New Jersey Institute of Technology

Digital Commons @ NJIT

Electrical and Computer Engineering Syllabi

NJIT Syllabi

Fall 2023

ECE 422 - COMPUTER COMM NETWORKS

Mohammed Feknous

Follow this and additional works at: https://digitalcommons.njit.edu/ece-syllabi

Recommended Citation

Feknous, Mohammed, "ECE 422 - COMPUTER COMM NETWORKS" (2023). *Electrical and Computer Engineering Syllabi*. 44. https://digitalcommons.njit.edu/ece-syllabi/44

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Electrical and Computer Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Department of Electrical and Computer Engineering ECE 422: Computer Communication Networks

ECE 422 - Computer Communications Networks (3-0-3)

Instructor: M. Feknous; email: <u>feknous@njit.edu</u>; Tel: 973-596-6460

Textbook: A. Leon-Garcia I. Widjaja, *Communication Networks*, McGraw-Hill, 2nd edition, ISBN-13 978-0-07-246352-1 (main text)

Course Description:

Introduction to the fundamental concepts of computer communication networks. Topics include the OSI reference model, the physical, data link, network, and transport layers, TCP/IP, LANs (including token ring, token bus, and ethernet), ALOHA, routing and flow control.

Corequisite: none

Prerequisites: ECE 321 or Math 333

Computer Usage in course:

Various freeware software packages needed in the class projects, in addition to personal computers and microcontrollers. Matlab

Specific Course Learning Outcomes (CLO): The student will be able to

- 1. define and recognize the basic elements of networks, and the different topologies
- 2. know how to select the cabling format optimum for a specific case
- 3. know and understand layering, the reasons for that concept, and the utilization of some interfacing devices such as bridges, switches and routers
- 4. be versed in TCP/IP, the original source for the layering concept
- 5. recognize the characteristics of larger networks and their inherent requirements
- 6. distinguish between all the sources of threat to networking, and how to circumvent them when possible
- 7. discuss the need and formats of wireless communications in networking
- 8. define and select among the many encoding techniques used to minimize errors in networking
- 9. evaluate the merits of various routing algorithms
- 10. Present in front of peers a practical implementation of the knowledge acquired in the course (implementation of servers, programming of routers suitable for a given application, and other topics of networking)

Relevant Student Outcomes:

- 1. An ability to identify, formulate, and solve engineering problems by applying principles of engineering, science, and mathematics (CLOs 2, 4, 7, 8, 9, 10).
- 2. An ability to apply both analysis and synthesis in the engineering design process, resulting in designs that meet desired needs (CLOs 2, 5, 10).

- 6. An ability to recognize the ongoing need for additional knowledge and locate, evaluate, integrate, and apply this knowledge appropriately. (CLOs 3, 6, 7, 8, 9, 10)
- 7. An ability to function effectively on teams that establish goals, plan tasks, meet deadlines, and analyze risk and uncertainty. (CLO 10).

Topic	Week
Communication Network and Services	1
• Evolution of network architecture and services	
Key factors in communication network evolution	
Applications and Layered Architectures	2-3
• Examples of protocols, services, and layering: HTTP, DNS, SMT TCP, UDP	.Р,
OSI reference model	
• TCP/IP architecture	
Digital Transmission Fundamentals	3-4
Digital communications	
Communication channels	
Line Coding	
Modems and digital modulations	
• Properties of media and digital transmission systems	
Error detection and correction	
TCP/IP	5-7
• TCP/IP Architecture	
• The internet protocol	
• User datagram protocol	
Transmission control protocol	
• Internet routing protocol	
Multicast routing	
• DHCP, NAT, and Mobile IP	
Mid-term exam	7
Medium Access Control Protocols and Local Area Networks	8-9
• ALOHA	
 Scheduling approaches to MAC 	
Channelization	
Delay Performance of MAC and Channelization Schemes	
LAN Protocols	
• Wireless LANs and IEEE 802.11 Standard	
• LAN bridges and Ethernet switches	
Packet-Switching Networks	10-
Packet network topology	11
Datagrams and virtual circuits	
Routing in packet networks	

Topics:

Shortest-path routing	
ATM Networks	
• Firewalls	
Peer-to-Peer Protocols and Data Link Layer	12
ARQ protocols	
Sliding-window flow control	
• Framing	
Point-to-point protocol	
HDLC Data link control	
Group project presentation, Review	13-14
Final exam	15

Grading: Class participation, Homework, Pop quizzes 10%; project including demonstration 20%; Mid-term 35%; Final exam 35%.

Updates and Assignments to be distributed via email

Honor Code: The NJIT Honor Code will be upheld, and any violations will be brought to the immediate attention of the Dean of Students.

Office: ECEC 311 Office hours: T 1:00 PM – 1:45 PM T 3:00 PM – 3:45 PM R 12:00 PM – 12:45 PM Other times can be arranged through appointments; <u>Set up appointment for any office hour (regular or extraordinary) meeting through email</u> <u>stating the suitable meeting day and time</u>

Prepared by: M. Feknous