Spring 2017

Protein engineering of cota laccase by using bacillus subtilis spore display

Silu Sheng

New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Chemistry Commons

Recommended Citation
Sheng, Silu, "Protein engineering of cota laccase by using bacillus subtilis spore display" (2017). Dissertations. 30.
https://digitalcommons.njit.edu/dissertations/30

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
ABSTRACT

PROTEIN ENGINEERING OF COTA LACCASE BY USING BACILLUS SUBTILIS SPORE DISPLAY

by
Silu Sheng

Spore display offers advantages over more commonly utilized microbe cell-surface display systems. For instance, protein-folding problems associated with the expressed recombinant polypeptide crossing membranes are avoided. Hence, a different region of protein space can be explored that previously was not accessible. In addition, spores tolerate many physical/chemical extremes. The aim is to improve pH stability using spore display. The maximum activity of CotA is between pH 4 and 5 for the substrate ABTS (ABTS = diammonium 2, 2’–azino-bis(3-ethylbenzothiazoline-6-sulfonate)). However, the activity dramatically decreases at pH 4. The activity is not significantly altered at pH 5. CotA is used as a model to prove that enzymes could be improved for pH resistance by using Bacillus subtilis spore display. First, CotA is evolved for increased half-life ($t_{1/2}$) at pH 4. Next, a double mutant is constructed. This variant combines the amino acid substitutions from the improved $t_{1/2}$ variant (E498G) and organic solvent tolerant mutant (T480A). The $t_{1/2}$ and kinetic parameters are evaluated for the double mutant. Consequently, T480A/E498G-CotA is constructed and the $t_{1/2}$ is 62.1 times greater than wt-CotA. Finally, T480A/E498G-CotA yields 5.3-fold more product than does wt-CotA after recycling the biocatalyst seven times over 42 h. Also, the mutant and wild-type are overexpressed in E. coli and purified. The enzymes immobilized in the spore coat are compared with the purified free protein. The $t_{1/2}$ and catalytic efficiency follow the same
trends for spore or *E. coli* expressed wt-CotA and E498G-CotA, although the kinetic parameters are different.

In a previous investigation, a laccase (CotA), which is found on the spore coat of *Bacillus subtilis*, was engineered by directed evolution for improved activity in organic solvents. A CotA variant was identified with a Thr480Ala (T480A-CotA) amino acid substitution after only one round of evolution. The screen was performed at 60 % DMSO and it was 2.38-fold more active than the wild-type CotA (wt-CotA) with substrate ABTS. T480A-CotA was more active from a range of 0 – 70 % DMSO. In addition, the variant was more active in ethanol, methanol and acetonitrile. In this study, the catalysis of T480A-CotA and wt-CotA in the spore coat is determined with natural phenolic compounds, such as (+)-catechin, (-)-epicatechin and sinapic acid in aqueous-organic media. In general, the catalytic efficiency ($V_{max}/K_m (\delta A/OD_{580})/mM$) of T480A-CotA is higher than wt-CotA for all the substrates. Then, the V_{max} for T480A-CotA is greater than the wt-CotA in all organic solvents used in this study. The V_{max} for T480A-CotA is up to 3.4-fold, 7.9-fold and 6.4-fold greater than wt-CotA for substrate (+)-catechin, (-)-epicatechin and sinapic acid, respectively. In addition, the catalyst can be easily removed from the reaction solution and reused. This allows for simpler recovery of the product from the enzyme. This investigation indicates that enzymes expressed on the spore coat can be utilized for industrial applications.
PROTEIN ENGINEERING OF COTA LACCASE
BY USING *BACILLUS SUBTILIS* SPORE DISPLAY

by
Silu Sheng

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Chemistry
Department of Chemistry and Environmental Science

May 2017
PROTEIN ENGINEERING OF COTA LACCASE
BY USING BACILLUS SUBTILIS SPORE DISPLAY

Silu Sheng

Dr. Edgardo T. Farinas, Dissertation Advisor
Associate Professor of Chemistry and Environmental Science, NJIT

Dr. Somenath Mitra, Committee Member
Distinguished Professor of Chemistry and Environmental Science, NJIT

Dr. Tamara Gund, Committee Member
Professor of Chemistry and Environmental Science, NJIT

Dr. Mengyan Li, Committee Member
Assistant Professor of Chemistry and Environmental Science, NJIT

Dr. Cristiano L. Dias, Committee Member
Assistant Professor of Physics, NJIT
BIOGRAPHICAL SKETCH

Author: Silu Sheng

Degree: Doctor of Philosophy

Date: May 2017

Undergraduate and Graduate Education:

- Doctor of Philosophy in Chemistry, New Jersey Institute of Technology, Newark, NJ, 2017
- Master of Science in Chemistry, New Jersey Institute of Technology, Newark, NJ, 2009
- Bachelor of Science in Chemistry, Wuhan University, Wuhan, P. R. China, 2008

Major: Chemistry

Presentations and Publications:

ACKNOWLEDGMENT

I want to thank my advisor Dr. Edgardo T. Farinas. He is the person who started my career. When I first came into his group, I barely knew anything about biochemistry. Now I am professional in protein engineering. Without his support and guidance, I cannot complete this thesis. Also I want to thank my committee members Dr. Somenath Mitra, Dr. Tamara Gund, Dr. Mengyan Li and Dr. Cristiano L. Dias for their precious advice about my program.

I want to thank Ms. Genti M. Price and Ms. Sylvana Brito a lot in the office of Department of Chemistry and Environmental Science. They are extremely helpful with all administrative procedures and care every graduate student in our department for real. They are also kind enough for decorating our department during holidays such as Christmas. They are like my family in this department. The department cannot run smoothly without them. I am also grateful to Mr. Yogesh Gandhi and Dr. Ping Gu. They are nice and assisted me a lot for my teaching assistance assignments. I won’t forget to thank National Science Foundation (NSF) for providing funds for my research.

Additionally, I would like to thank everyone in my group, Dr. Nirupama Gupta, Dr. Da Jeong Shim, Dr. Han Jia, Mr. Yuchen peng and Mr. Joydeep Chakraborty for friendship, assistance, and exchange ideas and experience. They all contributed to the completion of my thesis.

Finally, I thank my wonderful family, especially my mother, for their love and support throughout my life. I thank my love, Yan Zhang, for her support and understanding during my PhD program.
Finally...

Special Thanks to My Love 张妍
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Evolution in Nature</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Directed Evolution</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Protein Display</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1 In vitro Protein Display</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2 In vivo Protein Display</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3 E. coli Cell Surface Display</td>
<td>19</td>
</tr>
<tr>
<td>1.3.4 Yeast Cell Surface Display</td>
<td>21</td>
</tr>
<tr>
<td>1.4 Spore Display</td>
<td>22</td>
</tr>
<tr>
<td>1.4.1 Composition of the B. subtilis Endospore</td>
<td>24</td>
</tr>
<tr>
<td>1.4.2 Protein Displayed by B. subtilis Spores</td>
<td>26</td>
</tr>
<tr>
<td>1.5 Laccase</td>
<td>29</td>
</tr>
<tr>
<td>2 DIRECTED EVOLUTION OF COTA LACCASE FOR ACIDIC pH STABILITY BY USING BACILLUS SUBTILIS SPORE DISPLAY</td>
<td>33</td>
</tr>
<tr>
<td>2.1 Materials</td>
<td>35</td>
</tr>
<tr>
<td>2.1.1 Library Creation</td>
<td>36</td>
</tr>
<tr>
<td>2.2 Methods</td>
<td>39</td>
</tr>
<tr>
<td>2.2.1 Spore Screening for Acidic pH Stability</td>
<td>39</td>
</tr>
<tr>
<td>2.2.2 Acid Inactivation</td>
<td>40</td>
</tr>
<tr>
<td>2.2.3 Kinetics Measurement of CotA and Its Variants</td>
<td>40</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(Continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4</td>
<td>41</td>
</tr>
<tr>
<td>2.2.5</td>
<td>41</td>
</tr>
<tr>
<td>2.2.6</td>
<td>41</td>
</tr>
<tr>
<td>2.2.7</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>3.1</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>69</td>
</tr>
<tr>
<td>3.2.1</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2</td>
<td>70</td>
</tr>
<tr>
<td>3.2.3</td>
<td>71</td>
</tr>
<tr>
<td>3.2.4</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>72</td>
</tr>
<tr>
<td>3.3.1</td>
<td>72</td>
</tr>
<tr>
<td>3.3.2</td>
<td>75</td>
</tr>
<tr>
<td>3.3.3</td>
<td>78</td>
</tr>
<tr>
<td>3.3.4</td>
<td>81</td>
</tr>
<tr>
<td>3.4</td>
<td>84</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>APPENDIX ENZYME DISPLAY FOR ALKANE OXIDATION</td>
<td>85</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>119</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Number of Amino Acid Changes versus Number of Variants</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Kinetic Parameters and Half-life of Wild-type CotA and CotA Variants</td>
<td>46</td>
</tr>
<tr>
<td>2.2 Product Yields of Wild-type CotA and CotA Variants</td>
<td>56</td>
</tr>
<tr>
<td>2.3 Kinetics Parameters of Purified Wild-type CotA and E498G-CotA</td>
<td>61</td>
</tr>
<tr>
<td>3.1 Kinetics Parameters of Wt-CotA and T480A-CotA with Different substrates</td>
<td>77</td>
</tr>
<tr>
<td>3.2 V_{max} (δA/OD$_{580}$) of Wt-CotA and T480A-CotA in 0 – 70 % Organic Solvents for Substrate (+)-Catechin (A), (-)-Epicatechin (B) and Sinapic Acid (C)</td>
<td>80</td>
</tr>
<tr>
<td>3.3 The (+)-Catechin Products Yields for Wt-CotA and T480A-CotA Were Determined for 7 Cycles Over A 23 h Period</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>13</td>
</tr>
<tr>
<td>1.9</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>15</td>
</tr>
<tr>
<td>1.11</td>
<td>16</td>
</tr>
<tr>
<td>1.12</td>
<td>17</td>
</tr>
<tr>
<td>1.13</td>
<td>18</td>
</tr>
<tr>
<td>1.14</td>
<td>19</td>
</tr>
<tr>
<td>1.15</td>
<td>20</td>
</tr>
<tr>
<td>1.16</td>
<td>22</td>
</tr>
<tr>
<td>1.17</td>
<td>23</td>
</tr>
<tr>
<td>1.18</td>
<td>24</td>
</tr>
<tr>
<td>1.19</td>
<td>25</td>
</tr>
<tr>
<td>1.20</td>
<td>28</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1.21 Reaction of catalysis of laccase</td>
<td>29</td>
</tr>
<tr>
<td>1.22 Ribbon diagram of the ABTS-CotA complex</td>
<td>30</td>
</tr>
<tr>
<td>1.23 Ribbon diagram of Thr260Leu-CotA</td>
<td>31</td>
</tr>
<tr>
<td>1.24 Ribbon diagram of Thr480Ala-CotA</td>
<td>32</td>
</tr>
<tr>
<td>2.1 pH effect on enzyme activity</td>
<td>34</td>
</tr>
<tr>
<td>2.2 CotA was amplified with error prone PCR and transformed into E. coli</td>
<td>37</td>
</tr>
<tr>
<td>2.3 CotA library was transformed into Bacillus subtilis and displayed on cell surface</td>
<td>38</td>
</tr>
<tr>
<td>2.4 CotA was integrated into the genome of Bacillus subtilis by double-cross recombination</td>
<td>38</td>
</tr>
<tr>
<td>2.5 Optimal enzymatic activity was found at pH 4.0 – 5.0 for ABTS</td>
<td>44</td>
</tr>
<tr>
<td>2.6 An example of one microtiter plate of coefficient of variance (CV)</td>
<td>45</td>
</tr>
<tr>
<td>2.7 Molecular model of ABTS-Y19</td>
<td>47</td>
</tr>
<tr>
<td>2.8 The $t_{1/2}$ at pH 4 of wt-CotA and CotA variants</td>
<td>48</td>
</tr>
<tr>
<td>2.9 Kinetic parameters of wt-CotA and CotA variants on Bacillus subtilis spore coat</td>
<td>49</td>
</tr>
<tr>
<td>2.10 V_{max} (µM/min/OD$_{580nm}$) of wt-CotA (light shaded bars), T480A/E498G-CotA (dark shaded bars) and E498G-CotA (white bars) in 0 – 70% organic solvents</td>
<td>54</td>
</tr>
<tr>
<td>2.11 Product yields of ABTS$^+$ of wt-CotA and its variants over 42 h</td>
<td>57</td>
</tr>
<tr>
<td>2.12 Extraction of spore coat proteins</td>
<td>58</td>
</tr>
<tr>
<td>2.13 Viability assay of spores in citrate phosphate buffer (100 mM, pH 4)</td>
<td>59</td>
</tr>
<tr>
<td>2.14 SDS-PAGE analysis of CotA overproduction in E. coli</td>
<td>60</td>
</tr>
<tr>
<td>2.15 The $t_{1/2}$ at pH 4 of wt-CotA and E498G-CotA</td>
<td>62</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>2.16 Kinetics parameters of purified wt-CotA and E498G-CotA from E.coli</td>
<td>63</td>
</tr>
<tr>
<td>3.1 Structure of phenolic substrates</td>
<td>67</td>
</tr>
<tr>
<td>3.2 Oxidation of phenols by laccase</td>
<td>68</td>
</tr>
<tr>
<td>3.3 Effect of pH on laccase-catalyzed oxidation of (+)-catechin (A), (-)-epicatechin (B), and sinapic acid (C)</td>
<td>74</td>
</tr>
<tr>
<td>3.4 Kinetic parameters of wt-CotA and T480A-CotA on Bacillus subtilis spore coat for substrates (+)-catechin, (-)-epicatechin and sinapic acid</td>
<td>76</td>
</tr>
<tr>
<td>3.5 V_{max} (ΔA/OD580) of wt-CotA (black bars) and T480A-CotA (grey bars) in 0–70% organic solvents for substrate (+)-catechin (A), (-)-epicatechin (B), and sinapic acid (C)</td>
<td>79</td>
</tr>
<tr>
<td>3.6 The (+)-catechin products yields for wt-CotA (black bars), and T480A-CotA (white bars) were determined for 7 cycles over a 23 h period</td>
<td>83</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Evolution in Nature

Evolution is the process by which organisms have descended from ancient ancestors. Time is not the main factor in evolution, but it is genetic inheritance [1]. In Darwin’s theory, all organisms share common ancestors [2]. Species change over time and space. Species living today are different from those in the past. This evolutionary change can be gradual and slow (Figure 1.1) [3].

![Figure 1.1](https://bethbuddenteacher.wordpress.com/2015/01/02/teaching-evolution/) (accessed on April 18, 2017)
The primary mechanism of evolutionary change is natural selection. Charles Darwin introduced this concept in 1859 [4]. Variation exists within all populations of organisms and occurs partly because random mutations that take place in the genome of an individual organism. These mutations can be passed on from parent to offspring, therefore, such changes are heritable [5]. The struggle for resources will favor individuals with some variations over others from one generation to the next, and thereby change the frequency of traits within the population (Figure 1.2) [6]. For example, there may have a population of red beetles in ancient times. A mutation occurred in the DNA which caused the parents with genes for red coloration to have offspring with a gene for green coloration. This species lives on the tree; therefore, red beetles are easier for birds to identify and eat. Green beetles are a little more likely to survive to produce offspring. They pass their genes for green coloration on to their offspring because they blend into the background. As time goes, this species will evolve from red to green under natural selection.
Evolution can also occur on the single molecule level, such as proteins. For example, myoglobin is an oxygen-binding protein found in the muscle tissue in almost all mammals. Myoglobin from human and whale contain 153 and 154 amino acids, respectively. There are 25 amino acid differences by comparing the sequences of both myoglobins (Figure 1.3) [7]. Thus, the proteins had a common ancestor and the number of amino acid substitutions in two related proteins is roughly proportional to the evolutionary time. These proteins have evolved in the context of the organism in order to survive. In essence, a whale myoglobin may not function properly in a human.
Figure 1.3 Myoglobin evolution. Evolution can also occur on the single molecule level such as proteins.

1.2 Directed Evolution

Enzymes are potentially catalysts and can be used in industrial processes. They can be used as “green” catalyst because they operate at room temperature and aqueous solutions. Furthermore, they have high substrate specificity and can produce chiral products with high enantiomeric excess [8]. However, these advantages can also be shortcomings when used in industrial conditions, because they have evolved for millions of years and adopted specific properties. In industry, extreme conditions are used such as high salt concentration, temperature, and organic solvents. These conditions often inactive enzymes [9]. As a result, an efficient method must be used to engineer and optimize the enzymes.

The two extremes of protein engineering are rational design and evolutionary
(irrational) methods. Rational design requires in-depth knowledge of the protein structure, and its catalytic mechanism [10]. Amino acid substitutions are guided by the structure of the protein. However, it is still extremely difficult to predict the effect of an individual amino acid mutation even with a known structure. Therefore, this method is not always reliable for protein engineering and optimization. On the other hand, evolutionary methods do not require a structure or details of the mechanism of the desired activity [11]. The only requirement is the gene of interest. This method uncovers amino acid substitutions than one can never predict. For example, amino acid substitutions that improved catalytic activity can be far from the active site [12]. As a result, evolutionary strategies, also known as directed or laboratory evolution, have become the methods of choice. It opens a way to overcome some of the barriers to implement proteins for application in industry, biotechnology, and pharmaceuticals [13].

Directed evolution is a protein engineering method that mimics natural evolution. The main goal of this engineering strategy is to obtain proteins with improved or optimized properties, for example resistance to unusual pH, temperature, organic solvent, etc. Furthermore, amino acid substitutions uncovered that optimize a protein can be used to study structure/function relationships [14].

Directed evolution is an iterative process and there are four general steps: (1) diversification: generate gene library of the target protein (2) expression of protein library (3) screen the library under a specific condition for desired functions and (4) amplify the selected “winner” (a member in the library) (Figure 1.4).
Figure 1.4 An illustration of directed evolution. Directed evolution is a protein engineering method that mimics natural evolutions.

The size of DNA library needs to be addressed. The mutation rate needs to be controlled to make the library size manageable because libraries may have to be exhaustedly screened to discover a winner. It is physically impossible to screen extremely large libraries. The number of variants V of a protein of amino acid length L that differ by a mutation number of H is given by the Equation 1.1 [15]:

$$V=19^H \left[\frac{L!}{H!(L-H)!} \right]$$ (1.1)

For example, a protein of $L = 300$, the number of variants with a mutation number $H = 1$ there are 5700 variants. If there are two amino acid substitutions ($H = 2$) then the number
of variants V is 1.6×10^7. Finally, the number of variants (V) with a mutation number $H = 3$ is 3×10^{10} (Table 1.1). It becomes physically impossible to effectively screen library sizes with a mutation rate greater than 2. As a result, the mutation rate should be approximately 2 per gene.

<table>
<thead>
<tr>
<th>Number of Amino Acid Changes</th>
<th>Number of Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5700</td>
</tr>
<tr>
<td>2</td>
<td>1.6×10^7</td>
</tr>
<tr>
<td>3</td>
<td>3.0×10^{10}</td>
</tr>
<tr>
<td>4</td>
<td>4.3×10^{13}</td>
</tr>
<tr>
<td>5</td>
<td>4.8×10^{16}</td>
</tr>
</tbody>
</table>

Table 1.1 Number of Amino Acid Changes versus Number of Variants.

Note: The number of variants of a 300 amino acid long protein.

Many powerful technologies were developed to create a sizable library and generally can be divided into three categories: 1) saturation mutagenesis, which is a method to simultaneously introduce the other 19 amino acid at a specific site [16]; 2) random mutagenesis, which mimics asexual reproduction [17]; 3) DNA recombination, also known as DNA shuffling, which mimics sexual reproduction [18].

Saturation mutagenesis is a technique that generate all possible (or as close to as possible) mutations at a specific site or a narrow region of a gene. It involves the
randomization of one codon of a gene using synthetic oligonucleotides possessing a randomized codon flanked by wild-type sequences. Several codons may also be randomized, simultaneously, though this results in large libraries. This technology is limited because it requires knowledge of functional important regions of the enzyme, and relies heavily on structural insights for site specific targeting in proteins.

Random mutagenesis and DNA recombination are more commonly evolutionary strategies used in the laboratory [19]. Random mutagenesis mimics asexual reproduction and introduces random mutations in the gene of interest by a thermal stable DNA polymerase [20]. The reaction condition of the polymerase chain reaction (PCR), which amplifies DNA, is altered in order to introduce random mutations in the gene [21]. This is called error prone PCR (ep-PCR). Ep-PCR has several steps (Figure 1.5): (1) The gene is selected; (2) the target gene is amplified; (3) the PCR products are inserted into a carrier plasmid; (4) the plasmids containing the target gene are translated to proteins.
Figure 1.5 Scheme of random mutagenesis. Random mutagenesis mimics asexual reproduction and is commonly done by epPCR.

The second type is recombination of genes that mimics sexual reproduction: DNA shuffling [22,23]. Generally, DNA shuffling can be divided into several steps (Figure 1.6). (1) The gene fragments are first created by DNAse digestion. Each fragment may contain mutations. The different colors along the genes in Figure 1.6 represent different mutations. For example, yellow may denote blond hair, and blue may represent blue eyes. (2) The full-length of DNA is generated PCR. (3) After amplification, the target DNA is inserted in a carrier plasmid. (4) Proteins are expressed like in random mutagenesis.
10

Figure 1.6 Scheme for DNA shuffling. DNA shuffling was developed to mimic sexual reproduction.

1.3 Protein Display

The principle of protein display technologies is the ability to physically link phenotypes of polypeptides displayed in a certain system to their corresponding genotype, which was first shown for phage display [24]. This connection must remain intact for a successful evolution experiment. These technologies could be divided into two major categories, in vivo and in vitro. In vitro includes phage and cell surface display, while in vivo consists of ribosome, RNA and DNA display (Figure 1.7) [25].
Figure 1.7 Scheme of available display technologies. All display platforms are based on the ability to physically link the polypeptide produced by a library clone to its corresponding genotype. This allows one to recover the DNA encoding the clone selected based on the desired polypeptide phenotype, such as binding to the target [25].

1.3.1 In vitro Protein Display

The major potential advantage of in vitro protein display over in vivo methods is the size of the libraries that can be displayed and therefore the diversity subject to selection, because in cell-free assays there is no transformation step and no limit for library diversity [26]. However, in vitro methods have limitations. For example, mRNA display is not suitable for displaying membrane-bound proteins due to the difficulty in expressing such proteins using in vitro translation systems [27]. Also, screening conditions that may break the genotype/phenotype connection should not be applied. These technologies were
usually used to screen for specific high-affinity target-binding molecules including peptides, antibody fragments, and whole functional proteins presented by various scaffolds [28,29].

The connection between the genotype and phenotype is achieved by different strategies in these in vitro technologies (Figure 1.7). In ribosome display, linkage between the gene and the encoded polypeptide is achieved by stabilization of complexes between the ribosome, mRNA and the encoded polypeptide upon termination of elongation with a permissive marker, such as chloramphenicol or low temperature [30]. In mRNA display, linkage between the gene and the encoded polypeptide is achieved by a puromycin molecule covalently bonding the mRNA 3'-end and the translated polypeptide upon the ribosome stalling at the junction of mRNA and an engineered single-stranded DNA linker [28]. In covalent DNA display, linkage between the gene and the encoded polypeptide is achieved by covalent bond that forms between the DNA-binding protein P2A (produced as a fusion with polypeptide) with the DNA encoding the fusion [28].

1.3.2 In vivo Protein Display

Generally the screening can be performed under in vivo conditions [31]. This means proteins translated from DNA libraries can be transported to the microorganism. “Traditional” methods such as phage display [32], bacterial display [33,34] and yeast display [35,36] are suitable when the evolved protein is to be used in living organisms (Figure 1.8).
In general, there are two screening strategies. The first one is expressing protein libraries inside the host, for example, in the cytoplasm of *E. coli* (Figure 1.9A). The other way is first expressing protein libraries inside the host, and then transporting the protein to the surface to be displayed outside the host cells (Figure 1.9B). This strategy is called cell surface display. The protein displayed on the cell surface is often fused to a carrier protein. The carrier protein is usually a natural occurring protein found on the surface or outer membrane, which is represented as a green circle in Figure 1.9B.
Figure 1.9 Two strategies of screening. (A) Proteins are expressed inside the host. Red structure represents proteins, grey structure represents DNA, and in blue is the cell surface; (B) Protein displayed outside the host cell. Green circle represents carrier proteins.

Displaying proteins libraries on the cell surface has advantages over expressing libraries inside the cells. If the protein is displayed inside, then the cells must be lysed to gain access to the protein for the assay (Figure 1.10). Therefore, the connection between genotype and phenotype will be lost (Figure 1.11). In other words, the improved protein and the gene that codes for it is separated and must be retrieved from another plate (Figure 1.10). In addition, the assay is hindered because of multiply liquid handling steps. For example, the cell lysates require centrifugation in order to pellet the cell debris and the supernatant may be pipetted into another reaction vessel for the assay (Figure 1.10). Finally, the assay solution is complicated furthermore by the soluble contents of the cell, which may include DNA, RNA, proteins, etc…
Figure 1.10 Screening protein libraries in the cell. 1) Library is transformed into cells. 2) Single colonies are picked into microtiter plate and grown. 3) A duplicate plate is made and the original plate is stored to retrieve the gene of the improved protein variant. This gene is used a parent for the next rounds of evolution.

Cell surface display may overcome issues discussed above. First, the genotype/phenotype connection remains intact. Next, substrates or protein targets are freely accessible. Furthermore, liquid handling is minimal. In addition, there is more control of the assay conditions because it is not complicated by addition of the soluble contents of the cell. Finally, the reaction solution can be easily exchanged by centrifugation.
Figure 1.11 Genotype/phenotype connection for proteins expressed inside the cell. Cell lysis is necessary to gain access to the protein. As a result, the genotype-phenotype connection will be lost.

Many strategies are developed for directed evolution by using cell surface display. Figure 1.12 shows steps of an example of evolving a protein to bind a specific target:

(1) Gene libraries are transformed into cells. (2) The library is expressed on the cell surface and each cell contains a unique member of the gene library. (3) The library is screened for binding a target. (4) The proteins that bind nonspecifically are eliminated by a wash step. (5) The improved protein is released from the target. (6) The cells are cultured and the gene is isolated for another round of evolution.
Figure 1.2 An example of directed evolution by cell surface display. A library is screened by using affinity binding assay.

Traditional cell surface display methods are powerful and many proteins were evolved for improved properties or functions [37]. This technology has transformed protein discovery in industry and academia. For example, *E. coli* is considered an attractive host because of the availability of various genetic tools and mutant strains and the high transformation efficiency for screening of a large peptide or protein library after surface display [38]. Screening displayed proteins with extreme properties has many advantages in designing pharmaceuticals and industrial catalyst. Although protein display seems ideal, there are some severe limitations, which are cell viability and protein folding.
Cell viability is a major issue. For example, industrial reaction conditions may require elevated temperatures or organic solvents to dissolve hydrophobic substrates. However, screening with harsh assay conditions will lyse the cells and the genotype/phenotype connection will be lost (Figure 1.12, step 3; Figure 1.13). Furthermore, screening under extreme conditions or toxic substrates, the cell will not remain viable. As a result, the cells cannot be cultured and the gene cannot be isolated (Figure 1.12, step 5 & 6).

![Diagram](image)

Figure 1.13 Problems in traditional cell surface protein display. The connection of genotype and phenotype will be gone if the cell is lysed under harsh condition.

Also, there are protein folding issues. In *E. coli* for instance, disulfide bonds cannot properly form because the proteins are expressed in the cytoplasm, which is a reducing environment [39]. Also, the target proteins must travel through several membranes to reach cell surface. First, the protein travels through the inner membrane, and then passes across the peptidoglycan layer, and finally the protein travels to the outer
membrane (Figure 1.14). This causes misfolded and nonfunctional proteins. Taken together, these technologies limit the numbers of proteins that can be displayed [40,41].

Figure 1.14 Cell membrane structure of *E. coli*. Proteins are first expressed in cytoplasm. They may misfold when travelling across membranes to the surface.

1.3.3 *E. coli* Cell Surface Display

Among Gram negative bacteria, *E. coli* has been extensively investigated in cell surface engineering. It is an attractive host for cell surface display because of the availability of various genetic tools and mutant strains and the high transformation efficiency for screening of a large peptide or protein library. To display heterologous proteins onto the surface of *E. coli*, different strategies were used. These include the insertion of the target sequences into the surface exposed outer membrane proteins; insertion of target sequences into a protein forming part of a cell surface structure such as a flagellum; or
the fusion of target sequences to the N-terminus of lipoproteins (Figure 1.15).

The major problem is the target proteins need to cross two bacterial membranes to reach the extracellular surface. This may cause protein misfolding and dysfunction. Also, the fragility of outer membrane caused by the display of proteins can be a problem. In addition, this method cannot be used to evolve proteins with extreme properties, which is due to viability issues as mentioned above.

Figure 1.15 Different strategies to display passenger proteins (green circles) on the surface of E. coli.
Source: [38]
1.3.4 Yeast Cell Surface Display

Yeast surface display involves the expression of protein of interest on the yeast cell wall by using N-terminal fusion or C-terminal fusion and it can be used for post-translational modification found in eukaryotic organisms (Figure 1.16) [35]. Using α-galactosidase as a target protein, it was demonstrated that a number of cell wall proteins (Cwp1p, Cwp2p, Agα1p, Tip1p, Flo1p, Sed1p, YCR89w, and Tir1) could be used as N-terminal fusion [42]. For C-terminal fusion, the most widely used anchor is Aga2. The cell wall protein α-agglutinin consists of two subunits, Aga1p and Aga2p. Aga1p is incorporated into the cell wall, whereas Aga2p fused with a target protein is conjugated to Aga1p via a disulfide bond.

Glycosylated proteins have been successfully displayed on yeast. However, differential glycosylation may interfere with the function of the displayed protein [43]. A potential disadvantage of yeast display is that the library size is limited to 10^6-10^7 because of low transformation efficiency. In addition, this method also suffers from viability concerns when screen under extreme conditions.
1.4 Spore Display

Spores may overcome the problems associated with traditional protein display. A brief overview of sporulation needs to be discussed for the gram-positive organism *Bacillus subtilis*. Bacterial spores are formed in response to starvation. The best studied spore-forming bacteria is *B. subtilis*, which is found to have no safety concerns for laboratory use. Sporulation of *B. subtilis* (Figure 1.17) proceeds through a well-defined series of morphological and biosynthetic steps: (1) an asymmetric division of the sporulating cell creates a sporangium composed of two compartments: the mother cell and the forespore. The mother cell nurtures the forespore and the proteins that make up the coat are synthesized. (2) The mother cell engulfs the forespore as the spore coat is formed. Coat assembly begins just after the initiation of engulfment and continues...
throughout sporulation. (3) The spore is formed. (4) The cells are lysed. (5) The spores are released.

Figure 1.17 *B. subtilis* sporulation process.

Spores are the most resistant form of life on earth and remain viable under extreme chemical and physical conditions and they do not lyse. As a result, proteins can be evolved to possess extreme properties. For example, displayed proteins can be evolved to remain active in organic solvents [44]. Screening under these conditions would lyse the cell in traditional protein display, which would separate the gene from the improved protein (Figure 1.18A). In short, spore display maintains the genotype/phenotype connection intact (Figure 1.18B). In addition, protein folding problems associated with the target protein traveling through cell membranes is eliminated, which is due to the natural sporulation process [45]. Furthermore, the mother cell contains ATP-dependent chaperone proteins, which assist in folding proteins.
Figure 1.18 Illustration of traditional display and spore display. (A) The connection of genotype and phenotype is lost under harsh conditions in traditional display methods. (B) The connection of genotype and phenotype remain intact under harsh conditions in spore display.

Spore displayed proteins is convenient and has economic advantages in industrial application. For example, enzymes are immobilized on the inert surface of spore coat and become more stable. Next, spores can be easily removed from the reaction mixture to ease in product purification.

1.4.1 Composition of the *B. subtilis* Endospore

The *B. subtilis* spores are encased in a well protective coat consisting of an inner coat and outer coat that make the spores can withstand extremes of heat, desiccation, and
chemicals (Figure 1.19). The coat outside the spores are composed of >70 different proteins (Figure 1.20). The layer beneath the inner coat is called cortex, separated from the coat by an outer membrane. The cortex is composed predominantly of peptidoglycan with a structure similar to that of peptidoglycan in growing cells. The cortex is essential for the attainment and maintenance of the dehydrated state of the spore core, for spore mineralization and for dormancy [45]. The central part of the spore is the core, separated from the cortex by an inner membrane. It contains one copy of the bacterial chromosome and plasmid copies if present in the vegetative cell. The DNA molecules in the core are complexed with small acid-soluble proteins (SASPs), making up as much as 20% of the total spore protein [46].

Figure 1.19 Structure of B. subtilis spore under transmission electron microscopy (TEM).
1.4.2 Protein Displayed by *B. subtilis* Spores

As described above, the proteins on the spore coat are synthesized inside the sporulating mother cells and deposited on the spore surface as prespores emerge (Figure 1.17). Thus, proteins can be displayed on the spore surface by fusing with coat proteins (Figure 1.20). Up to now, *B. subtilis* spore display has been used for a range of biotechnological applications, such as vaccine development [38,47-49] and whole-cell biocatalysts [50]. Our group first demonstrated that the spore display system could be used for directed evolution [51].

The spore-display system is based on the construction of gene fusions between heterologous DNA and a *B. subtilis* gene coding for a spore coat protein that located on the spore surface. The outer surface proteins CotG, CotB, and CotC were demonstrated to be able to display enzymes and heterologous antigens. All three proteins are tyrosine-rich and present as multimers within the spore coat [52]. CotG has a central region formed by nine tandem repeats of a lysine-, serine-, and arginine-rich motif [53]. CotB is a 46-kDa polypeptide which is posttranslationally converted into a form of about 66 kDa [54]. CotC forms multimeric species with itself [55].

Until now, CotG has been used to display β-galactosidase (β-Gal) [50]. β-Galactosidase is a very large protein (116 kDa per monomer), and active only as a tetramer and known to be toxic to the host cell. The successful display of this protein functionally on spore coat demonstrated the advantage of spore display. Also, solvent
stability of surface expressed β-galactosidase in organic solvents was significantly increased as compared to the free form of soluble β-galactosidase. CotB and CotC was used to display the amyQ-encoded α-amylase and GFPuv [56]. Enzymes displayed on spores behave like immobilized enzymes, showing correct function, and enhanced stability toward heat and solvents. They can be used as spore-immobilized biocatalysts.

Two heterologous antigens, tetanus toxin fragment C (TTFC) from Clostridium tetani, and a heat-labile toxin of E. coli (LTB), are displayed on the spore surface with CotC, and could be used to create a combination vaccine.

Highly expressed proteins may also be adsorbed to the spore surface via hydrophobic or electrostatic protein–protein interactions, other than fusing to a carrier protein on spore coat [57]. This method broadened the application of spore display for protein engineering, because the fusion protein hinders the correct conformation, and some proteins are not amenable to N-terminal or C-terminal fusion. However, the absorbed enzyme may diffuse from the surface. This would complicate product isolation in a reaction solution because the enzyme is in mixture.

There are several ways to improve spore display. First, the majority of spore display examples often rely on stable integration of an expression construct into the chromosome of B. subtilis. However, this approach presents several limitations, such as low expression level and complex operation. Utilizing a high copy number E. coli–B. subtilis shuttle vector can help to overcome these problems [56,58]. Also, B. subtilis cells
produce a variety of intra- and extracellular proteases. Target proteins anchored on the spore surface are first exposed to intracellular proteases and, after lysis of the mother cells, to extracellular proteases. To prevent the degradation of target proteins, the eight-fold protease-deficient strain *B. subtilis* was used [59]. Finally, the spore surface could be re-engineered to enhance molecular display. The spores are covered with coat and spore crust proteins, therefore, evolved coat proteins may further improve the efficiency of display.

Figure 1.20 Model for spore coat assembly.

Source: [60]
1.5 Laccase

Laccases are members of multicopper oxidase family enzymes. It was first found in the sap of the Japanese lacquer tree *Rhus vernicifera* [61]. Hence, the name of the enzyme is laccase. They have diverse physiological roles such as lignin synthesis [62], lignin degradation [63], pathogenesis [64] and morphogenesis [65]. They catalyze many substrates. In laccase-catalyzed one-electron oxidation processes, four molecules of substrate are oxidised in order to reduce a dioxygen molecule to two waters molecules. Substrate oxidation occurs at the mononuclear T1 centre and then the electrons are shuttled, along a T1 coordinating cysteine, to the two histidines that are coordinating the T3 coppers of the trinuclear centre, where reduction of dioxygen occurs (Figure 1.21).

Laccases have applications in the textile industry, paper bleaching, chemical synthesis, biofuel cells, and bioremediation [66].

![Figure 1.21 Reaction of catalysis of laccase.](image)
CotA, a laccase, is an endospore coat protein in *B. subtilis* (Figure 1.22). The physiological role of CotA in *B. subtilis* has not been determined. Spores have a characteristic brown color. If CotA is knocked out of the genome, the spores lose this color. The color protects the spores from UV light and peroxide [67]. In addition, it assists with melanin biosynthesis and cross-link coat protein structure components.

![Figure 1.22](image)

Figure 1.22 Ribbon diagram of the ABTS–CotA complex. ABTS is shown as colored spheres. The model of ABTS-CotA complex was generated by UCSF Chimera (Resource for Biocomputing, Visualization, and Informatics (RBVI), UCSF).

Spore display was first applied to directed evolution in our laboratory and increasing substrate specificity was the goal. A library of *cotA* were expressed on spore coat and screened for activity toward ABTS [diammonium
2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate)] over SGZ

(4-hydroxy-3,5-dimethoxy-benzaldehyde azine) [51]. A library of approximately 3000 clones was screened in one round of evolution. A threonine to leucine substitution at position 260 was uncovered and it was 120-fold more specific for ABTS (Figure 1.23).

Figure 1.23 Ribbon diagram of Thr260Leu-CotA. The model of Thr260Leu-CotA was generated by UCSF Chimera (Resource for Biocomputing, Visualization, and Informatics (RBVI), UCSF).

We wanted to take advantage of the inert properties of the spore coat and evolve a protein with extreme properties. CotA was evolved for improved activity under conditions of high organic solvent concentrations [44]. A cotA library was expressed on spore coat and approximately 3000 clones were screened at 60 % dimethyl sulfoxide (DMSO) in one round of evolution. A threonine to alanine amino acid substitution at
position 480 variant (Figure 1.24) was identified that was 2.38 fold more active than the wild-type CotA. In addition, Thr480Ala-CotA was more active with varying concentrations of DMSO ranging from 0 – 70 %. The mutant was also found to be more active compared to wild-type CotA in different concentrations of methanol, ethanol and acetonitrile.

Figure 1.24 Ribbon diagram of Thr480Ala-CotA. The model of Thr480Ala-CotA was generated by UCSF Chimera (Resource for Biocomputing, Visualization, and Informatics (RBVI), UCSF).
CHAPTER 2
DIRECTED EVOLUTION OF COTA LACCASE FOR ACIDIC PH STABILITY BY USING BACILLUS SUBTILIS SPORE DISPLAY

Bacillus subtilis spores can be used for protein display to engineer and optimize protein properties. This method overcomes viability and protein folding concerns associated with traditional protein display methods. Spores remain viable under extreme conditions and the genotype/phenotype connection remains intact. In addition, the natural sporulation process eliminates protein-folding concerns that are coupled to the target protein travelling through cell membranes. Furthermore, ATP-dependent chaperones are present to assist in protein-folding. In general, proteins that are immobilized have advantages in biocatalysis. For example, the protein can be easily removed from the reaction and it is more stable.

We recently showed that spores could be utilized for directed evolution. The laccase CotA, which is a _B. subtilis_ spore coat protein, was the target. A library of _cotA_ genes was expressed on the spore coat, and it was evolved for improved substrate specificity [51]. Next, spores are able to remain viable under extreme conditions, and CotA was evolved for improved activity in high concentrations of organic solvents [44]. _E. coli_ or yeast protein display methods are not compatible with screening with high concentrations of organic solvent because the cell would lyse and the connection between the gene and the improved protein is lost. The next goal was to optimize CotA as a whole cell biocatalyst immobilized in an inert matrix of the spore coat for improved pH stability.
using spore display.

In general, pH has an effect on enzyme activity. Each enzyme has its own optimum pH to undergo catalysis. It is because pH can change the state of ionization of acidic or basic amino acid, therefore change the structure of the enzyme. Enzymes will be inactive because the 3-dimensional structure will be altered (Figure 2.1) [68]. Also, pH may change ionization state of substrates. As a result, the substrate may not bind to the enzyme. In industry, extreme low or high pH may be applied. Most enzymes will be inactive under these conditions. In this case, enzymes that can resist extreme pH are desired. For example, α-amylase was engineered to improve the stability at low pH to meet the starch industry environment [69]. Corn starch is converted to fructose/glucose syrup by α-amylase, and this process also includes steam injection to reduce the viscosity. The reaction occurs at pH 6, but a low pH is desired to prevent unwanted byproducts. Acid resistant enzymes have applications in degradation of polymeric or oligomeric carbon sources, biofuel production, textile industry, and fruit juice production [70].

Figure 2.1 pH effect on enzyme activity.
The maximum activity of the laccase CotA with the substrate ABTS is between pH 4 and 5. However, it was found that the activity dramatically decreases at pH 4. The activity is not significantly altered at pH 5. We used CotA as a model to prove that enzymes could be improved for pH resistance by using *Bacillus subtilis* spore display. First, CotA was evolved for increased half-life ($t_{1/2}$) at pH 4. Next, a double mutant was constructed. This variant combined the amino acid substitutions from the improved $t_{1/2}$ variant and organic solvent tolerant mutant. The $t_{1/2}$ and kinetic parameters were evaluated for the double mutant.

2.1 Materials

Chemicals used were analytical grade or higher. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), citric acid, disodium phosphate, copper(II) chloride were purchased from Sigma Aldrich (St.Louis, MO). Ampicillin, spectinomycin, chloramphenicol was purchased from Fisher Scientific (Pittsburgh, PA). DNA purifications kits were purchased from Qiagen (Valencia, CA). Primers were purchased from Fisher Scientific (Pittsburgh, PA). Enzymes were purchased from Invitrogen (Carlsbad, CA) and Agilent Technologies (La Jolla, CA).
2.1.1 Library Construction

The plasmid, pDG1730CotA, was previously constructed, which contains the CotA gene under control of its natural promoter. Libraries were constructed with help from Dr. Han Jia (Figure 2.2). Random mutagenesis libraries were created by error prone PCR (ep-PCR) using GeneMorph II Random Mutagenesis (Agilent Technologies, La Jolla, CA.). A typical 50 μL GeneMorph reaction contained pDG1730CotA (3000 μg.), primers BacsubF (125 ng; 5’-GCGCGCAAGCTTGTGTCCATGGCGTT-3’) and Psg1729 (125 ng; 5’GCGCGGATCCTTATTTATGGGGATCA-3’), dNTP mix (40 nmol, 10 nm each), and Mutazyme II DNA polymerase (2.5 U) and 5 μL buffer. The PCR program consisted of 30 cycles at 95 °C for 30 s, 56.3 °C for 30 s and 72 °C for 4 m.

Libraries were also made using taq polymerase. A typical 100 μL ep-PCR reaction contained pDG1730CotA (100 ng), dGTP (20 nmol), dATP (20 nmol), dCTP (100 nmol), dTTP (100 nmol), primers BacsubF and Psg1729 (500 ng each), MgCl2 (0.7 mM), Platinum Taq DNA Polymerase (5 U, Invitrogen, Grand Island, NY) and reaction buffer (10 μL). The PCR program consisted of 30 cycles at 95 °C for 30 s, 56.3 °C for 30 s and 72 °C for 4 m.
For each library, the PCR product was digested with *Hind*III and *Bam*HI and was cloned into the same sites in the plasmid pDG1730. The resulting plasmids were transformed into *E.coli* DH5α and plated on LB plates containing ampicillin (100 μg/mL). The transformants were collected together and the plasmids were isolated. The library was integrated into the *amyE* locus into *B. subtilis* strain 1S101 (Ohio State University, *Bacillus* Genetic Stock Center, Columbus Ohio) (Figure 2.3).
Figure 2.3 CotA library was transformed into *Bacillus subtilis* and displayed on cell surface.

This transformation was achieved by double cross-over recombination. This strain is a *cotA* knockout strain (Figure 2.4).

Figure 2.4 CotA was integrated into the genome of *Bacillus subtilis* by double-cross recombination.
2.2 Methods

2.2.1 Spore Screening for Acid-stability

Expression of the library in 96-deep-well plates was previously described [71]. After expression, the plates were centrifuged and the media discarded. The spores were resuspended in 200 μL spore control solution [sterile water containing CuCl\(_2\) (0.25 mM)] and incubated at room temperature for 30 min. Next, two assay plates were constructed for screening. One plate had 40 μL spore control solution in each well as control plate, and the other had 40 μL spore control solution with 100 μL citrate phosphate buffer (100 mM, pH 4) containing CuCl\(_2\) (0.25 mM) as assay plate. Both plates were at room temperature for two hours. After incubation, 100 μL citrate phosphate buffer (100 mM, pH 4) containing CuCl\(_2\) (0.25 mM) was added into each well of the control plate. ABTS (1.0 mM, pH 4) was added into each well for both plates to initiate the reaction, and allowed to react for 20 minutes. The plates were centrifuged and the supernatants were transferred to another microtiter plate. The endpoint was measured at 420 nm (ε = 36,000 M\(^{-1}\) cm\(^{-1}\)). Next, the ratio of Abs\(_{\text{pH 4 at 420 nm}}\) : Abs\(_{\text{control at 420 nm}}\) was determined. Positive clones were selected that showed at least 1.5 the mean value of wild-type ratio of Abs\(_{\text{pH 4 at 420 nm}}\) : Abs\(_{\text{control at 420 nm}}\). A rescreen was carried out to eliminate false positives. The assay was similar to above, but multiple colonies from a single clone were picked into a column of a 96-deep well plate. A wild-type control column was also included.
2.2.2 Acid Inactivation

Large-scale sporulation was initiated by media exhaustion, and the spores were purified using published procedures [72]. The half-life of acid inactivation ($t_{1/2}$) of spores was determined. Purified spores were incubated in aqueous CuCl$_2$ (0.25 mM) for 1 hour at 37 °C. Then, the spores were centrifuged and resuspended in citrate-phosphate buffer (100 mM, pH 4, 0.25 mM CuCl$_2$) and incubate in 37 °C. The resulting solution had an OD$_{580}$ between 0.1 – 0.3. A 200 μL reaction was initiated by adding ABTS (10 mM) into the spore solution. The measurements were performed every 3 to 10 minutes at 420 nm until the activity decreased to 20% of the initial activity. The data was recorded in triplicate.

2.2.3 Kinetics Measurements of CotA and CotA Variants

All measurements were done in triplicate with at three different batches of purified spores. The kinetic parameters of spores were determined at 37 °C by using ABTS (1 – 8000 μM) in citrate phosphate buffer (100 mM, pH 4). The spores were first suspended in aqueous CuCl$_2$ (0.25 mM) solution for 60 minutes. Then the reactions were initiated by adding 50 μL spore solution into wells of each concentration of ABTS. The final OD$_{580}$ of spores was between 0.2 – 0.3. The initial rates were acquired from the linear portion of the reaction curve. Kinetic parameters were obtained by curve fitting (SigmaPlot 12.0, Systat Software Inc., San Jose, CA).
2.2.4 Product Yield of CotA and Its Variants

CotA recycling was investigated and the total product yield was determined over 42-hour period. The spores were resuspended in aqueous CuCl$_2$ (0.25 mM) solution for 60 minutes at 37 °C. Next, the spores were centrifuged and the supernatant was discarded. The spores were resuspended in citrate phosphate buffer (100 mM, pH 4) at 37 °C with a final OD$_{580}$ of 0.15. The spores were incubated for two hours and then the spores centrifuged and the supernatant was discarded. The reaction was initiated by resuspending the spore with 1 mL ABTS (20 mM) in citrate phosphate buffer (100 mM, pH 4) at 37 °C. The absorbance was taken at 420 nm after 15 minutes to determine the product yield. This cycle was repeated seven times over 42-hours.

2.2.5 Cell Viability

Purified spore were incubated in aqueous CuCl$_2$ (0.25 mM) for one hour. Next, the spore solution was added to citrate phosphate buffer (100 mM, pH = 4, 0.25 mM CuCl$_2$) and incubated for 4 hours. Then, the solutions were diluted and plated on LB plates containing spectinomycin (100 μg/ml) and chloramphenicol (5 μg/mL).

2.2.6 Overproduction in *Escherichia coli* and Purification of CotA and Its Variants

A 5.0 mL of the overnight culture was used to inoculate LB media (1 L) containing ampicillin (100 μg/mL). The cells were shaken at 250 rpm at 37°C. The cells were then induced by adding arabinose (0.2 %) and CuCl$_2$ (0.25 mM) when OD$_{600}$ = 0.6. After 4
hours, the cells were harvested by centrifugation at 9,000 g and 4 °C and the cell pellets were stored at -20°C until purification.

CotA was purified using two chromatographic steps. The cell pellets were resuspended in 20 ml Tris-HCl (20 mM, pH 7.6) buffer containing DNaseI (10 μg/mL), MgCl₂ (5 mM), and protease inhibitors (CompleteTM, mini EDTA-free protease inhibitor mixture tables, Roche Molecular Biochemicals). Cells were disrupted by sonication (4 x 30 sec; output power 20 watts; Sonicator, Sonic Dismembrator Model 100, Fisher Scientific). The lysate was centrifuged at 15,000 g and 4 °C for 20 minutes. The supernatant was filtered using 0.45 μm filter (Millex-HV, Millipore) and then diluted to 50 mL with Tris-HCl buffer. The solution was loaded onto an ion exchange SP-Sepharose column (bed volume 25 mL) that was equilibrated with Tris-HCl (20 mM, pH 7.6). The sample was loaded and eluted using a two-step linear NaCl gradient (0 – 0.5 and 0.5 – 1 M) in the same buffer. Fractions displaying laccase activity were pooled, concentrated by ultrafiltration with a cutoff of 30 kDa, and equilibrated to 20 mM Tris-HCl (pH 7.6). The sample was then loaded onto MonoS 5/50 column, and eluted using a two-step linear NaCl gradient (0 – 0.5 and 0.5 – 1 M). Fractions with laccase activity were pooled, desalted, and concentrated. A single band was shown by SDS-PAGE (12.5 %) at 100 kDa after boiling for 10 min in loading dye.
2.2.7 Acid Inactivation and Kinetics Measurement of Purified CotA

0.5 µg purified enzyme was used for acid inactivation assay. Dilute the protein with aqueous CuCl$_2$ (0.25 mM) and incubate at 37 °C for 30 min. Then, on a 96-well microplate, each well contains 100 µl citrate phosphate buffer (100 mM, pH 4, 0.25 mM CuCl$_2$) with 0.5 µg treated protein and incubate under 37 °C. The reaction was initiated every 10 minutes by adding 10 µl ABTS (1 mM) into one well on the 96-well microplate. The initial rates were acquired from the linear portion of the reaction curve.

Purified enzyme was diluted in aqueous CuCl$_2$ (0.25 mM) and incubated at 37 °C for 30 min. The kinetic parameters were then determined at 37 °C by using ABTS (1 – 10 mM) in citrate phosphate buffer (100 mM, pH 4, 0.25 mM CuCl$_2$). The reactions were initiated by adding 0.5 µg enzyme. The initial rates were acquired from the linear portion of the reaction curve. Kinetic parameters were obtained by curve fitting.

2.3 Results and Discussion

Many strategies have been developed for directed evolution. They are either in vivo or in vitro. Taking advantage of the inert properties of spores, we demonstrate that proteins can be evolved under harsh conditions by using a system based on spores of B. subtilis. In this system, the protein of interest is “preimmobilized” on the spore coat and screened as whole cell. Therefore, the connection between phenotype and genotype is intact. CotA is a laccase, which is a B. subtilis spore coat protein. The optimal enzymatic activity of CotA laccase was found at pH 4.0 – 5.0 for substrate ABTS oxidation. However, the
activity dramatically decreases at pH 4 (Figure 2.5). The activity is not significantly altered at pH 5.

Figure 2.5 Optimal enzymatic activity was found at pH 4.0 – 5.0 for ABTS. However it also has the relatively lowest stability at pH 4.

CotA laccase was evolved for higher stability at low pH = 4 by using *B. subtilis* spores. Libraries of CotA were first created by random mutagenesis wild-type *B. subtilis* as template. They were then inserted into vector pDG1730 and transformed into *B. subtilis* genome with double crossover recombination. The *B. subtilis* strain had the endogenous cotA gene knocked out. Next, the *B. subtilis* cells were sporulated in 96-deep-well plates. A screen need to be validated to reduce the probability of selecting false positives. In order to validate the screen, only wild-type CotA is arrayed in the 96-deep well plates. A low coefficient of variance (CV) is needed. There are many factors to obtain a low CV, such as incubation time and temperature, induction time and temperature, shaker speed,
eliminate evaporation, etc... A suitable CV is approximately 20%. Therefore, CotA activity with ABTS was measured before and after incubating the spores in citrate phosphate buffer (100 mM, pH 4) for 60 min. The average of the coefficient of variance (CV) was 15.7% for 3 microtiter plates (Figure 2.6).

Figure 2.6 An example of one microtiter plate of coefficient of variance (CV). The clones were ranked from highest to lowest activity. CV is defined as the ratio of the standard deviation to the mean.

Positive clones were selected that showed at least 1.5 the mean value of wild-type ratio of $\text{Abs}_{\text{pH } 4}$ at 420 nm : $\text{Abs}_{\text{control}}$ at 420 nm. A rescreen was carried out to eliminate false positives. The assay was similar to above, but multiple colonies from a single clone were picked into a column of a 96-deep well plate. A wild-type control column was also included. Approximately 3000 mutants were screened and a mutant, Y19, was identified with a $t_{1/2}$ 5.9 times greater than wt-CotA (Table 2.1).
Table 2.1 Kinetic Parameters and Half-life of Wild-type CotA and CotA Variants

<table>
<thead>
<tr>
<th>Mutation</th>
<th>$V_{\text{max}}^{[a]}$</th>
<th>K_m (μM)</th>
<th>V_{max}/K_m</th>
<th>$t_{1/2}^{[b]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E29V</td>
<td>29.4 ± 1.4</td>
<td>67.2 ± 9.2</td>
<td>0.44</td>
<td>60.4 ± 3.7</td>
</tr>
<tr>
<td>L343S</td>
<td>14.7 ± 0.5</td>
<td>58.2 ± 6.4</td>
<td>0.25</td>
<td>33.4 ± 2.3</td>
</tr>
<tr>
<td>E498G</td>
<td>41.8 ± 3.7</td>
<td>857.6 ± 125.9</td>
<td>0.05</td>
<td>1264.1 ± 78.0</td>
</tr>
<tr>
<td>E29V/L343S/E498G</td>
<td>18.5 ± 0.5</td>
<td>358.6 ± 29.4</td>
<td>0.05</td>
<td>302.6 ± 23.8</td>
</tr>
<tr>
<td>T480A</td>
<td>120.6 ± 2.5</td>
<td>112.3 ± 6.9</td>
<td>1.07</td>
<td>56.1 ± 1.1</td>
</tr>
<tr>
<td>T480A/E498G</td>
<td>45.5 ± 3.0</td>
<td>585.1 ± 76.4</td>
<td>0.08</td>
<td>3166 ± 431.1</td>
</tr>
<tr>
<td>Wt-CotA</td>
<td>33.3 ± 1.1</td>
<td>58.8 ± 7.2</td>
<td>0.57</td>
<td>50.9 ± 1.8</td>
</tr>
</tbody>
</table>

Kinetic parameter and half-life of inactivation at pH 4 for WT-CotA and CotA variants. [a] μM/min/OD$_{380}$ nm. [b] Half-life (minutes) at pH 4.

The sequence of Y19 was determined from isolated genomic DNA and three amino acid substitutions [E29V (GAA to GTA), L343S (TTG to TCG), E498G (GAA to GGA)] were found (Appendix B). Val29 and Ser343 are on the surface, while Gly498 is close to the T1 copper center (Figure 2.7).
Figure 2.7 Molecular model of ABTS-Y19. Molecular model of the ABTS-Y19 complex was generated using Maestro software from Schrodinger (Schrodinger, Maestro v9.2, Portland, 2011). Copper, ABTS, and the amino acids are rendered as CPK models.

The CotA variants that carry only one mutation were also constructed to determine the contribution the amino acid substitution had on pH stability and catalytic efficiency (Figure 2.8, Table 2.1, Figure 2.9). The $t_{1/2}$ of E498G variant was 1213.2 minutes longer than wt-CotA, which was 24.8 times greater. The E498G substitution is the only amino acid required for the increased $t_{1/2}$ (vide infra). The V_{max}/K_m for E498G was 8.8 % compared to wt-CotA. A lowering of V_{max}/K_m is not unusual because this property was not included in the pH stability screen (Table 2.1). The change in
\(V_{\text{max}}/K_m \) for the variant was mainly due to 14.6 fold increase in \(K_m \), which was partially compensated with a 1.3 fold increase in \(V_{\text{max}} \).

Figure 2.8 The \(t_{1/2} \) at pH 4 of wt-CotA and CotA variants. The \(t_{1/2} \) is determined from first order kinetic of deactivation. Wt-CotA (closed circles), E29V (open circle), L343S (closed triangles), E498G (open triangle), and Y19 (closed square) residual activity at pH 4 is plotted against time.
Figure 2.9 Kinetic parameters of wt-CotA and CotA variants on *Bacillus subtilis* spore coat. (A) Kinetic parameters of Y19 (E29V/L343S/E498G). $K_m = 358.6 \pm 29.4 \mu M$; $V_{max} = 18.5 \pm 0.5 \text{ mM/min/OD}_{580nm}$. (B) Kinetic parameters of E498G.
Figure 2.9 (continued) Kinetic parameters of wt-CotA and CotA variants on Bacillus subtilis spore coat. (C) Kinetic parameters of E29V. $K_m = 67.2 \pm 9.2$ µM; $V_{max} = 29.4 \pm 1.4$ mM/min/OD$_{580}$nm. (D) Kinetic parameters of L343S. $K_m = 58.2 \pm 6.4$ µM; $V_{max} = 14.7 \pm 0.5$ mM/min/OD$_{580}$nm.
Figure 2.9 (continued) Kinetic parameters of wt-CotA and CotA variants on *Bacillus subtilis* spore coat. (E) Kinetic parameters of wt-CotA. $K_m = 58.8 \pm 7.2 \mu M$; $V_{max} = 33.3 \pm 1.1 \text{mM/min/OD}_{580\text{nm}}$.

In a previous investigation, Glu498 was mutated to aspartate, threonine and leucine, and it was suggested that these amino acid substitutions near His497 resulted in minor changes in substrate binding and electron transfer to the T1 site [73,74]. Substrate oxidation at the T1 site has been proposed to be the rate-limiting step in the reaction [75,76]. The mutagenesis investigations also proposed that Glu498 was necessary for proton assisted reductive cleavage of the O-O bond at the trinuclear copper center. The E498G variant does not have a side chain that can facilitate the cleavage. However, the amino acid substitution is also expected to alter substrate binding and electron transfer. Glycine is known to have greater conformational flexibility because the side chain is hydrogen. The mutation may have altered the position ABTS for efficient electron
transfer and the V_{max} was increased. On the other hand, this was at a cost to substrate binding which resulted in a higher K_m. In addition, the glycine substitution is adjacent to the His497, which coordinates to Cu$^{2+}$ in the T1 site. Hence, the Cu$^{2+}$ coordination geometry may also be affected such that metal binding has increased, and the protonation of the histidine ligands is hindered. Protonation of the histidine would result in release of Cu$^{2+}$ from the T1 site and loss of enzymatic activity. The enzyme is imbedded in the spore coat and the structure of the mutant has not been solved. Hence, it is difficult to extract conclusions based on the structure of ABTS bound to CotA. The structure of the soluble CotA may not be identical to the enzyme that is embedded and restrained in the spore coat.

Wt-CotA was evolved for increased activity in high concentrations of organic solvents previously [44]. An assay was performed at 60 % dimethyl sulfoxide (DMSO) and a variant was identified to be 2.4-fold more active after screening 3000 clones after one round of evolution. The clone was found to have a threonine to alanine amino substitution at position 480 (T480A-CotA). T480A-CotA was also more active with different concentrations of DMSO ranging from 0 to 70 %. The mutant was also found to be more active compared with the wild-type CotA in different concentrations of methanol, ethanol, and acetonitrile [44]. The amino acid substitution in T480A-CotA was introduced into the E498G-CotA to create T480A/E498G-CotA. The $t_{1/2}$ for the T480A/E498G-CotA at pH 4 was found to be 3165.6 ± 431.1 minutes, which was 62.1-fold greater than wt-CotA (Table 2.1). When compared to wt-CotA, the V_{max} for T480A/E498G-CotA was
slightly increased by 1.4-fold; whereas, the K_m increased 10-fold. The V_{max} in the double mutant was due to the T480A amino acid substitution and the E498G mutation was mainly responsible for the increase in K_m (Table 2.1). The crystal structure has not been determined for T480A-CotA, E498G-CotA and T480A/E498G-CotA. As a result, it is difficult to conclude the effect that the T480A mutation has towards improved pH stability of T480A/E498G-CotA.

The activity of wt-CotA, T480A-CotA, E498G-CotA and T480A/E498G-CotA was determined in different organic solvent (DMSO, methanol, ethanol and acetonitrile). The variants did not show greater activity than the wt-CotA (Figure 2.10). In short, the T480A/E498G-CotA and E498G-CotA have comparable similar kinetic properties, but now T480A/E498G-CotA has greater $t_{1/2}$ compared to the wt-CotA.
Figure 2.10 V_{max} (µM/min/OD$_{580\text{nm}}$) of wt-CotA (light shaded bars), T480A/E498G-CotA (dark shaded bars) and E498G-CotA (white bars) in 0 – 70 % organic solvents: (A) DMSO, (B) methanol, (C) ethanol, and (D) acetonitrile.
Figure 2.10 (continued) \(V_{\text{max}} \) (\(\mu \text{M/min/OD}_{580\text{nm}} \)) of wt-CotA (light shaded bars), T480A/E498G-CotA (dark shaded bars) and E498G-CotA (white bars) in 0 – 70 % organic solvents: (A) DMSO, (B) methanol, (C) ethanol, and (D) acetonitrile.
An important feature of a biocatalyst is that it can be reused for several cycles. E498G and T480A/E498G have a larger K_m compared to the wt-CotA, which resulted in a lower V_{max}/K_m (Table 2.1). However, the variants had a higher product yield compared to the wt-CotA, which was due to the longer $t_{1/2}$ (Table 2.1). The spores were recycled 7 times over 42 h (Table 2.2, Figure 2.11). Wt-CotA, E498G-CotA and T480A/E498G-CotA had a total yield of 24.8, 92.9, and 131.3 mmole, respectively. E498G-CotA and T480A/E498G-CotA yielded 3.7- and 5.3-fold more product than the wt-CotA. This also demonstrates that the biocatalysts can be recycled. T480A/E498G was the most stable biocatalyst and retained 42% of its activity after the 42 h period.

Table 2.2 Product Yields of Wild-type CotA and CotA Variants

<table>
<thead>
<tr>
<th>Time (hour)</th>
<th>Wt-CotA</th>
<th>E498G</th>
<th>T480A/E498G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11.1 ± 0.1</td>
<td>20.2 ± 0.3</td>
<td>19.8 ± 0.2</td>
</tr>
<tr>
<td>2</td>
<td>3.3 ± 0.5</td>
<td>19.6 ± 0.2</td>
<td>19.4 ± 0.2</td>
</tr>
<tr>
<td>4</td>
<td>2.8 ± 0.6</td>
<td>15.4 ± 0.9</td>
<td>18.9 ± 0.9</td>
</tr>
<tr>
<td>8</td>
<td>1.9 ± 0.7</td>
<td>12.4 ± 1.6</td>
<td>18.0 ± 1.6</td>
</tr>
<tr>
<td>18</td>
<td>1.6 ± 0.2</td>
<td>9.1 ± 0.2</td>
<td>15.9 ± 0.2</td>
</tr>
<tr>
<td>25</td>
<td>1.8 ± 0.4</td>
<td>7.6 ± 1.2</td>
<td>14.4 ± 1.2</td>
</tr>
<tr>
<td>30</td>
<td>1.3 ± 0.2</td>
<td>5.3 ± 0.9</td>
<td>13.4 ± 0.9</td>
</tr>
<tr>
<td>42</td>
<td>1.0 ± 0.3</td>
<td>3.3 ± 0.3</td>
<td>11.5 ± 0.3</td>
</tr>
</tbody>
</table>

| | 24.8 | 92.9 | 131.3 |

Product yield (mmole) of ABTS⁺ over 42 h with wt-CotA, E498G, and T480A/E498G.
Figure 2.11 Product yields of ABTS$^+$ of wt-CotA and its variants over 42 h. The spores were recycled and measured for 7 cycles over 42 h.

The surface amino acid substitutions, E29V and L343S variants, do not significantly contribute to the pH stability to Y19 (Table 2.1). E29V mutant has a slight decrease in V_{max}/K_m (0.77-fold) and a modest increase in $t_{1/2}$ (1.2-fold) compared to wt-CotA. Next, the L343S mutant had a decreased V_{max}/K_m and a decrease in $t_{1/2}$ compared to wt-CotA of 0.44- and 0.66-fold, respectively. It appears that the E29V and L343V amino acid substitutions have a deleterious effect.

The spore coat proteins were extracted and the amount of wt-CotA and the mutants were comparable as assessed by SDS-PAGE gels (Figure 2.12). The band intensity in lanes 4 – 8 were quantified using ImageJ (https://imagej.nih.gov/ij/). The
values for lane 4 – 8 were 7045, 6798, 7716, 7171, and 7012, respectively. The average of the intensities was 7151 ± 344. The amount of protein present in the spore coat are similar between the samples.

Figure 2.12 Extraction of spore coat proteins. Lane 1: Marker; Lane 2: CotA standard purified from *E. coli*; Lane 3: CotA knockout; Lane 4: Wildtype CotA; Lane 5: E29V-CotA; Lane 6: L343S-CotA Lane 7: E498G-CotA; Lane 8: T480A/E498G-CotA. Spores (*A*₅₈₀ = 100) were resuspended in 50 µl of sodium dodecyl sulfate (SDS) loading dye (SDS (4 %), 2-mercaptoethanol (10 %), dithiothreitol (1 mM), Tris-HCl (0.125 M, pH 6.8), glycerol (10 %) bromophenol blue (0.05 %). The samples were heated at 100 °C for 10 minutes. Next, the samples were centrifuged, and 25 µl of the supernatant were resolved with 15 % SDS-PAGE gels. Gels were stained with Coomassie brilliant blue R-250 and destained.

Cell viability was determined in citrate phosphate buffer (100 mM, pH 4). The result showed the viability was intact in this screen condition (Figure 2.13).
Figure 2.13 Viability assay of spores in citrate phosphate buffer (100 mM, pH 4).

Enzymes embedded in the spore coat may have different activity compared to the protein that is free in solution. Hence, wt-CotA and E498G-CotA was overproduced and purified from *E. coli*. However, T480A/E498G-CotA was expressed as inclusion bodies (Figure 2.14) and it could not be recovered. This is not unusual. In previous publication, wt-CotA was expressed in *E. coli* for molecular and biochemical characterization and only 10% of the CotA was soluble and the rest were inclusion bodies [77]. Efforts were made to solublize and refold the protein were not successful. In our case, we see similar results. Wt-CotA and E498G-CotA have both a soluble and inclusion body fraction and
the these enzymes were purified. T480A/E498G-CotA expressed as an inclusion body and could not obtain enough soluble protein to purify and characterize.

Figure 2.14 SDS-PAGE analysis of CotA overproduction in *E. coli*. (A) Lane 1: Marker; Lane 2: CotA standard purified from *E. coli*; Lane 3: supernatant of a crude extract of an arabinose-induced *E. coli* culture of wt-CotA; Lane 4: insoluble fraction of a crude extract of an arabinose-induced *E. coli* culture of wt-CotA; Lane 5: supernatant of a crude extract of an arabinose-induced *E. coli* culture of E498G-CotA; Lane 6: insoluble fraction of a crude extract of an arabinose-induced *E. coli* culture of E498G-CotA; Lane 7: supernatant of a crude extract of an arabinose-induced *E. coli* culture of T480A/E498G-CotA; Lane 8: insoluble fraction of a crude extract of an arabinose-induced *E. coli* culture of T480A/E498G-CotA.
Figure 2.14 (continued) SDS-PAGE analysis of CotA overproduction in *E. coli*. (B) Lane 1: Marker; Lane 2: purified wt-CotA from *E.coli* without boiling; Lane 3: purified wt-CotA from *E.coli* boiled for 5 min; Lane 4: purified wt-CotA from *E.coli* boiled for 10 min; Lane 5: purified E498G-CotA from *E.coli* without boiling; Lane 6: purified E498G-CotA from *E.coli* boiled for 5 min; Lane 7: purified E498G-CotA from *E.coli* boiled for 10 min.

The $t_{1/2}$ (Figure 2.15) and catalytic efficiency follow the same trends for spore or *E. coli* expressed wt-CotA and E498G-CotA, although the kinetic parameters (Table 2.3) are different (Figure 2.16). The catalytic efficiency of purified or spore expressed wt-CotA is greater than E498G-CotA. It is clear that the purified enzyme and spore displayed enzyme have different catalytic efficiencies. There are many complex interactions with the spore coat proteins.

<table>
<thead>
<tr>
<th></th>
<th>K_m (µM)</th>
<th>V_{max} (µM/s)</th>
<th>K_{cat} (s$^{-1}$)</th>
<th>K_{cat}/K_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildtype</td>
<td>156.3 ± 23.7</td>
<td>0.512 ± 0.03</td>
<td>23.2 ± 1.3</td>
<td>0.15</td>
</tr>
<tr>
<td>E498G</td>
<td>432.7 ± 34.5</td>
<td>0.103 ± 0.002</td>
<td>3.7 ± 0.1</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Figure 2.15 The $t_{1/2}$ at pH 4 of wt-CotA and E498G-CotA. The $t_{1/2}$ is determined from first order kinetic of deactivation. Wt-CotA (closed circles) and E498G-CotA (open circle) residual activity at pH 4 is plotted against time. The $t_{1/2}$ of wt-CotA was determined as 11 min. For E498G, there is a “stable period” around 60 min when the activity of the protein does not change relatively according to time. A half-life of inactivation of 274 min was determined; if the initial 60-min “stable period” is considered, a $t_{1/2}$ of 334 min can be estimated for E498G.
Figure 2.16 Kinetic parameters of purified wt-CotA and E498G-CotA from *E.coli*. A. Kinetics of wt-cotA. $K_M = 156.3 \pm 23.7 \mu M$; $K_{cat} = 23.2 \pm 1.3 \text{ s}^{-1}$. B. Kinetics of E498G-CotA. $K_M = 432.7 \pm 34.5 \mu M$; $K_{cat} = 3.7 \pm 0.1 \text{ s}^{-1}$.
2.4 Conclusion

In this study, a library of CotA laccase was constructed and transformed into *Bacillus subtilis*. An assay at acidic pH was then developed and a mutant was found with improved $t_{1/2}$ in acidic pH than wildtype. Also, the viability of spores was proven to be intact in this condition. The spores were able to be recycled and the total amount of product formed after approximately 2 days was greater for the variants when compared to wt-CotA. Spore display was demonstrated to be able to evolve proteins for pH resistance.
Enzymes are green and efficient catalysts because they operate at room temperature and aqueous solutions. Furthermore, they have high substrate specificity that can produce chiral products with high enantiomeric excess. Therefore, the application of enzymes in industry is continuously increasing. However, these desired characteristics may not be suited for industrial applications [78-80]. For example, enzymes may have low catalytic efficiency with non-natural substrates. Next, hydrophobic substrates are not soluble in aqueous solutions and an organic co-solvent must be added for the reaction to occur. In general, enzymes are not stable in organic solvents and they lose activity [81-83]. Protein structure is due to the balance of forming the hydrophobic core, Van der Waals forces, electrostatic interactions, and hydrogen bonding. Organic solvent disrupts the hydrophobic core and the protein will unfold. Furthermore, organic solvents can strip water from the protein surface, which is necessary for structure and function. Finally, the enzymatic activity will decrease in organic solvent due to thermodynamic reasons. In aqueous solution, the substrate is surrounded by water and oftentimes the active site is hydrophobic. It is energetically favorable for the substrate to be desolvated and partition into the hydrophobic active site. Hydrophobic substrates are thermodynamically stabilized in the organic solvent compared to water.

Enzyme immobilization has several advantages [84,85]. First, protein stability
can be increased. Next, they are more resistant to environment changes, which can enhance the lifetime in organic solvents. Furthermore, substrates are freely accessible to biocatalyst. Finally, the enzyme can be easily removed from reaction mixture for reuse [86]. Protein display on the surface of the microorganisms is one strategy to immobilize enzymes [87].

Traditional cell surface display systems, such as *Escherichia coli* and yeast, appear ideal; however, there are several issues [39]. Lysis may occur during the reaction and contents of the cells will enter into the solution. As a result, this will add additional contamination and separating the enzyme from the reaction solution may be required. Spores overcome these issues. Spores remain viable under extreme chemical and physical conditions [88,89]. As a result, enzymes displayed on its surface can tolerate extreme properties. They will not lyse and can be easily removed from the reaction solution. In addition, protein folding problems associated with the target protein crossing cell membranes is eliminated. Furthermore, there is no need to overexpress, purify, and attach the protein to an inert surface. This is due to the natural sporulation process [90]. In addition, the whole cell biocatalyst can be recycled and reused, which reduces the overall cost associated with product yield.

Natural phenolic compounds have beneficial biological effects. They can act as antioxidants [91], antimutagens [92] and anticarcinogens [93]. For example, (+)-catechin (Figure 3.1A) and (-)-epicatechin (Figure 3.1B), are two phenolic isomers that can be found in green tea, and they are responsible for the potential health benefits [94].
However, they affect the flavor and mouth-feel and these compounds can be removed by polymerization [95]. As a result, the sensory quality is enhanced [96]. Polycatechins can be utilized to prevent neurodegenerative and cardiovascular diseases [97,98]. Enzymes, such as laccase, have been used to polymerize phenolic compounds for a variety of applications [99,100] (Figure 3.2A). One limitation is that these polymers are insoluble and require organic co-solvents.

![Figure 3.1](image)

Figure 3.1 Structure of phenolic substrates. (A) (+)-catechin; (B) (-)-epicatechin; and (C) sinapic acid.

Next, rapeseed meal (RSM) is widely utilized to feed all classes of livestock. Sinapic acid (Figure 3.1C) and the choline ester of sinapic acid (sinapine) are the major phenolic compounds found in RSM [101,102]. These compounds or their derivatives lower the nutritional value of RSM. In addition, they render RSM to be bitter and astringent [103,104]. Biocatalysts can be used to eliminate these antinutrients [105]. The oxidation of sinapic acid by laccase is shown in Figure 3.2B.
Figure 3.2 Oxidation of phenols by laccase. (A) Two molecules of (+)-catechin are oxidized to polycatechin by laccase. (B) Sinapic acids are oxidized by laccase into dimers.

In a previous investigation, a laccase (CotA), which is found on the spore coat of *Bacillus subtilis*, was engineered by directed evolution for improved activity in organic
solvents. A CotA variant was identified with a Thr480Ala (T480A-CotA) amino acid substitution [44] after only one round of evolution. The screen was performed at 60 % DMSO and it was 2.38-fold more active than the wild-type CotA (wt-CotA) with substrate 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). T480A-CotA was more active from a range of 0 – 70 % DMSO. In addition, the variant was more active in ethanol, methanol and acetonitrile. In this study, the catalysis of T480A-CotA and wt-CotA in the spore coat was determined with natural phenolic compounds, such as (+)-catechin, (-)-epicatechin and sinapic acid in aqueous-organic media.

3.1 Materials

Wt-CotA and T480A-CotA was expressed and purified on B. subtilis spores by following published procedures [44]. One unit is defined as a δA of 0.001 per min at 37 °C in a 300 μl reaction volume on a 96-well microplate at absorbance 433 nm (SpectraMax_M2) using (+)-catechin (433 nm), or absorbance 440 nm using (-)-epicatechin, or absorbance at 512nm using sinapic acid. Dimethyl sulfoxide (DMSO), acetonitrile, methanol, ethanol, acetonitrile, (+)-catechin, (−)-epicatechin, sinapic acid were procured from Sigma-Aldrich (St. Louis, MO).
3.2 Methods

3.2.1 Wt-CotA and T480A-CotA Activity Versus pH

Substrate stocks were prepared for (+)-catechin (200 mM), (−)-epicatechin (200 mM) and sinapic acid (200 mM) in methanol. Each stock solution was prepared fresh before use. The purified spore pellets of wt-CotA or T480A-CotA were resuspended in aqueous CuCl₂ (0.25 mM) for 60 minutes. Next, spore suspension was diluted in citric phosphate buffer (100 mM, 0.25 mM CuCl₂).

The total volume of the reaction was 300 μl. Substrate (30 μl; 20 mM) was added to citrate phosphate buffer (250 μl; 100 mM) and methanol (10% v/v) solution containing CuCl₂ (0.25 mM). The reaction was initiated with the spore resuspension (20 μl, OD₅₈₀ = 0.1 – 0.3). The pH was varied from 2 - 8 for the reactions. The absorbance 433 nm for (+)-catechin (433 nm), (−)-epicatechin (440 nm), or sinapic acid (512 nm) was measured every 5 min for 60 min at 37 °C. Each reaction was done in triplicate. Control experiments were done with spores that had the cotA gene knockout (strain1S101, Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA).

3.2.2 Determination of Kinetic Parameters of Wt-CotA and T480A-CotA

The total volume of the reaction was 300 μl. Substrate (30 μl; 0.05 – 6.0 mM) was added to citrate phosphate buffer (250 μl; 100 mM; pH 7) and methanol (20% v/v) solution containing CuCl₂ (0.25 mM). The reaction was initiated with the spore resuspension (20
μl; OD$_{580nm}$ = 0.1 – 0.3). K_m and V_{max} was determined for wt-CotA and T480A-CotA. The absorbance 433 nm for (+)-catechin (433 nm), (-)-epicatechin (440 nm), or sinapic acid (512 nm) was measured every 5 min for 60 min at 37 °C. Each reaction was done in triplicate. Control experiments were done with spores that had the cotA gene knockout (strain1S101, Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA).

3.2.3 Wt-CotA and T480A-CotA Activity in Organic Solvents

The activity of wt-CotA and T480A-CotA was determined in DMSO, methanol, ethanol, and acetonitrile. The concentration of organic solvents used in the reaction media ranged from 0 – 70 % (v/v). The substrates used were (+)-catechin, (-)-epicatechin and sinapic acid and concentrations were 10 mM for each substrate. An OD$_{580nm}$ 0.1 – 0.3 was used for wt-CotA and T480A-CotA. Control experiments were done with spores that had the cotA gene knockout (strain1S101, Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA). The Vmax measurement is similar to section 3.2.2.

3.2.4 Wt-CotA and T480A-CotA Recycling in Organic Solvents

CotA was recycled and the total product yield was determined over a 23-hour period. The spores were resuspended in aqueous CuCl$_2$ (0.25 mM) solution for 60 minutes at 37 °C. Next, the spores were centrifuged and the supernatant was discarded. The spores were resuspended in citrate phosphate buffer (100 mM, pH 7) with organic solvents (60, 20, 40,
and 30 % (v/v) for DMSO, acetonitrile, methanol, and ethanol) at 37 °C with a final OD$_{580}$ of 0.2. The spores were incubated for four hours and then the spores centrifuged and the supernatant was discarded. The reaction was initiated by resuspending the spore with 300 μL (+)-catechin (10 mM) in citrate phosphate buffer (100 mM, pH 7) with organic solvents (60, 20, 40, and 30 % (v/v) for DMSO, acetonitrile, methanol, and ethanol) at 37 °C. The absorbance was taken at 433 nm after 60 minutes to determine the product yield (ΔA$_{433nm_product}$). This cycle was repeated seven times over 23-hours. Control experiments were done with spores that had the cotA gene knockout (strain1S101, Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA).

3.3 Results and Discussion

3.3.1 Wt-CotA and T480A-CotA Activity Versus pH

The activity was measured for wt-CotA and T480A-CotA with (+)-catechin, (-)-epicatechin or sinapic acid under different pH (range from 2 to 8) (Figure 3.3). The activity trends were similar for wt-CotA and T480A-CotA towards (+)-catechin, (-)-epicatechin and sinapic acid. For example, wt-CotA and T480A-CotA have low activity at acidic pH and the activity rise to a maximum at approximately pH 7 for all the substrates. In addition, T480A-CotA always has greater activity than the wt-CotA. The amino acid substitution does not change the pH optimum for both enzymes; however, the T480A displays a higher V_{max} [44]. A dramatic increase of laccase activity from pH 6 to 7
for the oxidation of (+)-catechin, (-)-epicatechin and sinapic acid was observed (Figure 3.3A-C). At pH 7, wt-CotA activity increases 2.9, 1.8 and 2.6-fold for substrate (+)-catechin, (-)-epicatechin and sinapic acid in comparison to that at pH 6. For T480A-CotA, the activity at pH 7 increases 3.9, 2.5 and 2.3-fold for substrate (+)-catechin, (-)-epicatechin and sinapic acid comparing to that at pH 6. Also, the laccase activity dropped from pH 7 to 8. Therefore, the optimum pH values of wt-CotA and T480A-CotA for substrates (+)-catechin, (-)-epicatechin and sinapic acid were around pH 7. Also, T480A-CotA shows 1.8, 4.4, 1.7-fold higher activity than wt-CotA in pH 7 for substrates (+)-catechin, (-)-epicatechin and sinapic acid, respectively. Therefore, T480A-CotA is more active than wt-CotA at their optimum pH for these substrates.
Figure 3.3 Effect of pH on laccase-catalyzed oxidation of (+)-catechin (A), (-)-epicatechin (B), and sinapic acid (C) is determined for wt-CotA (closed circles) and T480A-CotA (open circles).
Figure 3.3 (continued) Effect of pH on laccase-catalyzed oxidation of (+)-catechin (A), (-)-epicatechin (B), and sinapic acid (C) is determined for wt-CotA (closed circles) and T480A-CotA (open circles).

3.3.2 Determination of Kinetic Parameters

V_{max} and K_m was determined for wt-CotA and T480A-Cot with (+)-catechin, (-)-epicatechin and sinapic acid (Figure 3.4, Table 3.1). T480A-CotA has a K_m smaller for (+)-catechin, (-)-epicatechin than the wt-CotA. Wt-CotA has a K_m 1.46-fold and 1.84-fold greater than T480A-CotA for (+)-catechin and (-)-epicatechin, respectively. On the other hand, T480A-CotA has a K_m larger for sinapic acid. In all cases, T480A-CotA has a greater V_{max} [44]. The V_{max}/K_m for T480A-CotA was 4.1-fold, 5.6-fold, and 1.4 greater than that of wt-CotA for (+)-catechin, (-)-epicatechin, and sinapic acid, respectively.
Figure 3.4 Kinetic parameters of wt-CotA and T480A-CotA on *Bacillus subtilis* spore coat for substrates (+)-catechin, (-)-epicatechin and sinapic acid. (A) Kinetics of wt-CotA and T480A-CotA for substrate (+)-catechin. $K_m = 1.15 \pm 0.06$ mM, $V_{max} = 23.7 \pm 0.49 \delta A/OD_{580\text{nm}}$ for wt-CotA; $K_m = 0.79 \pm 0.05$ mM, $V_{max} = 67.2 \pm 1.54 \delta A/OD_{580\text{nm}}$ for T480A-CotA. (B) Kinetics of wt-CotA and T480A-CotA for substrate (-)-epicatechin. $K_m = 0.94 \pm 0.1$ mM, $V_{max} = 17.6 \pm 0.69 \delta A/OD_{580\text{nm}}$ for wt-CotA; $K_m = 0.51 \pm 0.03$ mM, $V_{max} = 53.2 \pm 0.99 \delta A/OD_{580\text{nm}}$ for T480A-CotA.
Figure 3.4 (continued) Kinetic parameters of wt-CotA and T480A-CotA on *Bacillus subtilis* spore coat for substrates (+)-catechin, (-)-epicatechin and sinapic acid. (C) Kinetics of wt-CotA and T480A-CotA for substrate sinapic acid. $K_m = 0.36 \pm 0.02$ mM, $V_{\text{max}} = 3.33 \pm 0.04 \delta A/\text{OD}_{580\text{nm}}$ for wt-CotA; $K_m = 0.61 \pm 0.05$ mM, $V_{\text{max}} = 8.00 \pm 0.18 \delta A/\text{OD}_{580\text{nm}}$ for T480A-CotA.

Table 3.1 Kinetics Parameters of Wt-CotA and T480A-CotA with Different Substrates

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Mutation</th>
<th>K_m $^{[a]}$</th>
<th>V_{max} $^{[b]}$</th>
<th>V_{max} / K_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-catechin</td>
<td>Wildtype</td>
<td>1.15±0.06</td>
<td>23.7±0.49</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>T480A</td>
<td>0.79±0.05</td>
<td>67.2±1.54</td>
<td>85</td>
</tr>
<tr>
<td>(-)-epicatechin</td>
<td>Wildtype</td>
<td>0.94±0.1</td>
<td>17.6±0.69</td>
<td>18.7</td>
</tr>
<tr>
<td></td>
<td>T480A</td>
<td>0.51±0.03</td>
<td>53.2±0.99</td>
<td>104.3</td>
</tr>
<tr>
<td>Sinapic acid</td>
<td>Wildtype</td>
<td>0.36±0.02</td>
<td>3.33±0.04</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>T480A</td>
<td>0.61±0.05</td>
<td>8.00±0.18</td>
<td>13.1</td>
</tr>
</tbody>
</table>

$^{[a]} = \text{mM}, ^{[b]} = \delta A/\text{OD}_{580}$
3.3.3 Activity of Wt-CotA and T480A-CotA in Organic Solvent

The activity of wt-CotA and T480A-CotA was measured at different concentrations of DMSO, acetonitrile, methanol and ethanol (Figure 3.4A-C, Table 3.2). In general, the V_{max} for T480A-CotA was greater than the wt-CotA in all organic solvents. Wt-CotA and T480A-CotA showed slight activity over the background in buffer alone. It is clear that organic co-solvents are necessary to solubilize the substrate for enzymatic activity. For the substrates (+)-catechin and (-)-epicatechin, T480A-CotA has an optimum concentration of 60, 20, 40, and 30 % (v/v) for DMSO, acetonitrile, methanol, and ethanol (Figure 3.5A-B). For substrate (+)-catechin, T480A-CotA is 1.4 – 3.0, 1.1 – 3.0, 1.7 – 3.4, and 1.2 – 2.4-fold more active than wt-CotA in DMSO, acetonitrile, methanol, and ethanol, respectively. For substrate (-)-epicatechin, T480A-CotA is 1.0 – 4.1, 1.0 – 5.6, 1.1 – 7.9 and 1.3-6.2-fold more active in DMSO, acetonitrile, methanol, and ethanol, respectively. For substrate sinapic acid, T480A-CotA has an optimum concentration of 30, 30, 30, and 20 % (v/v) for DMSO, acetonitrile, methanol, and ethanol (Figure 3.5C). T480A-CotA is 2.4 – 4.8, 1.4 – 2.3, 1.5 – 6.4 and 1.5 – 5.2-fold more active in DMSO, acetonitrile, methanol, and ethanol, respectively.
Figure 3.5 V_{max} ($\delta A/OD_{580}$) of wt-CotA (black bars) and T480A-CotA (grey bars) in 0 – 70 % organic solvents for substrate (+)-catechin (A), (-)-epicatechin (B), and sinapic acid (C).
Figure 3.5 (continued) V_{max} ($\delta A/\text{OD}_{580}$) of wt-CotA (black bars) and T480A-CotA (grey bars) in 0 – 70 % organic solvents for substrate (+)-catechin (A), (-)-epicatechin (B), and sinapic acid (C).

Table 3.2 V_{max} ($\delta A/\text{OD}_{580}$) of Wt-CotA and T480A-CotA in 0 – 70 % Organic Solvents for Substrate (+)-Catechin (A), (-)-Epicatechin (B) and Sinapic Acid (C)

<table>
<thead>
<tr>
<th>Conc. of solvents</th>
<th></th>
<th>DMSO</th>
<th></th>
<th>Acetonitrile</th>
<th></th>
<th>Methanol</th>
<th></th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>wt</td>
<td>T480A</td>
<td>wt</td>
<td>T480A</td>
<td>wt</td>
<td>T480A</td>
<td>wt</td>
</tr>
<tr>
<td>0 %</td>
<td></td>
<td>2.3±0.1</td>
<td>3.5±0.2</td>
<td>1.6±0.1</td>
<td>2.5±0.1</td>
<td>1.32±0.2</td>
<td>2.01±0.1</td>
<td>0.9±0.0</td>
</tr>
<tr>
<td>10 %</td>
<td></td>
<td>70.4±5.3</td>
<td>130.9±2.3</td>
<td>60.5±3.3</td>
<td>67.6±5.3</td>
<td>12.4±4.0</td>
<td>36.6±8.4</td>
<td>34.9±1.4</td>
</tr>
<tr>
<td>20 %</td>
<td></td>
<td>93.5±0.2</td>
<td>165.7±1.7</td>
<td>98.7±6.9</td>
<td>122±1.6</td>
<td>20.3±5.8</td>
<td>50.9±5.4</td>
<td>47.4±7</td>
</tr>
<tr>
<td>30 %</td>
<td></td>
<td>75.3±13.1</td>
<td>150.9±8.7</td>
<td>86.0±2.1</td>
<td>92.7±2.9</td>
<td>48.6±5.2</td>
<td>84.2±3.8</td>
<td>33.8±1.5</td>
</tr>
<tr>
<td>40 %</td>
<td></td>
<td>49.1±10.5</td>
<td>133.6±4.3</td>
<td>57.7±0.3</td>
<td>68.2±0.9</td>
<td>28.1±7.5</td>
<td>96.1±3.9</td>
<td>26.1±4.3</td>
</tr>
<tr>
<td>50 %</td>
<td></td>
<td>46.3±7.1</td>
<td>138.3±0.8</td>
<td>46.6±0.1</td>
<td>67.0±4.2</td>
<td>44.0±2.7</td>
<td>79.6±5.2</td>
<td>19.2±0.4</td>
</tr>
<tr>
<td>60 %</td>
<td></td>
<td>69.7±15.6</td>
<td>172.2±8.0</td>
<td>43.3±1.2</td>
<td>60.6±2.6</td>
<td>41.8±0.9</td>
<td>77.9±4.0</td>
<td>33.2±1.0</td>
</tr>
<tr>
<td>70 %</td>
<td></td>
<td>10.5±5.0</td>
<td>15.1±3.5</td>
<td>68.6±1.5</td>
<td>74.8±3.5</td>
<td>10.2±0.7</td>
<td>17.4±1.0</td>
<td>10.8±1.0</td>
</tr>
</tbody>
</table>
Table 3.2 (continued) V_{max} (ΔA/OD$_{580}$) of Wt-CotA and T480A-CotA in 0 – 70 % Organic Solvents for Substrate (+)-Catechin (A), (-)-Epicatechin (B) and Sinapic Acid (C)

<table>
<thead>
<tr>
<th>Conc. of solvents</th>
<th>V_{max} (ΔA/OD$_{580}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMSO</td>
</tr>
<tr>
<td></td>
<td>wt</td>
</tr>
<tr>
<td>0 %</td>
<td>2.9±0.1</td>
</tr>
<tr>
<td>10 %</td>
<td>9.2±0.5</td>
</tr>
<tr>
<td>20 %</td>
<td>31.0±2.7</td>
</tr>
<tr>
<td>30 %</td>
<td>57.4±5.9</td>
</tr>
<tr>
<td>40 %</td>
<td>67.8±11.1</td>
</tr>
<tr>
<td>50 %</td>
<td>91.2±7.8</td>
</tr>
<tr>
<td>60 %</td>
<td>213.6±7.5</td>
</tr>
<tr>
<td>70 %</td>
<td>7.4±4.3</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Conc. of solvents</th>
<th>V_{max} (ΔA/OD$_{580}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMSO</td>
</tr>
<tr>
<td></td>
<td>wt</td>
</tr>
<tr>
<td>0 %</td>
<td>0.2±0.0</td>
</tr>
<tr>
<td>10 %</td>
<td>2.5±0.4</td>
</tr>
<tr>
<td>20 %</td>
<td>5.1±0.0</td>
</tr>
<tr>
<td>30 %</td>
<td>5.1±1.0</td>
</tr>
<tr>
<td>40 %</td>
<td>3.2±0.8</td>
</tr>
<tr>
<td>50 %</td>
<td>1.8±0.5</td>
</tr>
<tr>
<td>60 %</td>
<td>1.4±1.2</td>
</tr>
<tr>
<td>70 %</td>
<td>1.0±0.4</td>
</tr>
</tbody>
</table>

3.3.4 Wt-CotA and T480A-CotA Recycling in Organic Solvents

Enzyme recycling improves overall product by reusing the catalysts for several batches.

This reduces the cost associate with product yield. Typically, the enzyme is expressed purified and attached to an inert particle. This is avoided in spore display because the enzyme is attached to the inert surface of the spore coat. CotA recycling was investigated
and the total product yield was determined for (+)-catechin over 23-hour period (Figure 3.6, Table 3.3). These percentages (v/v) were chosen at the maximum rates for the organic solvents, which were 60, 20, 40, and 30 % (v/v) for DMSO, acetonitrile, methanol and ethanol, respectively. The trend of total product is similar for wt-CotA and T480A-CotA. The total product yield diminishes after recycling. The product yield retains 60, 30, and 10 % from t = 0 to 23 hours in DMSO, acetonitrile, and ethanol, respectively (Figure 3.5). In methanol, wt-CotA and T480A-CotA also has lowered product over time, which is 10 and 30 %, respectively. The total product yields from T480A-CotA were 11.2, 7.1, 3.9 and 4.2 δA_{433nm_product} in DMSO, acetonitrile, methanol and ethanol, respectively. The optimum solvent was DMSO for the mutant. Next, the total product yields from wt-CotA were 3.6, 4.7, 1.4, and 2.4 δA_{433nm_product} in DMSO, acetonitrile, methanol, and ethanol, respectively. Wt-CotA catalyzes the most products in acetonitrile. In general, the biocatalysts have a greater yield in polar aprotic solvents. In addition, T480A-CotA out performs the wt-CotA in all organic solvents.
Figure 3.6 The (+)-catechin products yields for wt-CotA (black bars), and T480A-CotA (white bars) were determined for 7 cycles over a 23 h period.

Table 3.3 The (+)-catechin Products Yields for Wt-CotA and T480A-CotA Were Determined for 7 cycles Over A 23 h Period.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>DMSO</th>
<th>Acetonitrile</th>
<th>Methanol</th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt</td>
<td>T480A</td>
<td>wt</td>
<td>T480A</td>
</tr>
<tr>
<td>0</td>
<td>0.59</td>
<td>2.01</td>
<td>1.02</td>
<td>1.49</td>
</tr>
<tr>
<td>4</td>
<td>0.58</td>
<td>1.95</td>
<td>0.96</td>
<td>1.42</td>
</tr>
<tr>
<td>8</td>
<td>0.57</td>
<td>1.79</td>
<td>0.87</td>
<td>1.25</td>
</tr>
<tr>
<td>12</td>
<td>0.53</td>
<td>1.53</td>
<td>0.64</td>
<td>0.98</td>
</tr>
<tr>
<td>16</td>
<td>0.51</td>
<td>1.36</td>
<td>0.51</td>
<td>0.81</td>
</tr>
<tr>
<td>20</td>
<td>0.49</td>
<td>1.35</td>
<td>0.39</td>
<td>0.64</td>
</tr>
<tr>
<td>23</td>
<td>0.35</td>
<td>1.20</td>
<td>0.29</td>
<td>0.48</td>
</tr>
</tbody>
</table>
3.4 Conclusion

The kinetic parameters and the relative activity were determined with wt-CotA and T480A-CotA on *B. subtilis* spore coat for substrate (+)-catechin, (-)-epicatechin and sinapic acid in organic solvents. In general, the catalytic efficiency ($V_{\text{max}}/K_{\text{m}}$ ($\Delta A/OD_{580}$/mM) of T480A-CotA is higher than wt-CotA for all the substrates. Then, the V_{max} for T480A-CotA was greater than the wt-CotA in all organic solvents used in this study. The V_{max} for T480A-CotA was up to 3.4-fold, 7.9-fold and 6.4-fold greater than wt-CotA for substrate (+)-catechin, (-)-epicatechin and sinapic acid, respectively. In addition, the catalyst can be easily removed from the reaction solution and reused. This allows for simpler recovery of the product from the enzyme. This investigation indicates that enzymes expressed on the spore coat can be utilized for industrial applications.
Cytochrome P450 monooxygenases (CYPs) belong to a superfamily of enzymes that contains heme as a cofactor. They are also known as hemoproteins. CYP enzymes have been widely found in animals, plants, and microorganisms. The most common reaction catalyzed by cytochromes P450 is a monooxygenase reaction. For example, one atom of oxygen is inserted into the aliphatic position of an organic substrate (RH) while the other oxygen atom is reduced to water (Equation A.1). Furthermore, P450s also catalyze a variety of reactions (Figure A.1).

\[
\text{RH} + \text{O}_2 + \text{NADPH} + \text{H}^+ \rightarrow \text{ROH} + \text{H}_2\text{O} + \text{NADP}^+ \quad \text{Equation A.1}
\]

![Figure A.1](image) Additional P450 reactions.
In humans, CYPs are primarily membrane-associated proteins located either in the inner membrane of mitochondria or in the endoplasmic reticulum of cells. They metabolize thousands of endogenous and exogenous chemical [106,107]. CYPs are the major enzymes involved in drug metabolism, accounting for about 75% of the total metabolism [108]. Most drugs undergo deactivation by CYPs, either directly or by facilitated excretion from the body [108]. In biotechnology, their unique catalytic properties are attractive because they could catalyze difficult chemical reactions, as they even act on non-activated carbon–hydrogen bonds. Recent progress towards realizing the potential of using P450s towards difficult oxidations have included [109,110]:

1. eliminating the need for natural co-factors by replacing them with inexpensive peroxide containing molecules,
2. exploring the compatibility of p450s with organic solvents, and
3. the use of small, non-chiral auxiliaries to predictably direct P450 oxidation.

P450 systems can be used in a variety of applications (Figure A.2)

Figure A.2 Function and potential applications of Cytochrome P450 systems.
Spore display will be used to synthesize carboxylic acids from alkanes (Figure A.3; see Chapter 1 for background of spore display). The first step is oxidizing the alkane to an alcohol by a cytochrome P450. Then, the alcohol will be converted to the aldehyde by an alcohol dehydrogenase. Finally, the aldehyde will be transformed to the acid by an aldehyde dehydrogenase. The final target is to enzymatically synthesize adipic acid (1,6-hexanedioic acid). Adipic acid is widely used in industry. About 60% of the 2.5 billion kg of adipic acid produced annually is used as monomer for the production of nylon (textiles, carpets, and tire chords), polyurethanes, and plasticizers [111,112]. In medicine, adipic acid has been incorporated into controlled-release formulation matrix tablets to obtain pH-independent release for both weakly basic and weakly acidic drugs [113]. The synthesis of adipic acid is energy intensive, uses toxic, heavy metals, and nitric acid. The goal is to enzymatically synthesize hexanoic acid from hexane. A P450 will oxidize hexane to hexanol. Next, alcohol dehydrogenase will oxidize the alcohol to aldehyde. Finally, aldehyde dehydrogenase will oxidize the aldehyde to the acid.

\[\text{Figure A.3} \] Enzymatic synthesis of carboxylic acids from alkanes. (A) Cytochrome P450 catalysis of alkane to alcohol. (B) Alcohol dehydrogenase catalysis of alcohol to aldehyde. (C) Aldehyde dehydrogenase catalysis of aldehyde to carboxylic acid.
The Cytochrome P450 that will be used is CYP102A3. It is found in the *Bacillus subtilis* and has 76% similarity to the cytochrome P450 BM-3 from *B. megaterium* (CYP102A1). The structure has not been solved for CYP102A3, but it is known for CYP102A1 (Figure A.4). Cytochrome P450 CYP102A3 is a fusion protein that consists of a heme and a FAD/FMN-reductase domain.

Figure A.4 Structure of CYP102A1 heme domain (PDB 2IJ2). The heme is shown as CPK spheres.

These enzymes typically oxidize fatty acids at the ω–1, ω–2, and ω–3 and not the terminal position. Wild-type CYP102A3 is most active with myristic acid (1-tetradecanoic acids). However, CYP102A3 S189Q/A330V mutant was found to oxidize octane at the terminal position and the specificity was 42%. In this study, we integrated CYP102A3 S189Q/A330V (P450) gene, fused with a green fluorescence
protein (GFP) as signaling label into the genome of *B. subtilis*. The first step is to display CYP102A3 on the spore coat.

Materials

All chemicals were of analytical reagent grade or higher quality and were purchased from Sigma-Aldrich (St. Louis, MO). Enzymes were purchased from Invitrogen (Carlsbad, CA) and New England Biolabs (Ipswich, MA). Primers were procured from Invitrogen (Carlsbad, CA). Plasmid pDG364_CotB_HuPTH1r_GFP was previously constructed in our lab. CYP102A3 S189Q/A330V mutant was constructed and modified for *Bacillus subtilis* expression and inserted into plasmid pJ241 to construct pJ241_P450 by DNA2.0 (Newark, California, U.S.).

Methods

Gibson Assembly

Gibson Assembly was developed by Dr. Daniel Gibson and his colleagues at the J. Craig Venter Institute and licensed to NEB by Synthetic Genomics, Inc. This method efficiently joins multiple overlapping DNA fragments in a single-tube isothermal reaction. Oligonucleotides, DNA with varied overlaps (15–80 bp) and fragments hundreds of kilobases long have been successfully assembled by using Gibson Assembly. The overview of Gibson Assembly is shown below (Figure A.5):
In Gibson Assembly, DNA fragments that need to be assembled are first amplified by PCR. Overlapping was added by using overlapping primers. Next, these DNA fragments are mixed with a cocktail of three enzymes, along with other buffer components. The three required enzyme activities are: exonuclease, DNA polymerase, and DNA ligase. The exonuclease chews back DNA from the 5' end. The resulting single-stranded regions on adjacent DNA fragments can anneal. The DNA polymerase extends 3’ ends to fill in any gaps along the gene. The DNA ligase covalently joins the DNA of adjacent segments, thereby removing any nicks in the DNA.

Figure A.5 Overview of the Gibson Assembly Cloning Method.
DNA Construction

Plasmid pDG364_CotB_P450_GFP was constructed from pDG364_CotB_HuPTH1r_GFP. First, pDG364_CotB_HuPTH1r_GFP were digested with PmeI and BamHI to create the vector. P450 gene was amplified from pJ241_P450. GFP was amplified from pDG364_CotB_HuPTH1r_GFP. The overlapping primers for amplification are shown in Table A.1. Then, DNA fragments P450 and GFP were inserted into the vector by using Gibson Assembly (Figure A.6). The constructed plasmid was transformed into E.coli DH5α and plated on LB plates containing ampicillin (50 µg/mL). Four colonies were randomly picked and the plasmids were isolated for DNA sequencing. The correct plasmid was integrated into the amyE locus into B. subtilis strain PY79 (Ohio State University, Bacillus Genetic Stock Center, Columbus Ohio).

The insert includes CotB as carrier protein then is followed by a linker (-GlyPheLysLeu Gly$_4$Ser-) that connects CYP102A3 S189Q/A330V. The P450 has a linker (-LeuGlu-) to GFP.
Results

Four colonies were randomly collected after the transformation of Gibson Assembly assembled plasmid into *E.coli* DH5a. The plasmids were isolated and double digested with PmeI and *BamH1*. The gel picture showed that one plasmid (at lane 4) has a ~4000bp DNA fragment after double digestion, indicating the success of Gibson...
Assembly (Figure A.7). The sequence of this DNA fragment was investigated by using six primers (Figure A.8, Figure A.9). Next, the chromosome DNA was isolated from transformed *B. subtilis* and P450 region was amplified with P450-forward and P450-reverse. The sequence of the resulting PCR product was investigated. The sequencing data indicates the successful construction of pDG364_CotB_P450_GFP and successful integration into *B. subtilis*.

Figure A.7 Agarose gel of isolated plasmids after PmeI and *Bam*H1 double restriction digestion. Lane 1: Marker; Lane 2 - 5: isolated plasmids after double digestion; Lane 6: GFP PCR product.
Figure A.8 Sequence of CotB_P450_GFP was acquired by SnapGene (GSL Biotech LLC, Chicago, IL). CotB is labeled as blue. P450 is labeled as pink. GFP is labeled as green.
Figure A.9 Full sequence result of CotB_P450_GFP for P450. The sequence is analyzed by ApE-A plasmid Editor (by M. Wayne Davis).
APPENDIX B

SEQUENCE DATA OF COTA VARIANTS

Raw data of sequencing of Y19-CotA and other variants.
Figure B.1 Full sequence results of Y19-CotA. The sequence is analyzed by ApE-A plasmid Editor (by M. Wayne Davis).
Figure B.2 Sequence results of E498G-CotA near the substitution site. The mutated sites is highlighted in grey bar. The sequence is analyzed by ApE-A plasmid Editor (by M. Wayne Davis).
Figure B.3 Sequence results of L343S-CotA near the substitution site. The mutated sites is highlighted in grey bar. The sequence is analyzed by ApE-A plasmid Editor (by M. Wayne Davis).
REFERENCES

