Fall 2018

CE 321-001-101: Water Resources Engineering

Yuan Ding

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation
https://digitalcommons.njit.edu/ce-syllabi/63

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
ISBN: 0-13-0812935

Prof. Yuan Ding, Office: 235 Colton Hall, 973-642-7046, ding@njit.edu

Prerequisite: Math 279. Training in methods of developing water supplies under normal and extreme (i.e., droughts, floods) conditions. Covers hydrologic techniques such as surface and ground water yield, hydrograph analysis and routing (detention, reservoir) analyses, probabilistic methods related to hydrologic studies. Water quality issues are briefly discussed.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction-Chapter 1</td>
</tr>
<tr>
<td>2,3</td>
<td>Chapter 2 Hydrology</td>
</tr>
<tr>
<td>4</td>
<td>Chapter 5 Open Channel Hydraulics</td>
</tr>
<tr>
<td>5</td>
<td>Chapter 7 Hydrologic Frequency Analysis</td>
</tr>
<tr>
<td>6</td>
<td>Exam-1</td>
</tr>
<tr>
<td>7,8,9</td>
<td>Chapter 8 Modeling Watershed Hydrology</td>
</tr>
<tr>
<td>10</td>
<td>Field work day (tentatively, final decision on moodle)</td>
</tr>
<tr>
<td>11</td>
<td>Exam-2</td>
</tr>
<tr>
<td>12</td>
<td>Presentation</td>
</tr>
<tr>
<td>13,14</td>
<td>Chapter 9 Groundwater Engineering</td>
</tr>
<tr>
<td>15</td>
<td>Final exam</td>
</tr>
</tbody>
</table>

Note: Certain homework assignments may require computer-utilized solutions (e.g. probability problems, reservoir routing problems, etc.).

Exam 1 30 points
Exam 2 30 points
Final 20 points
Project 10 points
HW 5 points
Attendance 5 points

*The NJIT Honor Code will be upheld and any violations will be brought to the immediate attention of the Dean of Students.
Students will be consulted with by the instructor to any major modifications or deviations from the syllabus throughout the course of the semester.

Outcomes Course Matrix – 321 Water Resources Engineering

<table>
<thead>
<tr>
<th>Strategies, Actions and Assignments</th>
<th>ABET Student Outcomes (1-7)</th>
<th>Program Educational Objectives</th>
<th>Assessment Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Learning Outcome 1: Identify how water supply needs are quantified and how water resources are developed.</td>
<td></td>
<td>1, 2, 7</td>
<td>Discussions, homework, and quizzes.</td>
</tr>
<tr>
<td>Discuss source of information and time horizons utilized for water resource planning.</td>
<td>1, 2, 7</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>Discuss various options associated with developing water resources.</td>
<td>1, 2, 7</td>
<td>1, 2, 3</td>
<td>Discussions, homework, and quizzes.</td>
</tr>
</tbody>
</table>

Student Learning Outcome 2: Demonstrate how the potential for extreme hydrologic events (e.g. floods and droughts) are analyzed and quantified.		1, 2, 4	Discussions and quizzes.
Discuss floods and droughts as well as data sources.	1, 2, 4	1, 2, 3	
Discuss methodologies for assessing return periods associated with droughts and floods of interests.	1, 2	1	Homework and quizzes.

Student Learning Outcome 3: Demonstrate the importance of insuring water resources that are adequate from both a quantitative and qualitative standpoint.		2, 4	Discussions and quizzes.
Discuss the importance of water quality from a safety and aesthetic standpoint.	2, 4	1, 2, 3	
Provide examples of water quality standards and their rationale.	4, 7	1, 2, 3	Discussions and quizzes.

Student Learning Outcome 4: Utilize state of the art techniques employed in the discipline.		1, 2	Discussions, homework, and quizzes.
Present techniques utilized to assess safe yield of surface water supply sources, and potential draw down effects for groundwater supplies.	1, 2, 7	1, 2	
Discuss reservoir design. Reservoir and detention basin routing and hydrograph analysis.	1, 2, 7	1, 2	Discussions, homework, and quizzes.
CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

1 – Engineering Practice: Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2 – Professional Growth: Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3 – Service: Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Revised: 2/13/18