Spring 2019

EVSC 125-002: Fundamentals of Environmental Science

Michael Bonchonsky

Follow this and additional works at: https://digitalcommons.njit.edu/chem-syllabi

Recommended Citation
https://digitalcommons.njit.edu/chem-syllabi/63
EVSC 125 Fundamentals of Environmental Science:
Spring 2019 Course Syllabus

E-mail: michael.p.bonchonsky@njit.edu; also at mickbon@aol.com
Office: Tiernan 365
Office Hours: T / F 1:00-2:30 and by appt

NJIT Academic Integrity Code: All Students should be aware that the Department of Chemistry &
Environmental Science takes the University Code on Academic Integrity at NJIT very seriously and enforces it
strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects,
or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic
Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

I. Course Description and Objectives Summary:

An introductory course to the interdisciplinary study of the complex interactions that occur among and within
environmental systems: air, water, and terrestrial environs. The course includes an emphasis on anthropocentric
effects on these environmental systems. It is provided as a part of a curriculum in applied environmental science and
as such emphasizes problem identification and engineered solutions. The course serves as an introduction to further
advanced study specializing in environmental science and engineering.

Number of Credits: 3 Cr

Prerequisites: None

Course-Section and Instructors

<table>
<thead>
<tr>
<th>Course-Section</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSC 125; TF 4-5:20 FMH 207</td>
<td>MP Bonchonsky</td>
</tr>
</tbody>
</table>

Office Hours for All Chemistry & Environmental Science Instructors: Spring 2019 Office Hours and Emails

Required Textbook:

<table>
<thead>
<tr>
<th>Title</th>
<th>Environmental Science as a Living Planet, Botkin and Keller, 9th edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Botkin and Keller</td>
</tr>
<tr>
<td>Edition</td>
<td>9th</td>
</tr>
<tr>
<td>Publisher</td>
<td>Wiley</td>
</tr>
</tbody>
</table>
University-wide Withdrawal Date: The last day to withdraw is as shown on the NJIT academic calendar currently listed as Monday, April 8, 2019. It will be strictly enforced.

Learning Outcomes:
Student learners will:

- Learn core concepts and methods from ecological and physical sciences and their application in environmental problem solving.
- Understand the transboundary character of environmental problems and ways of addressing them, including interactions across local to global scales.
- Analyze basic public works and private systems that provide potable water, treat wastewater and manage air quality.
- Demonstrate their ability to communicate effectively in written and oral form, demonstrating the ability to create an appropriate annotated bibliography and the ability to use effective presentation skills.
- Develop a sense of community responsibility by becoming aware of scientific issues in the larger social context.
- Demonstrate interpretative skills including the ability to analyze data, assess reliability, interpret results and draw reasonable conclusions.
- Become well-grounded in laws and theories of basic scientific disciplines by demonstrating and applying the scientific method.
- Reflect critically about their roles and identities as citizens, consumers and environmental actors in a complex, interconnected world.
- Develop and incorporate standards of professional behavior that include rules of ethics and etiquette.

POLICIES
All EVSC students must familiarize themselves with, and adhere to, all official university-wide student policies. EVSC takes these policies very seriously and enforces them strictly.

Grading Policy: The final score in this course will be determined as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Essays</td>
<td>20%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>20%</td>
</tr>
<tr>
<td>Participation</td>
<td>5%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
</tbody>
</table>

The final course grade will be determined as follows:

<table>
<thead>
<tr>
<th>Final Grade</th>
<th>Overall Academic Performance (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Above 90</td>
</tr>
<tr>
<td>B+</td>
<td>85-89</td>
</tr>
<tr>
<td>B</td>
<td>80-84</td>
</tr>
<tr>
<td>C+</td>
<td>75-79</td>
</tr>
<tr>
<td>C</td>
<td>70-74</td>
</tr>
<tr>
<td>D</td>
<td>60-69</td>
</tr>
<tr>
<td>F</td>
<td>Below 60</td>
</tr>
</tbody>
</table>
Attendance Policy: Attendance at classes will be recorded and is mandatory. Each class is a learning experience that cannot be replicated through simply “getting the notes.”

Homework Policy: Homework is an expectation of the course. The homework assignments set by the instructor are used in class discussions which comprise in part the determination of the score for “participation”.

Exams: There will be quizzes, a midterm exam held in class during the semester and one final exam. The following exam periods are tentative and therefore possibly subject to change (see moodle for any updates):

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>March</td>
</tr>
<tr>
<td>Quizzes</td>
<td>TBD on moodle</td>
</tr>
<tr>
<td>Final Exam Period</td>
<td>May</td>
</tr>
</tbody>
</table>

Makeup Exam Policy: There will normally be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event that a student has a legitimate reason for missing a quiz or exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor’s note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the CES Department Office/Instruction that the exam will be missed so that appropriate steps can be taken to make up the grade.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times. Such devices must be stowed in bags during exams or quizzes.

ADDITIONAL RESOURCES

Accommodation of Disabilities: Office of Accessibility Resources and Services *(formerly known as Disability Support Services)* offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please contact Chantonette Lyles, Associate Director at the Office of Accessibility Resources and Services at 973-596-5417 or via email at lyles@njit.edu. The office is located in Fenster Hall Room 260. A Letter of Accommodation Eligibility from the Office of Accessibility Resources Services office authorizing your accommodations will be required.

For further information regarding self-identification, the submission of medical documentation and additional support services provided please visit the Accessibility Resources and Services (OARS) website at:

Important Dates (See: always check **Spring 2019 Academic Calendar, Registrar**)

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 22</td>
<td>T</td>
<td>First Day of Classes</td>
</tr>
<tr>
<td>February 1</td>
<td>F</td>
<td>Last Day to Add/Drop Classes</td>
</tr>
<tr>
<td>April 8</td>
<td>M</td>
<td>Last Day to Withdraw</td>
</tr>
<tr>
<td>April 10</td>
<td>F</td>
<td>No Friday Classes, Good Friday</td>
</tr>
<tr>
<td>March 17-24</td>
<td>week</td>
<td>Spring Break</td>
</tr>
<tr>
<td>May 7</td>
<td>T</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>May 8-9</td>
<td>W, Tr</td>
<td>Reading Day</td>
</tr>
<tr>
<td>May 10-16</td>
<td>week</td>
<td>Final Exam Period</td>
</tr>
</tbody>
</table>

Course Outline

(please see Moodle course website for any changes and updates during the semester)

Lecture topics, dates:

Week 1 T, F January 22-25 Introduction to Environmental Science…review of syllabus, assignments, selected readings; introduction to environmental science, relationship to traditional disciplines of study, and its applications in the real world today.

Week 2 January 29, Feb 1 Energy in the Natural Environment

 Energy and Cycles of Energy

Week 3 February 5, 8 Energy in the Anthro- Environment (problems, assignments posted on Moodle)

 Principles of energy
 First and Second Laws of Thermodynamics
 (Conservation of Energy and examples of Entropy, as found in environmental systems)
 Sources and Forms of Energy Development
 Fossil Fuels
 Nuclear Fuels
 Alternative Energy Development Patterns
 Advantages and Disadvantages of alternatives
 Existing Energy Infrastructure
 Energy for the future, renewable energy sources
 Energy Use in Industrial Societies
 Energy Consumption in the United States
 Comparative Energy Use Internationally
 Nonrenewable Energy Sources
 Renewable Energy Sources

Week 4 February 12, 15 Water Quality (problem set posted on Moodle)

 The water molecule
 The hydrologic cycle
 Quantity and Quality of Water Resources
 Surface water, groundwater characteristics
 Algal Nutrients and Eutrophication
 Basic Examination of Water and Wastewater Problem set

Week 5 February 19, 22 Water Pollution

 Sources of Pollution
 Parameters and Constituents
 Related measurements

Week 6 February 26, Mar 1 Basic Water and Wastewater Treatment Systems

 Biological Systems
 Chemical Physical Systems
 Health Impacts and concerns

Week 7 March 5, 8 Presentations, Problems

Week 8 March 12, 15 Review and Midterm
Week 9 Spring Break March 17-24

Week 10 March 26, 29 Terrestrial and Groundwater Environment

 Groundwater Hydrology Contaminants, Transport
 Land Resources and Conservation
 Soils and their preservation
 Minerals: reserves and consumption
 Chemical and physical properties of soil
 Soil Matrix Systems
 Land Disposal of Solid Waste
 Fate of Pollutants in Soil Matrix
 Wetlands Impacts

Week 11 April 2, 6 Atmospheric Environment (Problem set on moodle)

 Atmospheric Strata and Quality of Atmosphere
 Fate of Chemicals in the Atmosphere
 Indoor Air Pollution
 Global Warming, Greenhouse Effect
 Hydrocarbons and Photochemical Smog
 Industrial Air Pollution Control Systems

Week 12 April 9, 12 Hazardous Waste

 Identification of hazardous waste
 Resource Conservation and Recovery Act
 Hazardous waste management
 Treatment and Remediation

Week-13 April 16, 19 Industrial Ecology

 The Law of Conservation of Mass, the continuity equation
 Properties of matter
 Advantages of Circular Systems over Linear Systems
 Conducting a Mass Balance, non-reacting and reacting systems
 Applications to Polluting Circumstances

Week-14 April 23, 26 Sustainable Development Chap 5

 Biological Systems, Major Biomes and Biodiversity
 Ecosystems
 Global Changes Trends
 “Tragedy of the Commons”/Environmental Impact Statements

Week-15 April 30, May 3 complete student presentations

Tuesday May 7, Problems and review ...last day of class...

Finals Week begins as scheduled starting Fri May 10

Updated by MPB - 2019
Department of Chemistry & Environmental Sciences
Course Syllabus, Spring 2019