = zero
vybyl = 0.0 $y velocity of real boundary at y = ycell
t2move = 70.0 $time to start moving the floor/wall
t2stop =2000.0  $time to stop the floor from moving
vyfloor = 0.0001  $velocity of the floor/wall when moving
draddt = 20. $rate of increase of particle radii
compforce = 0.00001 $axial force to be applied (N)
number(1) =3200  $number of particles in group 1
radius(1) =0.05  $particle radii for group 1

number(2) =1 $number of particles in group
radius(2) =0.05  $radius of particles in group
number(3) =1 $number of particles in group
radius(3) = -0.6667 $radius of cylindrical boundry
number(4) = 1 $number of particles in group

radius(4) =0.05  S$radius of large particle
sknlb=2.8¢+06 $

elastb= 0.83 $

slopeb= 0. $

vamp = 0.115080997  $velocity amplitude of boundary
frq = 30. $frequency of bump

tbump = 0.0166667 $duration of one bump

nrcg = 5 $number of bumps to be processed
finis= 1. $end



APPENDIX C

SCRIPT FILES IMPLEMENTED ON THE OPEN SCIENCE GRID

This appendix details the files that are needed to run the DEM code on the Open Science
Grid.

The following lines of code are for the first file called the “job-wrapper.”

#!/bin/bash
set -x

function create_work_dir()
{
TARGETS="$0OSG_WN_TMP $OSG_DATA"
if [ "x$TMPDIR" != "x" ]; then
TARGETS="$TMPDIR $TARGETS"
unset TMPDIR
fi
echo "Possible targets for work dir: $TARGETS"
for DER in $TARGETS; do
WORKDIR="/bin/mktemp -d -p $DER engage. XXXXXXXXXX"
if [ $7=01]; then
echo "Created workdir in $DER"
export WORKDIR
return O
fi
echo "Failed to create workdir in $DER"
done
return 1

function cleanup()

{
cd $STARTDIR

rm -if $WORKDIR || /bin/true
}

# run id is the first argument
RUNID=$1
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#jobid
JOBID=$2

# keep the exit code to the end
EXITCODE=1

# remember start dir
STARTDIR="pwd"

# output file (so staging always works)
touch $STARTDIR/../$JOBID.tar.gz

# we need a local temp directory to do the actual work in
# it is important to try to use local filesystems as much as
# possible during jobs, instead of using the shared SOSG_DATA
create_work_dir
if [ $7 1=01; then
exit 1
fi

# is it very important to do the cleanup in case of failure
trap cleanup 123 6

# copy inputs to work directory
cd SWORKDIR

cp $STARTDIR/mds .

cp SSTARTDIR/i3ds .

cp $STARTDIR/poured.txt .

chmod 755 mds
time ./mds >mds.output 2>&1
EXITCODE=$?

if [ "xX$EXITCODE" !="x0" ]; then
tail -n 100 mds.output
fi

# create output tar
mkdir $JOBID
for FILE in “find . -type f -maxdepth 17; do
mv $FILE $JOBID/
done
tar cvzf $STARTDIR/../$JOBID.tar.gz $JOBID

# cleanup
cleanup




# signal the sucess/failure of the job
if [ "xX$EXITCODE" = "x0" ]; then
# give the all good signal to the post-job script
echo "=== RUN SUCCESSFUL ==="
else
echo "Job failed with exit code SEXITCODE"
fi

The second file is the “pre-job” file.

#!/bin/sh
set -e

RUN DIR=$1
JOB_ID=$2

mkdir -p $RUN_DIR/logs/$JOB _ID
touch SRUN DIR/alljobs.log
chmod 644 $RUN DIR/alljobs.log

The following lines of code are for the first file called the “post-job.”
#!/bin/sh
set -e

RUN_DIR=$1
JOB_ID=$2

TIMESTAMP="/bin/date +'%y%m%d_%H:%oM"
LOG_DIR=$RUN_DIR/logs/$JOB_ID

if grep "=== RUN SUCCESSFUL ===" $LOG_DIR/job.out; then
cd $SRUN_DIR
mv $JOB_ID.tar.gz SRUN_DIR/outputs/tars/
cd $RUN_DIR/outputs/untarred
tar xzf ../tars/$JOB_ID.tar.gz
exit 0
else
# keep copies
cp $SLOG_DIR/job.out $LOG_DIR/job.out.checked. STIMESTAMP
cp $LOG_DIR/job.err $L.OG_DIR/job.err.checked. STIMESTAMP
exit 1
fi




The following lines of code are used to submit the jobs to run on the OSG system for the
first file called the *“submit.”

#!/bin/bash
set -e

HHHHHHE AR AR R
HHHHHH

#

# SETTINGS

#

# number of jobs to run
NUMBER_JOBS=1

# max runtime (in minutes)
MAX_RUN_TIME=1000

HHHHHHHHA AR R
HHHHHE

# top dir
| TOP_DIR="pwd"

# runid
RUN_ID="/bin/date +%F_%H%M%S" pwd | sed 's:/home/[a-z0-9]*::" | sed 's:/:_:g"
echo "Run id is SRUN_ID"

# run dir
RUN_DIR=$TOP_DIR/runs/$RUN_ID
mkdir -p SRUN_DIR/logs

# output dir
OUTPUT_DIR=/scratch/scratch1/users/SUSER/osg-output/SRUN_ID
mkdir -p $SOUTPUT_DIR/tars

mkdir -p $SOUTPUT_DIR/untarred

In -s SOUTPUT_DIR $RUN_DIR/outputs

for JOB_ID in “seq 1 SNUMBER_JOBS"; do

echo "Generating job $JOB_ID"
mkdir -p SRUN_DIR/logs/$JOB_ID



# create a self extractable executable - this makes stage in easy
cd SRUN_DIR
mkdir $JOB_ID
cp ../../[job-wrapper $JOB_ID/
cp ../../mds $JOB_ID/
cp ../../i3ds $JOB_ID/
cp ./../poured.txt $JOB_ID/
makeself --nox11 --gzip --notemp $JOB_ID $JOB_ID.sh \
"Job Run: $RUN_ID Job: $JOB_ID" \
Jjob-wrapper >logs/$JOB_ID/makeself.out 2>&1
rm -rf $JOB_ID

# condor submit file
cd SRUN_DIR
cat >$JOB_ID.condor <<EOF
universe = grid
grid_type  =gt2
globusscheduler = \$\$(Glue CEInfoContactString)
globusrsl = (maxWallTime=$MAX_RUN_TIME)
requirements = ( (TARGET.GlueCEInfoContactString =!= UNDEFINED) && \\
(TARGET.Rank > 300) && \\
(isUndefined(TARGET.OSGMM_Success_Rate_$USER > 75) \\
| (TARGET.OSGMM_Success_Rate_$USER > 75) ) \\

)

# when retrying, remember the last 5 resources tried

match_list_length =5

Rank = (TARGET.Rank) - \\
((TARGET.Name =?= LastMatchName0) * 1000) - \\
((TARGET.Name =?= LastMatchName1) * 1000) - \\
((TARGET.Name =?= LastMatchName2) * 1000) - \\
((TARGET.Name =?= LastMatchName3) * 1000) - \\
((TARGET.Name =?= LastMatchName4) * 1000)

# make sure the job is being retried and rematched
periodic_release = (NumGlobusSubmits < 5)
globusresubmit = (NumSystemHolds >= NumJobMatches)
globus_rematch = True

# only allow for the job to be queued for a while, then try to move it
# GlobusStatus==16 is suspended
# GlobusStatus==32 is submitting
# JobStatus==1 is pending
# JobStatus==2 is running
periodic_hold = ( (GlobusStatus==16) || \\
( (GlobusStatus==32) && (Matched==True) && \\



((CurrentTime - EnteredCurrentStatus) > (15%60)) ) || \
( (JobStatus==1) && \\
((CurrentTime - EnteredCurrentStatus) > (60%60)) ) || \
( (JobStatus==2) && \\
((CurrentTime - EnteredCurrentStatus) > (SMAX_RUN_TIME*60)) ) )

# stay in queue on failures
on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

executable = $JOB_ID.sh
arguments = SRUN_ID $JOB_ID

stream_output = False
stream_error = False

WhenToTransferOutput = ON_EXIT
TransferExecutable = true
transfer_output_files = $JOB_ID.tar.gz

output = logs/$JOB_ID/job.out
error = logs/$JOB_ID/job.err
log = alljobs.log

notification = NEVER

queue
EOF

# keep a list of all the jobs we want in the dag
JOB_LIST="$JOB_LIST $JOB_ID"
done

# generate condor dagman to manage jobs
echo
cd $SRUN_DIR
for JOB_ID in $JOB_LIST; do
echo "JOB job_$JOB_ID $JOB_ID.condor" >>master.dag
echo "SCRIPT PRE job_$JOB_ID $TOP_DIR/pre-job SRUN_DIR $JOB_ID"
>>master.dag
echo "SCRIPT POST job_$JOB_ID $TOP_DIR/post-job SRUN_DIR $JOB_ID"
>>master.dag
echo "RETRY job_$JOB_ID 5" >>master.dag
done
condor_submit_dag -notification Never master.dag
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