New Jersey Institute of Technology

Digital Commons @ NJIT

Biology Syllabi NJIT Syllabi

Fall 2020

BIOL 432-001: Introduction to Computational Neuroscience

Horacio Rotstein

Follow this and additional works at: https://digitalcommons.njit.edu/bio-syllabi

Recommended Citation

Rotstein, Horacio, "BIOL 432-001: Introduction to Computational Neuroscience" (2020). *Biology Syllabi*. 47.

https://digitalcommons.njit.edu/bio-syllabi/47

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Biology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Fall 2020 Course Syllabus: Biol432

Course Title:	Analytical & Computational Neuroscience	
Textbook:	"An Introductory Course in Computational Neuroscience" by P. Miller – MIT Press (2018), 1 st edition, ISBN: 978-0262038256	
Recommended Books:	"Mathematical Foundations of Neuroscience" by G. B. Ermentrout & D. H. Terman – Springer (2010), 1 st edition - ISBN: 978-0-387-87707-5.	
	"Foundations of Cellular Neurophysiology" by D. Johnston & S. Wu – The MIT Press (1995) - ISBN: 0-262-100053-3.	
	"Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting" by E. M. Izhikevich – The MIT Press (2007), 1 st edition – ISBN: 0-262-09043-8.	
	"Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems" by P. Dayan & L. Abbott – The MIT Press (2001), 1 st edition– ISBN: 0-262-04199-5.	
	"Biophysics of Computation: Information Processing in Single Neurons" by C. Koch – Oxford University Press (1999) – ISBN: 0-19-510491-9	
Prerequisites:	Permission by instructor	
Website:	http://web.njit.edu/~horacio/IntroCompNeuro/IntroCompNeuroF20.html	

Week	Topic	Assignment
1	Introduction to Mathematical and Computational Neuroscience Passive membrane properties – The passive membrane	See course website
	equation	
2	Ordinary differential equations (ODEs): Review of analytical methods	cc
	Ordinary differential equations (ODEs): Review of numerical methods and Matlab	
3	Dynamics of the passive membrane The passive membrane equation	cc
4	Integrate-and-fire models The Hodgkin-Huxley model	cc
5	Hodgkin-Huxley type models with additional ionic currents The cable equation	cc
6	Introduction to dynamical system methods for neural models Reduced one- and two-dimensional neural model	cc
7	One-dimensional neural models: Phase-space analysis	cc

8	Two-dimensional neural models: Phase-space analysis I	دد
9	Two-dimensional neural models: Phase-space analysis II	cc
10	Sub-threshold oscillations: Two and Three dimensional "models Bursting	
11	Synaptic dynamics	
12	Overview on network dynamics	cc .
13	Student Presentations	cc .
14	Student Presentations	cc .
15	Student Presentations	

IMPORTANT DATES				
FIRST DAY OF SEMESTER	Sep 1, 2020			
LAST DAY TO ADD/DROP	Sep 8, 2020			
THANKSGIVING RECESS	Nov 26-29, 2020			
LAST DAY TO WITHDRAW	Nov 9, 2020			
LAST DAY OF CLASSES	December 10, 2020			
FINAL EXAM PERIOD	December 15-21, 2020			

Grading Policy (tentative)

Assignment Weighting	
Homework, Quizzes & Class Participation	40
Midterm Exam / Project	30
Final Project / Presentation	30

Tentative Grading Scale		
A	90 100	
B+	85 – 89	
В	80 - 84	
C+	75 – 79	
С	70 – 74	
D	60 – 69	
F	0 59	

Course Policies: See course website

COVID-19 Safety Requirements

All persons physically present in any department facility or classroom shall comply fully with the NJIT COVID-19 safety policy at all times. Masks must be worn before entry to all department facilities, and social distancing guidelines must be followed. Individuals who are unable to wear a face mask due to medical reasons should contact the Office of Disability Services or Human Resources. Students who enter a classroom without wearing a mask properly, or remove their mask, will be cautioned by the instructor. The same is true for students who disregard the seating order or guidelines for social distancing. Students with obvious symptoms of respiratory illness should not come to campus and will be asked to leave. Students who do not comply with a request by a department instructor to adjust their behavior, in accordance with the University Policy, will be subject to disciplinary actions. Instructors have the right to expel the student or terminate the class session at which any student fails to comply with the University Policy.

Important Departmental and University Policies

- Academic Integrity Code is Strictly Enforced
- Prerequisites Requirements are Enforced
- Attendance is Required in Lower-Division Courses
- Exam Policies (No Make Up Exams and More)
- Cell Phone and Pager Use Prohibited in Class
- Drop Date (November 11, 2019) is Strictly Observed
- Complete DMS Course Policies (math.njit.edu/students/undergraduate/policies math)

Prepared by Prof. Horacio G. Rotstein, August 1, 2020