Fall 2018

CE 260-001-003-101: Civil Engineering Methods

Stephanie Santos

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation
https://digitalcommons.njit.edu/ce-syllabi/49

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Course Description:

Provides students with hands-on experience in computer applications in Civil Engineering. Students will learn to use AutoCAD Civil 3D and Revit through a variety of assignments and group projects.

Prerequisite – HUM 101, CE 101, CE 200, CE 200A.

Moodle:

Students must use their UCID to sign in at (http://www.moodle.njit.edu). Some course material may be posted on Moodle. The instructor will advise when important information is uploaded.

Instructor: Stephanie R. Santos, P.E., P.P., CME, CM-BIM

Office: Colton Hall 215

Office Hours: Tuesday 5:00 – 6:00 PM, Wednesday 1:00-2:00 PM, Friday 12:00 – 1:00 PM or by Appointment

Email: srr3@njit.edu

Required Text:

1. AutoCAD Civil 3D 2019 Fundamentals
 Published by SDC Publications

2. Autodesk Revit 2019 Structure Fundamentals
 Published by SDC Publications
 ISBN: 978-1-63057-200-6

Course Sections:

Section 101 – Tuesdays @ 6:00 – 9:05 PM (PC Mall 40)

Section 001 – Mondays @ 10:00 – 12:50 PM (PC Mall 40)

Section 003 – Mondays @ 1:00 – 3:50 PM (GITC 2315B)
<table>
<thead>
<tr>
<th>Week</th>
<th>Section Dates</th>
<th>Topic/Assignment</th>
</tr>
</thead>
</table>
| 1 | 9/4 9/10 9/10 | Course Introduction
- Discussion of Civil Engineering Disciplines
- Discussion of FE/PE Requirements
- Introduction to BIM/Civil 3D/Revit |
| 2 | 9/11 9/17 9/17 | Fundamentals of Civil 3D
- User Interface and Settings
Titleblock Setup – Printing
- Viewports
- Layers |
| 3 | 9/18 9/24 9/24 | Scale Review
Introduction to Surfaces and Parcels
- Importing Points
- Creating Parcels
- Creating Surfaces
- Styles and Labels |
| 4 | 9/25 10/1 10/1 | CONT. Surfaces and Parcels
- Importing Points
- Creating Parcels
- Creating Surfaces
- Styles and Labels |
| 5 | 10/2 10/8 10/8 | ➤ QUIZ #1
Roadway Design, Alignments, and Profiles
- Creating Alignments
- Creating Profiles
- Styles and Labels |
| 6 | 10/9 10/15 10/15 | Roadway Design, Alignments, and Profiles CONT.
- Creating Alignments
- Creating Profiles
- Styles and Labels |
| 7 | 10/16 10/22 10/22 | Pipe Networks
- Pipe Editing and Annotations
- Layouts |
| 8 | 10/23 10/29 10/29 | Pipe Networks CONT.
- Pipe Editing and Annotations
- Layouts
Utilizing Civil 3D for BIM Calculations
- Quantity Take Offs |

PIPE NETWORK PROJECT ASSIGNED
<table>
<thead>
<tr>
<th>Week</th>
<th>Section Dates</th>
<th>Topic/Assignment</th>
</tr>
</thead>
</table>
| 9 | 10/30 11/5 11/5 | **PIPE NETWORK PROJECT DUE**
- **QUIZ #2**
- Introduction / Fundamentals of Revit
 - User Interface, Ribbon, Properties
 - Drawing / Modifying Tools |
| 10 | 11/6 11/12 11/12 | Titleblock Setup / Printing
- Project Setup
 - Levels and Grids
 - Structural Columns
 - Framing
 FINAL PROJECTS ASSIGNED (001/003 – 11/12) |
| 11 | 11/13 11/19 11/19 | Drawing Elements
- Creating and Modifying Walls
- Creating Floors/Slabs and Roofs
- Site Plan Design
- Materials
 FINAL PROJECTS ASSIGNED (101 – 11/13) |
| 12 | 11/20 (Thursday Schedule – No Class) 11/27 11/26 11/26 | Drawing Elements
- Footings and Foundations
- Structural Reinforcement
 - Adding Rebar
 - Reinforcing Walls, Floors, and Slabs
 FINAL PRESENTATIONS ASSIGNED |
| 13 | 12/4 12/3 12/3 | Utilizing Revit for BIM Calculations
- Quantity Take Offs & Material Schedules
 FINAL PRESENTATIONS |
| 14 | 12/11 12/10 12/10 | **FINAL PROJECTS DUE**
- **QUIZ #3** |
GENERAL COURSE INFORMATION

Grading Policy:

Homework and In-Class Assignments 20%
Instagram Participation 5%
5 Points = 25+
4 Points = 24-20
3 Points = 19-15
2 Points = 14-10
1 Point = <9

Quiz #1 10%
Quiz #2 15%
Quiz #3 15%

Civil 3D Project 10%
Final Presentation 10%
Final Project 15%

Grading Scale:

A: 100-90
B+: 89-85
B: 84-80
C+: 79-75
C: 74-70
D: 69-60
F: Below 60

Attendance Policy:

Students are expected to attend every class and sign in. In the event that you cannot attend class, you may request to attend one of the other sections as a make-up, however this is limited to availability and permission from the instructor. Students are responsible for submitting all homework, projects, assignments, etc. on the due date (during class time). Students who miss assignments due to attendance must contact the Dean of Students to be excused for absences. Students who miss class with no valid excuse (as determined by the Dean of Students) will not be given any accommodations to complete work.

Withdrawals:

In order to insure consistency and fairness in application of the NJIT policy on withdrawals, student requests for withdrawals after the deadline will not be permitted unless extenuating circumstances (e.g., major family emergency or substantial medical difficulty) are documented. The course Professors and the Dean of Students are the principal points of contact for students considering withdrawals.

NJIT Honor Code:

The NJIT Honor Code will be upheld; any violations will be brought to the immediate attention of the Dean of Students. The Honor Code can be found at (http://www5.njit.edu/doss/policies/honorcode/index.php).
Assignment Policy:

Late assignments will NOT be accepted. Homework received after the due date will NOT be graded and a ZERO will be counted for that assignment.

ANY ASSIGNMENT THAT IS COPIED WILL RECEIVE A ZERO AND THOSE STUDENTS INVOLVED WILL BE SUBJECT TO DISCIPLINARY ACTION IN ACCORDANCE WITH THE NJIT HONOR CODE

All assignments are to be submitted in class on paper, unless otherwise requested, on the due date, or via email to srr3@njit.edu ON OR BEFORE the beginning of class on the due date. Email is only to be used if you will be absent from class and shall not be the primary form of submission.

Syllabus Information:

The dates and topics of the syllabus are subject to change; however, students will be consulted with and must agree to any modifications or deviations from the syllabus throughout the course of the semester.

Email Policy:

When emailing the instructor, you must provide your course and section number in the subject line. Also, although most email addresses will display your name, you must sign off with your full name at the bottom of each email. If you do not provide these two critical piece of information, your email will not be responded to.

Items Required for this Course:

1. Textbook
2. Engineering Scale
3. Flash drive
4. Notebook

Dress Policy:

Students are required to dress professionally for all oral presentations.

AutoCAD/Revit Download Website:

Students may download free versions of the AutoCAD/Revit programs at: https://www.autodesk.com/education/home
Outcomes Course Matrix – CE 260 - Civil Engineering Methods

<table>
<thead>
<tr>
<th>Strategies, Actions and Assignments</th>
<th>ABET Student Outcomes (1-7)</th>
<th>Program Educational Objectives</th>
<th>Assessment Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Learning Outcome 1: Develop communication skills to function as civil engineers including written, oral, and computer based techniques.</td>
<td>3</td>
<td>1, 2, 3</td>
<td>Discussions, group presentations and paper.</td>
</tr>
<tr>
<td>Indicate importance of communication skills in the life and functions of the civil engineer.</td>
<td>3</td>
<td>1, 2, 3</td>
<td>Oral and written feedback.</td>
</tr>
<tr>
<td>Develop techniques for speaking (public speaking) and writing.</td>
<td>3</td>
<td>1, 2, 3</td>
<td>Graded presentations and papers feedback.</td>
</tr>
<tr>
<td>Practice speeches and write papers.</td>
<td>3</td>
<td>1, 2, 3</td>
<td></td>
</tr>
</tbody>
</table>

Student Learning Outcome 2: Use CAD as a tool for selected civil engineering problems.

| Introduce CAD concepts. | 7 | 1 | Lab exercises. |
| Apply CAD to site project. | 7 | 1 | Lab exercises. |

Student Learning Outcome 3: Develop an understanding of the importance of effective communications in all phases of the life of the civil engineer.

| Discuss various aspects of communication and its importance in the life of the civil engineer. | 3 | 1, 2, 3 | Discussions, individual comments and written papers |
| Simulate presentation modes such as job interview, project presentation, planning of presentation. | 3 | 1, 2, 3 | Grading on presentations, written feedback, grading on written assignments. |

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

1 – Engineering Practice: Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2 – Professional Growth: Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3 – Service: Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Revised: 2/13/18