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ABSTRACT 

FORENSIC RESEARCH ON DETECTING SEAM CARVING  
IN DIGITAL IMAGES 

  
by 

Jingyu Ye 

Digital images have been playing an important role in our daily life for the last several 

decades. Naturally, image editing technologies have been tremendously developed due to 

the increasing demands. As a result, digital images can be easily manipulated on a 

personal computer or even a cellphone for many purposes nowadays, so that the 

authenticity of digital images becomes an important issue. In this dissertation research, 

four machine learning based forensic methods are presented to detect one of the popular 

image editing techniques, called ‘seam carving’.   

To reveal seam carving applied to uncompressed images from the perspective of 

energy distribution change, an energy based statistical model is proposed as the first work 

in this dissertation. Features measured global energy of images, remaining optimal seams, 

and noise level are extracted from four local derivative pattern (LDP) domains instead of 

from the original pixel domain to heighten the energy change caused by seam carving. A 

support vector machine (SVM) based classifier is employed to determine whether an 

image has been seam carved or not. In the second work, an advanced feature model is 

presented for seam carving detection by investigating the statistical variation among 

neighboring pixels. Comprised with three types of statistical features, i.e., LDP features, 

Markov features, and SPAM features, the powerful feature model significantly improved 

the state-of-the-art accuracy in detecting low carving rate seam carving. After the feature 

selection by utilizing SVM based recursive feature elimination (SVM-RFE), with a small 



 

amount of features selected from the proposed model the overall performance is further 

improved. Combining above mentioned two works, a hybrid feature model is then 

proposed as the third work to further boost the accuracy in detecting seam carving at low 

carving rate. The proposed model consists of two sets of features, which capture energy 

change and neighboring relationship variation respectively, achieves remarkable 

performance on revealing seam carving, especially low carving rate seam carving, in 

digital images. Besides these three hand crafted feature models, a deep convolutional 

neural network is designed for seam carving detection. It is the first work that 

successfully utilizes deep learning technology to solve this forensic problem. The 

experimental works demonstrate their much more improved performance in the cases 

where the amount of seam carving is not serious. 

Although these four pieces of work move the seam carving detection ahead 

substantially, future research works with more advanced statistical model or deep neural 

network along this line are expected. 
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1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Due to the efficiency of preserving and exchanging information, digital images have 

become the most important and influential medium nowadays, thus the authenticity of 

digital images is crucial to the information security. However, with the tremendous 

development in digital image editing technology, the integrity of a digital image can no 

longer be guaranteed because the content of a digital image can be easily manipulated by 

any individual.  

 To fight against the counterfeiting and reveal the truth, digital image forensics [1-

3] has increasingly attracted wide attention. In the past two decades, remarkable progress 

has been made on many forensic topics, such as: source identification [4-9], which aims at 

identifying the acquisition device of an image; copy-move detection [10-14], which is to 

discover whether an image has duplicated regions; double JPEG compression detection 

[15-19], which is to detect if an JPEG image has gone through multiple times of JPEG 

compression; computer graphics classification [20-28], which is to differentiate computer 

generated graphic images from photographic images. 

 In this dissertation, the research focuses on detecting seam carving applied to digital 

images, particularly uncompressed digital images. Traditional image resizing techniques, 

e.g., interpolation and cropping, can successfully modify the image size. But, the important 

image content may not be well preserved as shown in Figure 1.1. Therefore, seam carving 

is proposed to solve this problem. The algorithm of seam carving was firstly invented by 
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Avidan and Shamir [29], and the main purpose of the algorithm is to resize an image while 

preserving the important image content. By successively removing an optimal seam, which 

is a path of pixels with the lowest accumulative energy, the image can be retargeted to a 

new size and the visual content can be well preserved. A seam can be horizontal or vertical, 

i.e., crossing the image from left to right, or from top to bottom, and pixels in a seam are 

all 8-connected. By forcing each row can only have one pixel be included in a vertical seam, 

or each column can only have one pixel be included in a horizontal seam, the rectangular 

shape of the image can be maintained after seam deletion. Because of its content awareness, 

 

 
  (a) 
 

          
  (b)              (c)                                   (d) 

 
Figure 1.1 (a) is a sample image from UCID database. (b), (c) and (d) are resized versions 
of (a) by using cropping, cubic interpolation and seam carving, respectively. The image 
size of (a) is 384×512 and 384×359 for each the resized copy.  
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seam carving has become one of the most popular image resizing algorithms, and is 

included as a functionality in many prevalent image editing software, such as Photoshop 

CS4 and GIMP. Moreover, seam carving can be utilized for image forgery as well, i.e., e.g., 

for object removal [29]. Although seam carving is one of the most popular image resizing 

algorithm, the forensic research of seam carving detection is still in the early stage which 

motivates the works that are to be presented in this dissertation.  

 

1.2 Algorithm of Seam Carving 

Seam carving, also known as content-aware image resizing, is such a kind of algorithm 

aimed at reducing image size without destroying the main content of the image. Its basic 

idea is to remove multiple seams with lower cumulative energy cost, which can be 

considered as ‘less important’ information in the image, from the image to conduct resizing 

while preserving the image’s important content. Each seam is a path consisting of 8-

connected pixels either horizontally from left to right, or vertically from top to bottom. 

Moreover, each horizontal seam can only have one pixel in each column and each vertical 

seam can only have one pixel in each row. For an n×m image I, the energy of each pixel 

can be obtained according to the given energy function e, such as gradient:  

 

                  𝑒𝑒�𝐼𝐼(𝑥𝑥,𝑦𝑦)� =  � 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐼𝐼(𝑥𝑥, 𝑦𝑦)� +  � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐼𝐼(𝑥𝑥,𝑦𝑦)�.                                 (1.1) 

 

Suppose we intend to reduce the width of I, we actually look for vertical seams to delete 

which are from top to bottom. Each vertical seam is defined as a set of pixels 𝑠𝑠𝑖𝑖𝑉𝑉:  
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𝑠𝑠𝑉𝑉 = {𝑠𝑠𝑖𝑖𝑉𝑉}𝑖𝑖=1𝑛𝑛 = ��𝑖𝑖, 𝑦𝑦(𝑖𝑖)��
𝑖𝑖=1
𝑛𝑛

, 𝑠𝑠. 𝑡𝑡.∀𝑖𝑖, |𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑖𝑖 − 1)| ≤ 1               (1.2) 

 

where 𝑖𝑖 is the row coordinate of each involved pixel and 𝑦𝑦(𝑖𝑖) is the column coordinate. 

Consequently, each vertical seam is 8-connected and only have one pixel in each row. 

Assume the cumulative energy for each seam is 𝐸𝐸(𝑠𝑠), then the seam 𝑠𝑠∗ with minimum 

energy is,  

 

𝑠𝑠∗ = min
𝑠𝑠
𝐸𝐸(𝑠𝑠) = min

𝑠𝑠
∑ 𝑒𝑒(𝐼𝐼(𝑠𝑠𝑖𝑖𝑉𝑉))𝑛𝑛
𝑖𝑖=1                                   (1.3) 

 

By using dynamic programming, 𝑠𝑠∗ can be determined. The minimum energy 𝑀𝑀 of 

each pixel (𝑖𝑖, 𝑗𝑗) for all possible connected seams is:  

 

𝑀𝑀(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒(𝑖𝑖, 𝑗𝑗) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑀𝑀(𝑖𝑖 − 1, 𝑗𝑗 − 1),𝑀𝑀(𝑖𝑖 − 1, 𝑗𝑗),𝑀𝑀(𝑖𝑖 − 1, 𝑗𝑗 + 1)�.       (1.4) 

 

With the obtained 𝑀𝑀 matrix, the minimum 𝑀𝑀(𝑖𝑖, 𝑗𝑗) in the bottom row is the end of the target 

seam. Then, by backward searching, the entire seam can be tracked. Similarly, the 

horizontal seams can also be determined. Therefore, after deleting those seams, the image 

size is reduced and also the important image content is preserved. As shown in Figures 2.2 

and 2.3, it is difficult to discriminant if an image, which is resized by seam carving, has 

been manipulated or not with human eyes. 

 



5 

 

 
(a) 

 

                               
                                    (b)                                                           (c)    
   

                             
                                   (d)                                                           (e) 
 

                                                 
                                     (f)                                                            (g) 

 
Figure 1.2 (a) An original image from UCID database. Images in (c), (e) and (g) have the 
same width as (a) but 5%, 10% and 20% less in the height, respectively. The red lines 
(seams) displayed in (b), (d), and (f) are to be deleted in order to generate the corresponding 
seam carved copies (c), (e) and (g), respectively. 
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(a) 

 

                                       
                                     (b)                                                         (c)    
   

                                             
                                    (d)                                                         (e) 

 

                                                             
                                      (f)                                                         (g) 

 
Figure 1.3 (a) The same image as shown in Figure2.1 (a). Images in (c), (e) and (g) have 
the same height as (a) but 5%, 10% and 20% less in the width, respectively. The red lines 
(seams) displayed in (b), (d), and (f) are to be deleted in order to generate the corresponding 
seam carved copies (c), (e) and (g), respectively. 
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1.3 Literature Review 

To detect if seam carving has been applied or not, a few works have been presented. 

Sharker et al. [30] presented the first solution for blind seam carving detection. By 

modelling the difference JPEG 2-D array with Markov random process [31], the transition 

probabilities, called Markov features, are utilized to reveal the trace in block-based 

frequency domain left by the process of seam carving so as to differentiate seam carved 

JPEG images from un-seam carved ones. Later, Fillion and Sharma [32] proposed a new 

model comprised of energy bias based features, seam behavior based features and wavelet 

absolute moments to identify seam carving in uncompressed images.  

 In [33], Chang et al. tried to discover the artifacts introduced by seam carving 

applied to JPEG images with blocking artifacts characteristics matrix. As the block 

misalignment is inevitably occurred due to the deletion of pixels in a JPEG image, seam 

carved JPEG images and un-seam carved ones could have distinctive DCT blocking 

artifacts after recompression. Therefore, statistically reviewing the blocking artifacts could 

be a smart way to distinguish between seam carved JPEG images and non-seam carved 

JPEG images, which is also indicated from the their reported results. However, the 

drawback of this method is also obvious because there is no block misalignment problem 

for the source image which has never gone through JPEG compression. Thus, the 

performance on detecting seam carving applied to uncompressed images could decrease 

significantly, as reported in the extended work [34].To also detect seam carved JPEG 

images, Liu et al. [35] proposed to employ calibrated neighboring joint density and Rich-

model based features [36]. This work is then be further improved by [37][38].  



8 

 In [39], Wei et al. presented an interesting approach for detecting seam carving in 

uncompressed domain. With the proposed nine types of directional patch operators, 2×2 

local region is rebuilt to nine 2×3 predictive patches which represent nine patterns before 

the possible seam carving process. By comparing the similarity between each predictive 

patch and the referee patch, the most similar one is considered as the optimal patch and the 

indexing, which is from zero to eight, is assigned to the given local region. Consequently, 

an indexing 2-D array is generated in which each element is the indexing of the optimal 

patch for that particular position. Finally, Markov features extracted from the indexing 2-

D array are applied to detect seam carving. Although the state-of-the-art performance was 

reported, it should be noted that the nine predictive patch operators are designed for 

detecting the deletion of vertical seams. Therefore, this method could possibly fail on 

detecting horizontal seam carving. 

 In Ryu et al.’s work [40], eighteen energy based features, which measure the energy 

distribution and noise level of a given image, are proposed to unveil the trace of seam 

carving in uncompressed images. Inspired by this work, the idea was extended by Yin et 

al. [41].  In Yin et al.’s feature model, eighteen energy features, which are similar to the 

features presented by Ryu et al., are included. Additionally, another six energy features are 

proposed to capture the energy variation in half images which results in a twenty-four 

dimensional feature model. Furthermore, all the proposed features are extracted from the 

Local Binary Pattern (LBP) [42] encoded images instead of the pixel domain. The reported 

results indicate the Yin et al.’s method outperforms previously published works.  

 Besides of the aforementioned machine learning based passive blind forensic 

methods, an active approach was presented by Lu and Wu [43]. The pre-extracted SIFT 
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features are encoded and attached to the image at the sender side, and these side information 

will be thereafter utilized by the receiver to authenticate each received image in order to 

counter possible seam carving forgery during the transmission. Although this active 

approach seems effective on detecting seam carving, the limitation is significant since any 

malicious manipulation made on the side information during the transmission could make 

it fail. Therefore, this method could work only when a trustworthy communication channel 

is applicable which could never be true in real world. 

 

1.4 Dissertation Researches 

In this dissertation, researches mainly focus on detecting seam carving in uncompressed 

domain, and four machine learning based passive blind forensic approaches are presented.  

 To reveal the trace left by the process of seam carving, ninety six energy features 

are proposed in the first work of this dissertation chapter. By pre-processing the suspicious 

image with four different LDP operators, four LDP encoded images are obtained from 

which the proposed ninety six features are extracted. With the SVM based classification, 

the suspicious image can be identified as either an un-seam carved image or a seam carved 

image. 

 Differ from the first model, a pixel variation based feature model, which consists 

of LDP features, Markov features, and SPAM features, is then presented to capture the 

change in neighboring pixels so as to detect seam carving. Furthermore, SVM-RFE is 

applied for feature reduction. Indicated from the experimental results, with a small number 

of features selected from the feature model, the state-of-the-art performance is achieved. 
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 In the third piece of work, a more advanced feature model is designed based on 

combining the ideas of previously presented two works to further improve the accuracy of 

detecting seam carving images with low carving rate, particularly the carving rate as 5% 

and 10%. According to the conducted experimental works, the state-of-the-art performance 

has been further improved. 

 The first deep learning based forensic work on detecting seam carving forgeries is 

reported as the last piece of work included in this dissertation. The designed deep 

convolutional neural network which comprises of six convolutional layers has achieved 

encouraging results on a huge image database. It is believed that such deep learning 

techniques could be the ultimate solution for this forensic research.   

 

1.5 Outlines 

In Chapter 2, an energy based feature model is presented for detecting seam carving in 

uncompressed images. A pixel variation based feature model comprises of LDP features, 

Markov features and SPAM features is then proposed in Chapter 3. Chapter 4 introduces a 

more advanced hybrid feature model in detail. In Chapter 5, a convolutional neural network 

is designed to determine whether an uncompressed image has gone through the process of 

seam carving or not. This dissertation is summarized in Chapter 6.  
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CHAPTER 2 

AN ENERGY BASED FEATURE MODEL FOR SEAM CARVING DETECTION 

 

Seam carving is to delete low energy area in a given image, which is considered as less 

visually important image content, so as to modify image size and preserve more important 

image content. Therefore, the energy of seam carved image could have difference with the 

original one, and this change can be utilized for seam carving detection. In [40], 18-D 

energy based features were proposed to discriminant seam carved images and images 

without seam carving. Once the image content is removed by seam carving, the distortion 

will be introduced in the manipulated local area. Consequently, the local descriptor which 

depicts certain area could also vary compared with before seam carving operation. In [41], 

the idea of combining local texture pattern and energy based feature was addressed. Then, 

24-D energy based features extracted from the LBP encoded image were applied to detect 

the operation of seam carving. In this chapter, an LDP based forensic framework is 

proposed as illustrated in Figure 2.1. For each input image, four LDP encoded images are 

generated and 24-D energy based features are extracted from each LDP image. 

Consequently, each input image is represented by a 24×4=96-D feature vector. By applying 

a SVM classifier, a decision of whether the input image is seam carved or not could be 

made. According to the experimental results, the proposed framework outperforms the 

prior state of the arts significantly. The framework for detecting seam carving in digital 

images by utilizing the proposed 96-D feature model is illustrated in Figure 2.1. In the 

following of this section, the 96-D is introduced in detail.  
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2.1 Proposed Energy Based Feature Model 

2.1.1 Local Derivative Patterns  

As a local descriptor, LDP [44] can be considered as a directional high order derivative 

binary pattern comparing with LBP which can be considered as the 1st order non-directional 

descriptor. It captures more discriminate information from the derivative perspective, and 

more sensitive to the changes of the local region. As shown in Figure 2.2, for a given local 

5×5 block with the central pixel at 𝑍𝑍0 in image I, the 1st order derivative of pixel 𝑍𝑍0 in I 

along the 4 directions 𝛼𝛼 = 0𝑜𝑜, 45𝑜𝑜, 90𝑜𝑜 and 135𝑜𝑜 can be derived as follows, 

 

𝐼𝐼𝛼𝛼=0𝑜𝑜
′ (𝑍𝑍0) = 𝐼𝐼(𝑍𝑍0) − 𝐼𝐼(𝑍𝑍1), 

𝐼𝐼𝛼𝛼=45𝑜𝑜
′ (𝑍𝑍0) = 𝐼𝐼(𝑍𝑍0) − 𝐼𝐼(𝑍𝑍2), 

     𝐼𝐼𝛼𝛼=90𝑜𝑜
′ (𝑍𝑍0) = 𝐼𝐼(𝑍𝑍0) − 𝐼𝐼(𝑍𝑍3),  

    𝐼𝐼𝛼𝛼=135𝑜𝑜
′ (𝑍𝑍0) = 𝐼𝐼(𝑍𝑍0) − 𝐼𝐼(𝑍𝑍4)                                  (2.1) 

 
Suspicious

Image
LDP

Images
LDP

Pre-prosessing
Feature

Extraction

96 FeaturesSVM-based
Classification

Seam 
Carved?

              
 

 
Figure 2.1 Flow chart of forensic investigation with proposed energy based feature model.   
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where 𝐼𝐼(𝑍𝑍)  is the intensity of pixel Z. Considering pixels {𝑍𝑍𝑖𝑖|𝑖𝑖 = 1 … 8}  which are 

adjacent to 𝑍𝑍0 with a distance equal to 1 pixel, the 2nd order LDP of 𝑍𝑍0 can be encoded by, 

 

   𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼2(𝑍𝑍0) = {𝑓𝑓(𝐼𝐼𝛼𝛼′ (𝑍𝑍0), 𝐼𝐼𝛼𝛼′ (𝑍𝑍1)),   … ,𝑓𝑓(𝐼𝐼𝛼𝛼′ (𝑍𝑍0), 𝐼𝐼𝛼𝛼′ (𝑍𝑍8))}                  (2.2) 

 

where 𝑓𝑓(∙,∙) is a binary coding function. It encodes the co-occurrence of neighboring 

derivative directions with the following rule, 

 

𝑓𝑓(𝐼𝐼𝛼𝛼′ (𝑍𝑍0), 𝐼𝐼𝛼𝛼′ (𝑍𝑍𝑖𝑖)) = �0, 𝑖𝑖𝑖𝑖 𝐼𝐼𝛼𝛼′ (𝑍𝑍0) ∙ 𝐼𝐼𝛼𝛼′ (𝑍𝑍𝑖𝑖) > 0
1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                    , 𝑖𝑖 = 1 … 8.                  (2.3) 

 

By doing so, each pixel is encoded and can be represented by its 𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼2 along direction α, 

which is an 8-bit binary number. With the function as below, 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝛼𝛼2(𝑍𝑍0) = ∑ 𝑓𝑓(𝐼𝐼𝛼𝛼′ (𝑍𝑍0), 𝐼𝐼𝛼𝛼′ (𝑍𝑍𝑖𝑖)) ∙ 2𝑖𝑖−1 − 18
𝑖𝑖=1 ,                   (2.4) 

 
I(Z15) I(Z14) I(Z13) I(Z12) I(Z11) 

I(Z16) I(Z4) I(Z3) I(Z2) I(Z10) 

I(Z17) I(Z5) I(Z0) I(Z1) I(Z9) 

I(Z18) I(Z6) I(Z7) I(Z8) I(Z24) 

I(Z19) I(Z20) I(Z21) I(Z22) I(Z23) 
              
 

Figure 2.3 Local 5 × 5 block with central pixel at 𝑍𝑍0 in image 𝐼𝐼.  
  

 
I(Z15) I(Z14) I(Z13) I(Z12) I(Z11) 

I(Z16) I(Z4) I(Z3) I(Z2) I(Z10) 

I(Z17) I(Z5) I(Z0) I(Z1) I(Z9) 

I(Z18) I(Z6) I(Z7) I(Z8) I(Z24) 

I(Z19) I(Z20) I(Z21) I(Z22) I(Z23) 
              
 

Figure 2.2 Local 5×5 block with central pixel at 𝑍𝑍0 in image I.  
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𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼2 is then converted to a decimal number, denoted as 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝛼𝛼2, within the range of [0, 

255]. Consequently, the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝛼𝛼2 2D-array, called LDP image in this work, is generated for 

the original image. As illustrated in Figure 2.3, 𝐿𝐿𝐿𝐿𝐿𝐿0𝑜𝑜
2  of the central pixel 𝐼𝐼(𝑍𝑍0) = 40 in a 

selected 5×5 region is {00001100}, and the corresponding 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷0𝑜𝑜
2 (𝑍𝑍0) is calculated as 

48. By decimalizing the 𝐿𝐿𝐿𝐿𝐿𝐿0𝑜𝑜
2  for each pixel, the generated 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷0𝑜𝑜

2  2D-array is 

visualized as shown in Figure 2.3. Since LDP is derivative based as indicated by Equation 

2.1, which is the intensity difference of each pair of pixels, LDP could be easily changed 

during the operation of seam carving thus more sensitive to seam carving than LBP, which 

directly applies the pixel intensity value. Therefore, it is expected that the LDP image 

contains more discriminative information than the LBP image, which has been verified in 

the experimental works. As seams are always removed from the images horizontally or 

vertically by the process of seam carving, we adopted horizontal and vertical DLDP in this 

work.  

 By applying multi-resolution [45] of LDP, we can not only monitor the changes at 

adjacent locations but also monitor the changes at the locations with certain distance. For 

example, the central pixels and eight neighboring pixels are shown in Figures 2.4 (a) and 

(b) when D is set to 1 or 2, respectively. Moreover, the circular sampling is utilized instead 

of the rectangular sampling because rectangular sampling could cause information loss 

when the number of sampled pixels is less than the total number of pixels in the local area. 

As shown in Figure 2.4 (b), the information of the eight unselected neighboring pixels with 

D = 2 are lost in the calculation of central pixel’s LDP. However, those information could 
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be covered by circular sampling since the pixels not necessarily in the center of each box 

are interpolated by adjacent four pixels as shown in Figure 2.4 (d). Therefore, based on 

these considerations, discussed above, it is proposed to use the LDP images generated by 

the 2nd order LDP with radius equal to 1 and 2, 𝛼𝛼 = 0𝑜𝑜 and 90𝑜𝑜, respectively. As shown in 
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Figure 2.3 Example of the calculation of DLDP for central pixel at 𝑍𝑍0 in a local 5 × 5 
block of image 𝐼𝐼.  
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Figure 2.5, four LDP images are visually distinct from each other, because each of them 

depicts a particular relationship between pixels in the original image. And thus, it is 

believed that the information carried by these LDP images are complementary and can lead 

to a better performance than any individual. This expectation has been verified by the 

experimental works reported in Section 2.3. 

 

 

 

 

 

 

 
(a)                          (b) 

 
(c)                         (d) 

 
 

Figure 2.4 (a) and (b) are the 8 rectangular symmetric neighbors with distance, denoted 
as D, equal to 1 and 2, respectively; (c) and (d) are the 8 circular symmetric neighbors with 
radius, denoted as R, equal to 1 and 2, respectively. N is the number of sampled neighbors. 
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(a) Original image 

 

        
         (b) LDP image, R = 1, 𝛼𝛼 = 0𝑜𝑜                   (c) LDP image, R = 2, 𝛼𝛼 = 0𝑜𝑜 

 

        
    (d) LDP image, R = 1, 𝛼𝛼 = 90𝑜𝑜                  (e) LDP image, R = 2, 𝛼𝛼 = 90𝑜𝑜 

 
Figure 2.5 Sample image (a) from UCID and its four LDP encoded images (b), (c), (d), 
and (e). 
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2.1.2 Energy Based Features 

As seam carving is to remove low energy seams so as to manipulate the image size, it is 

expected that the energy distribution of an un-touched (not seam carved) uncompressed 

digital image and its seam carved copy are different. Therefore, features measuring the 

energy of an image could be used to detect the traces of seam carving. As reported in both 

[40][41], the energy based feature model has been shown its effectiveness on unveiling the 

process of seam carving, and particularly indicated in [41] that energy features extracted 

from LBP domain is more discriminant than the features extracted from pixel domain. 

Inspired by these two pieces of work, we kept the 24 energy features and extended to totally 

96 features to detect seam carved images. The proposed 96 features consist of four groups 

of 24 features where each group of 24 features is extracted from one of the four LDP images 

introduced in Section 2.2.1. In the following, a group of the 24 features will be introduced.  

 Considering that the global energy distribution is changed because of the deletion 

of low energy pixels, four average energy based features, i.e., average horizontal energy, 

average vertical energy, the summation and the difference of the former two features, are 

extracted to differentiate the seam carved images from the un-touched images. Besides, 

since each optimal seam which has the lowest accumulative energy will be deleted by the 

seam carving, the energy of the remaining seams will be different. Thus, sixteen seam 

energy based features are extracted to capture changes of seams energy during the seam 

carving. By constructing the M matrix in Equation 1.4, the minimum cumulative energy 

matrix, for each image where the bottom row is the energy of each possible vertical seam, 

five statistic values called min, max, mean, standard deviation, and the difference between 

min and max are applied as the features. Also, the other five features of horizontal seams 
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are calculated accordingly as well. Furthermore, with the M matrix generated by half of 

the image, six half-seam energy features including min, max and mean for both horizontal 

seams and vertical seams can be derived similarly.  

 Furthermore, because the image content has been manipulated by the seam carving, 

the noise level of the seam carved image could be differed from the original image. To 

obtain the noise residue N of each image I, the Wiener filter with 5×5 window, denoted as 

F, is applied to generate the de-noised copy and the noise residue can be derived by, 

     𝑁𝑁 = 𝐼𝐼 − 𝐹𝐹(𝐼𝐼).         (2.5) 

Then, the mean, standard deviation, skewness and kurtosis of the noise residue are 

extracted as the features for detecting seam carving. Consequently, for each of the four 

LDP image aforementioned, 24 features can be obtained, as summarized in Tables 2.1, 2.2, 

and 2.3. Therefore, the total 96 features are utilized for the classification of seam carving. 

 

Table 2.1 Description of 24 Energy Features  
 

Feature Description 

1. Average Horizontal Energy 
1

𝑚𝑚 × 𝑛𝑛
� � |

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐼𝐼(𝑖𝑖, 𝑗𝑗)|
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

2. Average Vertical Energy 
1

𝑚𝑚 × 𝑛𝑛
� � |

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐼𝐼(𝑖𝑖, 𝑗𝑗)|
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

3. Sum of Feature #1 and #2 
1

𝑚𝑚 × 𝑛𝑛
� � (�

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐼𝐼(𝑖𝑖, 𝑗𝑗)� + �
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐼𝐼(𝑖𝑖, 𝑗𝑗)�)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

4. Difference of Feature #1 and #2 
1

𝑚𝑚 × 𝑛𝑛
� � (�

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐼𝐼(𝑖𝑖, 𝑗𝑗)� − �
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐼𝐼(𝑖𝑖, 𝑗𝑗)�)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
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Table 2.2 Description of 24 Energy Features (Continued)  
 

Feature Description 

5. Horizontal Seammax 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑀𝑀(𝑖𝑖,𝑛𝑛) 

6. Horizontal Seammin 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑀𝑀(𝑖𝑖,𝑛𝑛) 

7. Horizontal Seammean 
1
𝑚𝑚
� 𝑀𝑀(𝑖𝑖,𝑛𝑛)

𝑚𝑚

𝑖𝑖=1
 

8. Horizontal Seamstd �
1
𝑚𝑚
� (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑀𝑀(𝑖𝑖,𝑛𝑛))2

𝑚𝑚

𝑖𝑖=1
 

9. Horizontal Seamdiff 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 

10. Vertical Seammax 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 𝑀𝑀(𝑚𝑚, 𝑖𝑖) 

11. Vertical Seammin 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 𝑀𝑀(𝑚𝑚, 𝑖𝑖) 

12. Vertical Seammean 
1
𝑛𝑛
� 𝑀𝑀(𝑚𝑚, 𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

13. Vertical Seamstd �
1
𝑛𝑛
� (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −𝑀𝑀(𝑚𝑚, 𝑖𝑖))2

𝑛𝑛

𝑖𝑖=1
 

14. Vertical Seamdiff 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 
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Table 2.3 Description of 24 Energy Features (Continued) 
 

Feature Description 

15. Half-Horizontal Seammax 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑀𝑀(𝑖𝑖,
𝑛𝑛
2

) 

16. Half-Horizontal Seammin 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑀𝑀(𝑖𝑖,
𝑛𝑛
2

) 

17. Half-Horizontal Seammean 
1
𝑚𝑚
� 𝑀𝑀(𝑖𝑖,

𝑛𝑛
2

)
𝑚𝑚

𝑖𝑖=1
 

18. Half-Vertical Seammax 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 𝑀𝑀(
𝑚𝑚
2

, 𝑖𝑖) 

19. Half-Vertical Seammin 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 𝑀𝑀(
𝑚𝑚
2

, 𝑖𝑖) 

20. Half-Vertical Seammean 
1
𝑛𝑛
� 𝑀𝑀(

𝑚𝑚
2

, 𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
 

21. Noisemean 
1

𝑚𝑚 × 𝑛𝑛
� � 𝑁𝑁(𝑖𝑖, 𝑗𝑗)

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

22. Noisestd �
1

𝑚𝑚 × 𝑛𝑛
� � (𝑁𝑁(𝑖𝑖, 𝑗𝑗) − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

23. Noiseskewness 
1

𝑚𝑚 × 𝑛𝑛
� � (

𝑁𝑁(𝑖𝑖, 𝑗𝑗) −𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

)3
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

24. Noisekurtosis 
1

𝑚𝑚 × 𝑛𝑛
� � (

𝑁𝑁(𝑖𝑖, 𝑗𝑗) −𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

)4
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
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2.2 Experimental Results 

In this section, we first introduce the establishment of image database which are utilized to 

evaluate the proposed method. Then, a comprehensive series of experiments based on 

Matlab are introduced, and finally the results are reported and compared with the state-of-

the-art.  

2.2.1 Setup of Seam Carving Database  

To evaluate the performance of the proposed method, the seam carved image database has 

been established on the UCID (Uncompressed Colorful Image database) [47], a popular 

benchmark database used on image forensics researches which consisting of 1338 

uncompressed color images. All the color images have been converted to grayscale images 

and formed the un-seam carved image set. Seam carving technique proposed in [30] was 

implemented in MATLAB to produce seam carved images. The image gradient computed 

by the Sobel operator [48] was applied as the energy function used in Equation 1.1. Then, 

for each image of the un-seam carved image set, 12 different seam carved copies were 

generated according to various carving rates, i.e., 5%, 10%, 20%, 30%, 40% and 50%, and 

two carving directions, i.e., horizontal and vertical. The carving rate C% means, seams are 

horizontally or vertically carved in order to reduce the size by C%. The ‘H’ and ‘V’ labeled 

after the C% represent the horizontal carving and vertical carving, respectively. For 

instance, ‘5%H’ image set contains the seam carved image whose size has been reduced 

by 5% with horizontal seam deletion. As a result, 12 different seam carved image sets were 

generated, and each set has 1338 images with same carving rate and carving direction. In 

other words, 12 seam carving cases were investigated in the experiments. To test on each 

seam caving scenario, the un-seam carved image set and one of the 12 seam carved image 
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sets are selected to form the experimental image database. Then, in order to validate the 

performance, each reported result is the average detection accuracy over 10 iterations of 6-

fold cross validation. To build the support vector machine (SVM) classifiers, Lib-SVM 

library [46] was utilized in the experiments and linear kernel with default parameters was 

selected.  

2.2.2 Performance of Proposed Framework 

In order to evaluate the performance of the proposed framework, the experimental works 

have been conducted on the pre-built 12 different seam carving datasets. Meanwhile, the 

approaches presented by Ryu et al. [40] and Yin et al. [41], which represent the state-of-

the-art, have been implemented and tested to make a fair comparison. As shown in Figure 

2.6, the proposed method outperforms the two approaches on all 12 seam carving scenarios. 

Receiver operating characteristic (ROC) curves of all three compared methods on detecting 

seam carving at carving rate as 5%, 10%, and 20% are shown in Figures 2.7, 2.8, and 2.9, 

respectively. And from Table 2.4, it is easy to observe that the average detection accuracies 

achieved by the proposed framework are significantly higher than that achieved by the 

other two compared methods. Especially on the low carving rate cases, i.e., 5%, 10% and 

20%, the proposed method can achieve 5%-10% higher classification rates than that by the 

state of the arts, respectively.  

Table 2.4 Average Detection Accuracy of Proposed 96-D Model versus the State-of-the-
Art 

 5% 10% 20% 30% 40% 50% 
Ryu et al. 

(2014) 65.89% 75.15% 85.79% 92.11% 95.26% 97.25% 

Yin et al. 
(2015) 58.72% 70.22% 87.37% 95.63% 98.58% 99.51% 

Proposed 
96-D 73.03% 88.88% 97.78% 99.44% 99.91% 99.96% 
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(a) 

 

 
(b) 

 
Figure 2.6 Performance of proposed 96-D model versus the state-of-the-art on detecting 
12 different seam carving scenarios. 
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(a) 

 

 
(b) 

 
Figure 2.7 ROCs of three compared methods on detecting seam carving at a carving rate 
as 5%. 
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(a) 

 

 
(b) 

 
Figure 2.8 ROCs of three compared methods on detecting seam carving at a carving rate 
as 10%. 
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(a) 

 

 
(b) 

 
Figure 2.9 ROCs of three compared methods on detecting seam carving at a carving rate 
as 20%. 
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 The contribution of each LDP image has also been evaluated. Each group of 24-D 

features extracted from each LDP image has been tested on the 12 seam carving scenarios 

respectively, and the test results are reported in Table 2.5. In Table 2.5, the first column 

stands for each LDP image. The ‘h1’ is the LDP image 1 as shown in Fig. 3 which is 

encoded by LDP operator with α = 0o and radius R = 1; the ‘h2’ is the image encoded with 

α = 0o and R = 2. Similarly, ‘v1’ and ‘v2’ are the images encoded by LDP operator with α 

= 90o and radius equal to 1 and 2, respectively. It can be observed that the individual 

performance of the features extracted from each LDP image is much lower than the 

performance achieved when all features are combined even though the individual 

performance is not bad at all. This demonstrates that the information carried by each LDP 

image are complementary and it supports our previous assumption. 

 

 To further test the performance of the proposed framework, another test on a mixed 

seam carving image set has been conducted. By randomly selecting 1/12 samples from 

each of the 12 different seam carved image sets previously established, while each sample 

is generated from different original image, the mixed seam carving image set is formed. 

Table 2.5 Detection Accuracy of Features Extracted from each LDP Image 
 5%H 10%H 20%H 30%H 40%H 50%H 

h1 65.38% 77.96% 93.28% 98.06% 99.25% 99.61% 
h2 65.12% 80.46% 93.91% 98.20% 99.23% 99.72% 
v1 62.35% 77.95% 92.44% 98.15% 99.47% 99.76% 
v2 63.39% 80.83% 94.78% 98.51% 99.50% 99.90% 

 

 5%V 10%V 20%V 30%V 40%V 50%V 
h1 65.06% 80.74% 93.79% 98.58% 99.73% 100.00% 
h2 67.17% 82.94% 95.35% 98.61% 99.93% 100.00% 
v1 62.25% 76.84% 91.89% 96.98% 98.85% 99.66% 
v2 62.16% 80.19% 94.62% 98.40% 99.32% 99.89% 
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Then, the proposed framework has been tested on this mixed set and a more than 90% 

detection accuracy is achieved while the best result achieved by the three compared 

approaches is only 86%, which was achieved by [41].  

 

2.3 Conclusion 

In this chapter, a LDP based image forensic framework is presented for detecting the 

operation of seam carving. By converting a given image to four LDP encoded images, 96 

energy based features are extracted to discriminate if the image is seam carved or un-

touched. According to the experimental results, the proposed method can successfully 

detect seam carving and outperform the state-of-the-art on the various seam carving 

scenarios. In particular, the proposed framework has achieved 72%, 88% and 97% average 

detection accuracies on low carving rate cases, i.e., 5%, 10% and 20%, respectively, which 

is 5%-10% higher than the performance achieved by the previous state of the arts. And the 

test results on the mixed test sets also indicate the proposed method is more robust than the 

state-of-the-art. 
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CHAPTER 3 

A PIXEL VARIATION BASED STATISTICAL MODEL  

FOR SEAM CARVING DETECTION 

 

As presented in Chapter 2, energy based features are proposed to reveal the process of seam 

carving. In this chapter, a more advanced feature model which statistically depicts changes 

made among neighboring pixels is presented to unveil the trace of seam carving. In the 

proposed feature model, each image is represented by a feature vector which consists of 

LDP features, Markov features, and SPAM features. As LDP encodes the local derivative 

information with an 8-bit binary pattern, the relation between the central pixel and its eight 

neighboring pixels depicted by LDP is more complicated than other low-order local 

descriptors such as LBP. In other words, LDP is more sensitive to the manipulation of the 

local area, including the pixels that are deleted by seam carving.  

Both the Markov transition probability, denoted as Markov features, and the 

subtractive pixel adjacency model, denoted as SPAM features, are transition probability 

based. The difference between the Markov features and the SPAM features is mainly on 

the order, because Markov feature depicts the relation between two adjacent pixels while 

SPAM feature normally represents the relation between three or more consecutive adjacent 

pixels. As the pixels with lower energy may be deleted by seam carving, the distribution 

of pixel values will be changed too and so as the transition probability. Therefore, Markov 

features and SPAM features could also be sensitive to the seam carving process.  

In summary, all of these three types of features can capture the changed relation 

between neighboring pixels, and it is believed that the combination could be more 
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discriminative. Thus, we proposed this advanced feature model for the seam carving 

detection. To further improve the performance of the proposed feature model, SVM-

recursive feature elimination has been employed for feature selection. In what follows, the 

proposed advanced statistical feature model and the feature selection scheme are 

introduced in detail. 

 

3.1 Proposed Feature Model 

3.1.1 Local Derivative Pattern Features 

As introduced in Subsection 2.1.1, each binary bit of LDP depicts the relationship of at 

least three pixels, which is differ from the lower order local descriptor such as LBP that 

reveals the relation of only two neighboring pixels. For instance, the first order derivatives 

at pixels 𝑍𝑍0  and 𝑍𝑍4,  as shown in Figure 3.1, along 𝛼𝛼 = 0𝑜𝑜  are 𝐼𝐼0𝑜𝑜
′ (𝑍𝑍0)  and  𝐼𝐼0𝑜𝑜

′ (𝑍𝑍4) 

respectively, where 𝐼𝐼0𝑜𝑜
′ (𝑍𝑍0) is calculated from 𝑍𝑍0 and 𝑍𝑍4, and 𝐼𝐼0𝑜𝑜

′ (𝑍𝑍4) is derived from 𝑍𝑍4 

and 𝑍𝑍15. If 𝑍𝑍4 is deleted by seam carving, 𝑍𝑍15 and the pixels on the right side of 𝑍𝑍15 in the 

same row will be shifted to the left by one pixel. The binary bit 𝑓𝑓(𝐼𝐼0𝑜𝑜
′ (𝑍𝑍0), 𝐼𝐼0𝑜𝑜

′ (𝑍𝑍4)) of 

𝐿𝐿𝐿𝐿𝐿𝐿0𝑜𝑜
2 (𝑍𝑍0)  will be replaced by  𝑓𝑓�𝐼𝐼0𝑜𝑜

′∆(𝑍𝑍0), 𝐼𝐼0𝑜𝑜
′ (𝑍𝑍15)� , where 𝐼𝐼0𝑜𝑜

′∆(𝑍𝑍0) = 𝐼𝐼(𝑍𝑍0) − 𝐼𝐼(𝑍𝑍15) . 
 

              
 
 

Figure 3.1 Local 5×5 block with central pixel at Z0 in image 𝐼𝐼  and the resulting 5×5 
derivatives block. 
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Only if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐼𝐼0𝑜𝑜
′∆(𝑍𝑍0) ∙ 𝐼𝐼0𝑜𝑜

′ (𝑍𝑍15)) is equal to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐼𝐼0𝑜𝑜
′ (𝑍𝑍0) ∙ 𝐼𝐼0𝑜𝑜

′ (𝑍𝑍4)), the binary bit will be 

kept unchanged after seam carving. However, for the corresponding bit of 𝐿𝐿𝐿𝐿𝐿𝐿(𝑍𝑍0), the 

value could be remained the same once 𝑠𝑠𝑖𝑖𝑔𝑔𝑔𝑔(𝑍𝑍15 − 𝑍𝑍0) is equal to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑍𝑍4 − 𝑍𝑍0) (for the 

detail of LBP, please refer to [42]). Therefore, compared with LBP, LDP is in general more 

altered to seam carving than LBP does. For this reason, it is expected that LDP could be 

more sensitive to the process seam carving than LBP.  

 In constructing LDP features, for each direction 𝛼𝛼  as mentioned above, the 

normalized histogram of the LDPs are employed as features to reveal the statistical change 

introduced by seam carving. Clearly, each histogram comes up with 28 = 256 bins.  

 To calculate the 𝑛𝑛𝑡𝑡ℎ order LDP along direction 𝛼𝛼 with 𝑛𝑛 > 2 and radius equal to 1, 

the (𝑛𝑛 − 1)𝑡𝑡ℎ order derivatives 𝐼𝐼𝛼𝛼𝑛𝑛−1(𝑍𝑍) along 𝛼𝛼 is needed to compute firstly. For instance, 

to derive the 3rd order LDP of 𝑍𝑍0, the 2nd order derivatives 𝐼𝐼𝛼𝛼′′(𝑍𝑍0) along direction 𝛼𝛼 is 

computed as 

 

𝐼𝐼𝛼𝛼′′(𝑍𝑍0) = 𝐼𝐼𝛼𝛼′ (𝑍𝑍0) − 𝐼𝐼𝛼𝛼′ (𝑍𝑍𝑖𝑖), 𝑖𝑖 = 1 … 8.                                 (3.1) 

 

Therefore, the 3rd order LDP of 𝑍𝑍0  can be coded similarly by Equation 2.2, and the 

normalized histogram of LDP could be obtained as well.   

 In this work, only the 2nd and the 3rd order LDP features are adopted since the 

discriminative information carried by the higher order LDP features could be more 

sensitive to the noise [44] and increase largely the feature dimensionality. Besides, multi-

resolution sampling and circulate sampling is also applied. Considering the correlation of 

pixels could be weaken as the distance between them increases, the sampling radius is only 
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set to 1 and 2 for each type of LDP features, respectively. Furthermore, only 𝛼𝛼 = 0𝑜𝑜 and 

90𝑜𝑜 are applied because seams are deleted either horizontally or vertically from the image. 

Therefore, LDP features of these two directions are believed to be effective on discovering 

the trace of seam carving. Besides, utilizing too many types of LDP features may also bring 

more redundancy and increase the risk of overfitting so as to decline the performance. 

These have been verified by the conducted experimental works. That is, we have worked 

on the 4th order LDP, the radius equals to 3, and the direction 𝛼𝛼 equals to 45𝑜𝑜 or 135𝑜𝑜 ,  

while the feature dimensionality of the model has been dramatically increased, the 

detection accuracy could not be further boosted in these testing. Therefore, the proposed 

LDP feature set is formed with the selected types of LDP features, and the dimensionality 

is fixed as 2048 (i.e., 256×2×2×2).  

3.1.2 Markov Features 

As the image content is manipulated by seam carving, the transition probabilities of the 

adjacent pixels in the carved images could be different from that in the uncarved image. 

Therefore, it is believed that the Markov process could be utilized to reflect seam carving 

not only in JPEG images [30] but also in uncompressed images.  

The first order Markov transition probability feature, referred to as Markov feature, 

has been introduced to determine JPEG steganography [31]. Denote a JPEG 2-D DCT 

coefficient array by 𝐹𝐹. The first order horizontal difference array 𝐷𝐷→, i.e., the first order 

derivative array along horizontal direction is: 

 

                      𝐷𝐷→(𝑢𝑢, 𝑣𝑣) = 𝐹𝐹(𝑢𝑢, 𝑣𝑣) − 𝐹𝐹(𝑢𝑢, 𝑣𝑣 + 1)                                     (3.2) 
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where 𝑢𝑢 and 𝑣𝑣 are the horizontal and vertical coordinates, respectively. The superscripts 

‘→,↗, ↑,↖,←,↙, ↓,↘’ indicate the orientation of the calculation. Then, a threshold 𝑇𝑇1 is 

selected to limit the value of each element of difference arrays within the range of [−𝑇𝑇1,𝑇𝑇1] 

in order to reduce the computational complexity without losing much useful information. 

Therefore, the 1st order Markov feature along horizontal direction 𝑀𝑀𝑎𝑎,𝑏𝑏
→  can be denoted as: 

 

𝑀𝑀𝑎𝑎,𝑏𝑏
→ =  𝑝𝑝→{𝐷𝐷→(𝑢𝑢, 𝑣𝑣 + 1) = 𝑎𝑎|𝐷𝐷→(𝑢𝑢, 𝑣𝑣) = 𝑏𝑏}

=
∑ 𝛿𝛿(𝐷𝐷→(𝑢𝑢, 𝑣𝑣) = 𝑏𝑏,𝐷𝐷→(𝑢𝑢, 𝑣𝑣 + 1) = 𝑎𝑎)𝑢𝑢,𝑣𝑣

∑ 𝛿𝛿(𝐷𝐷→(𝑢𝑢, 𝑣𝑣) = 𝑏𝑏)𝑢𝑢,𝑣𝑣
, 

𝛿𝛿(𝐷𝐷1 = 𝑎𝑎,𝐷𝐷2 = 𝑏𝑏) = � 1,    𝑖𝑖𝑖𝑖𝐷𝐷1 = 𝑎𝑎,𝐷𝐷2 = 𝑏𝑏      
0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                      (3.3) 

 

where𝑎𝑎, 𝑏𝑏 ∈ {−𝑇𝑇1, … ,0, …𝑇𝑇1}. The dimensionality of each Markov feature is (2𝑇𝑇1 + 1)2. 

Similarly, the 1st order Markov feature along ‘↗’, ‘↓’ and ‘↘’ directions can be calculated. 

In this work, all four directions’ Markov features are adopted which resulting in a 

4 × (2𝑇𝑇1 + 1)2 dimensional feature vector. 

3.1.3 SPAM Features  

In addition to the 1st order In addition to the 1st order Markov features discussed above, the 

seam carving can also be captured by the higher order Markov process. However, the 

dimensionality of Markov feature increases exponentially with order. Due to the 

computation complexity, 2nd order SPAM [49] features are applied instead of 2nd order 

Markov features because the SPAM features are linear combinations of the 2nd order 
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Markov features along 8 directions. Therefore, the discriminative information carried by 

Markov features could also be reflected by SPAM features with the same order.  

To calculate the 2nd order SPAM feature of a given image 𝐼𝐼, the difference arrays and the 

transition probability matrixes of 8 directions are computed firstly. Then, the 2nd order 

horizontal Markov feature  𝑀𝑀𝑎𝑎,𝑏𝑏,𝑐𝑐
→  is calculated as follows 

 

𝑀𝑀𝑎𝑎,𝑏𝑏,𝑐𝑐
→ = 𝑝𝑝→{𝐷𝐷→(𝑢𝑢, 𝑣𝑣 + 2) = 𝑎𝑎|𝐷𝐷→(𝑢𝑢, 𝑣𝑣 + 1) = 𝑏𝑏,𝐷𝐷→(𝑢𝑢, 𝑣𝑣) = 𝑐𝑐}          (3.4) 

 

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ {−𝑇𝑇2, … ,0, …𝑇𝑇2}. The 2nd order Markov feature along other directions: ‘↗

, ↑,↖,←,↙, ↓,↘’ can be derived likewise. Finally, by averaging 2nd order Markov feature 

along ‘→,←, ↑, ↓’ and ‘↗,↙,↖,↘’ separately, the 2nd order SPAM feature is formed of those 

two averaged Markov feature sets, and the dimensionality is 2 × (2𝑇𝑇2 + 1)3 . In the 

experiments, the thresholds 𝑇𝑇1 and 𝑇𝑇2 are set following [31] and [49] where 𝑇𝑇1 = 4 which 

leading to a 324-D Markov feature vector, and 𝑇𝑇2 = 3 for the 2nd order SPAM features, 

which resulting in a 686-D feature vector. Both types of features are intuitively extracted 

from spatial domain because seam carving is also conducted in spatial domain and the 

images are uncompressed. 

3.1.4 SVM-Recursive Feature Elimination 

As previously introduced, the proposed feature model is consisting of three types of 

features, resulting in a relatively high dimensional feature set. Therefore, in order to reduce 

the feature redundancy, hence reduce feature dimensionality and computational complexity, 

an effective feature selection method is applied to the proposed feature model. In this work, 
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the linear support vector machine based recursive feature elimination (SVM-RFE) [50] is 

employed for this purpose. The main idea of SVM-RFE algorithm is to eliminate one 

feature at a time which has the minimum ranking criterion [50], and put the eliminated 

feature on the top of the predefined ranking list. By recursively doing so, a feature ranking 

list is generated. Then, a low dimensional subset, composed by only taking certain number 

of top ranked features in the list, is selected for the classification instead of the original 

feature set of high dimensionality. For linear SVM classifier, the ranking criterion 𝐶𝐶 is 

given by 

 

                    𝐶𝐶 = (𝑤𝑤)2,   𝑤𝑤 = ∑ 𝛼𝛼𝑘𝑘𝑦𝑦𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘                                          (3.5)      

 

where 𝛼𝛼𝑘𝑘 is the Lagrange multiplier, 𝑦𝑦𝑘𝑘 is the class label of corresponding sample 𝑥𝑥𝑘𝑘, and 

the weight vector 𝑤𝑤 is a linear combination of training patterns. The procedure of the SVM-

RFE is as follows. 

------------------------------------------------------------------------------------------------------------ 

Given: 

 Training samples   𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛]; 

 Each sample 𝑥𝑥 is a 𝑙𝑙-dimensional vector with feature 𝑆𝑆 

   𝑆𝑆 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑙𝑙]; 

 Class labels              𝑌𝑌 = [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛]; 

 Ranking list    𝑅𝑅 = [ ]; 

Step 1: Train SVM   𝛼𝛼 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋,𝑌𝑌); 

Step 2: Calculate C by (12) and find 𝑠𝑠𝑡𝑡 with smallest C 
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   𝑠𝑠𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶) ; 

Step 3: Remove 𝑠𝑠𝑡𝑡  from 𝑆𝑆 

    𝑆𝑆 = [𝑠𝑠1: 𝑠𝑠𝑡𝑡, 𝑠𝑠𝑡𝑡+1: 𝑠𝑠𝑙𝑙];  𝑅𝑅 = [𝑠𝑠𝑡𝑡,𝑅𝑅]; 

Step 4: If  𝑆𝑆 = [  ], break, return 𝑅𝑅;     

           Else, go to Step 1.  

------------------------------------------------------------------------------------------------------------                          

It is known that the feature with a higher ranking does not necessarily mean it has 

better performance than a lower ranked feature. However, a subset gathering the top ranked 

features is optimal [50]. Hence, instead of applying the original high dimensional feature 

set for classification, a subset only consists of high ranked features could lead to a better 

result. In the experiments, several feature subsets have been investigated and the 

performance has demonstrated the effectiveness of the feature selection mentioned above.  

 

3.2 Experimental Results 

In this work, the seam carved image database has been established in the previous work, 

i.e., twelve different seam carving image sets, is utilized to evaluate the performance of the 

proposed method. Lib-SVM library [46] has been also utilized in the experiments and 

linear kernel with default parameters has been applied. Furthermore, each reported result 

is the average detection accuracy over 10 iterations of 6-fold cross validation.   

3.2.1 Performance of 3058-D Feature Model without SVM-RFE  

Firstly, we investigate the performance of each of these three kinds of feature components, 

i.e., LDP features, Markov features and SPAM features, individually. Observed from 

Figure 3.2, the 2048-D LDP features achieve the best performance among these three 
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feature components. Furthermore, the proposed 3058-D feature model outperforms each of 

these three kinds of feature components in detecting most of seam carving cases. However, 

the performance of 3058-D model is close to or even lower than that achieved by the LDP 

features on high carving rate cases. On the one hand, it is clear that the LDP features 

contribute most among these three feature components, and the 3058-D model does 

perform better than each individual component does. On the other hand, the redundancy of 

proposed 3058-D model could lead to overfitting in classification and hence influence the 

overall performance especially on detecting high carving rate cases.  

 To compare the performance of the proposed 3058-D feature model with the state-

of-the-art, the methods proposed in [40, 41] have been implemented and tested on the same 

dataset. As observed from Figure 3.3, the detection accuracy increases with the carving 

rate for all methods because more image content are removed for high carving rate cases 

and more artifacts are thus introduced. On the contrary, due to less artifacts are introduced 

in a seam carved image with low carving rate, the traces are much more difficult to detect. 

Obviously, although the performance of the method reported in [41] is slightly better on 

detecting large carving rate cases, the proposed 3058-D model outperforms other three 

methods on cases with a carving rate lower than 30%, especially for ‘5%H’ and ‘10%H’ 

on which the 3058-D model outperforms other methods by more than 10%. Next, the 

detection accuracies averaged over horizontal and vertical directions for these four schemes 

are compared in Table 3.1. It observed that on detecting 5%, 10% and 20% carving rate 

cases the best performance of [40, 41] is 66%, 75% and 87%, respectively; while the 
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proposed 3058-D feature model achieves 76%, 85% and 93%, respectively. This indicates 

that the proposed 3058-D feature model is powerful in acquiring minute traces of seam 

carving, especially at the low rate seam carving. The reason the other two compared 

methods can achieve relatively good performance on detecting high carving rate cases is 

because both of them utilize energy based features, such as average energy of the columns 

and average energy of the rows. Since pixels with low energy would have more chances to 

be deleted by seam carving process, the difference of the average pixel energy between un-

seam carved images and seam carved images could be significant when carving rate is 

sufficiently high. Therefore, energy based features could have good performance on 

detecting high carving rate cases. 

Another observation is that the proposed approach always achieves better 

performance in detecting ‘vertical carving’ (width shrinking) than that on detecting 

‘horizontal carving’ (height shrinking) at a same carving rate. The reason behind is the 

UCID database consisting of 1338 images where 453 images have a size of 512 × 384 

(height × width) and the rest 885 images are 384 × 512. Intuitively, for an image with a 

larger width than height, e.g., an image with a size of 384 × 512, more seams need to be 

carved via ‘vertical carving’ than via ‘horizontal carving’ when the carving rate is fixed. 

Table 3.1 Average Detection Accuracy of Proposed 3058-D Model versus the State-of-
the-Art. 

 5% 10% 20% 30% 40% 50% 
Ryu et al. 

(2014) 65.89% 75.15% 85.79% 92.11% 95.26% 97.25% 

Yin et al. 
(2015) 58.72% 70.22% 87.37% 95.63% 98.58% 99.51% 

Proposed 
3058-D 76.67% 85.94% 93.29% 96.59% 97.97% 98.92% 
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Therefore, ‘vertical carving’ could have more chance to introduce a significant change to 

the relation of the remaining pixels in this kind of image than ‘horizontal carving’. On the 

contrary, ‘horizontal carving’ could be more detectable than ‘vertical carving’ with a fixed 

carving rate when the original image has a larger height than width, e.g., the image with a 

size of 512 × 384. Since UCID database contains more images with a larger width, the 

performance of proposed method on detecting vertical carving is in general better than 

detecting horizontal carving.  
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(a) 

 

 
(b) 

 
Figure 3.2 Detection accuracy of each kind of feature component versus proposed 3058-
D model on detecting 12 different seam carving scenarios. 
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(a) 

 

 
(b) 

 
Figure 3.3 Detection accuracy of proposed 3058-D model versus the state-of-the-art on 
detecting 12 different seam carving scenarios. 
  



43 

3.2.2 Performance of 3058-D Model with SVM-RFE 

To improve the performance achieved by the 3058-D model, the SVM-RFE is proposed to 

apply. For detecting each type of seam carving, an extra training process is conducted for 

SVM-RFE. Following the top to bottom order of the ranking list output by SVM-RFE, a 

feature subset is formed with features selected from the original 3058-D model. Then, the 

feature subset is utilized to replace the original 3058-D feature model in the classification. 

In the experiments, four feature subsets including 100-D, 200-D, 500-D and 1000-D have 

been investigated, respectively, where ‘100-D’ stands for feature subset formed with the 

top 100 features on the ranking list, so as others. Observed from Figure 3.4, most of the 

investigated feature subsets outperform the original 3058-D model and the state-of-the-art 

on all seam carving cases except 100-D is slightly worse than proposed 3058-D model on 

cases with a carving rate lower than 30%. Notably, for the tough cases, i.e., cases with a 

carving rate less or equal to 10%, the performance monotonically increasing when more 

feature are selected. However, for cases with a carving rate larger than 20%, the fact is that 

more features do not bring more satisfactory performance, e.g., only 200 selected features 

can provide a fairly promising detection accuracy and outperform the state-of-the-art when 

carving rate is higher than 20%. After investigating the training results, we could conclude 

that a more complex model could be more likely lead to overfitting on detecting cases with 

a high carving rate, while it could have better performance on detecting low carving rate 

cases. As shown in Table 3.2, by applying the SVM-RFE, the average detection accuracies 

achieved by proposed approach on the same carving rate cases could be boosted from 76%, 

85% and 93% on detecting 5%, 10% and 20% carving rate cases to 81%, 90% and 96%, 

respectively. As illustrated in Figures 3.5, 3.6, and 3.7, each tested feature subset, i.e., 200-
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D, 500-D, and 1000-D, outperforms the proposed 3058-D model on cases with a carving 

rate lower than 30%, while the 3058-D model has a significantly better performance than 

the other two methods on these cases. As the carving rate is getting higher, the gap between 

all tested methods is getting smaller. As a conclusion, with the help of SVM-RFE, the 

performance of 3058-D feature model can be improved effectively, and 500-D gives the 

best overall performance according the experiments.  

3.2.3 Analysis of Ranking Lists 

In order to demonstrate the necessity of all three feature components, the ranking lists 

trained by SVM-RFE are analyzed. In Figure 3.8, the distribution of LDP, Markov and 

SPAM features in 200-D and 500-D feature subsets are shown. It is clearly that, even 

though the original feature set has been reduced significantly by SVM-RFE, none of these 

three feature components is excluded from the finalized feature subsets. They all contribute 

to the detection accuracies, and they are complimentary to each other as expected.  

Table 3.2 Average Detection Accuracy of Feature Subsets Selected by SVM-RFE versus 
Original 3058-D Model. 

 5% 10% 20% 30% 40% 50% 
3058-D 76.67% 85.94% 93.29% 96.59% 97.97% 98.92% 
200-D 78.37% 88.07% 94.67% 97.79% 99.13% 99.65% 
500-D 81.13% 90.26% 96.04% 98.38% 99.26% 99.62% 
1000-D 81.49% 90.72% 96.01% 98.33% 99.17% 99.64% 
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(a) 

 

 
(b) 

 
Figure 3.4 Detection accuracy of feature subsets selected by SVM-RFE versus original 
3058-D model on detecting 12 different seam carving scenarios. 
 



46 

 

 
(a) 

 

 
(b) 

 
Figure 3.5 ROCs of all compared methods on detecting seam carving at carving rate as 
5%. 
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(a) 

 

 
(b) 

 
Figure 3.6 ROCs of all compared methods on detecting seam carving at carving rate as 
10%. 
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(a) 

 

 
(b) 

 
Figure 3.7 ROCs of all compared methods on detecting seam carving at carving rate as 
20%.  
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(a) 

 

 
(b) 

 
Figure 3.8 Distribution of LDP, Markov and SPAM feature in 200-D (a) and 500-D (b) 
feature set for detecting each type of seam carving set. 
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3.2.4  Performance of Proposed Method on Mix Set 

To further investigate the robustness and generality of the proposed method, another test 

on a mixed image set was conducted. In Table 3.3, each result is also the average detection 

accuracy over 10 iterations of 6-fold cross validation. For each iteration, 1/12 samples were 

randomly selected from each of the 12 previously established seam carving image sets to 

form the mixed seam carving image set while each sample in the mix set was generated 

from different original image. From Table 3.3, it is observed that the proposed original 

3058-D model achieves 91% detection accuracy while the best result of the state-of-the-art 

is 86%. By applying SVM-RFE, the detection accuracy of proposed method can be boosted 

to 92% on the Mix set, and the feature dimensionality of proposed 3058-D model can be 

dramatically reduced. Obviously, the proposed method is more robust and general than the 

state-of-the-art even without applying feature selection.  

3.2.5 Performance of 3058-D Model on Detecting Seam Carving in JPEG Images 

As known, JPEG images, are widely used in daily life nowadays. For that reason, the 

proposed 3058-D feature model is also tested against seam carving in JPEG images.  

 The JPEG database is established based on UCID dataset with the same manner as 

presented in [41]. Each image of UCID dataset is JPEG compressed with quality factor 

(QF) equal to 70 in MATLAB, thus to form the un-seam carved JPEG image set. Then, 

Table 3.3 Detection Accuracy of all Compared Methods on Mix Set. 

 Ryu et 
al. 

Yin et 
al. 3058-D 100-D 200-D 300-D 400-D 500-D 1000-D 

Mixed 78.96% 86.31% 91.25% 90.28% 91.51% 92.22% 92.58% 92.56% 92.59% 
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each image from the un-seam carved set is decompressed and modified by seam carving 

with various carving rates, i.e., 5%, 10%, 20%, 30%, 40% and 50%, and two carving 

directions, i.e., horizontal or vertical. After that, each seam carved image is recompressed 

with the same QF as that used in the first compression. Consequently, 12 seam carved 

JPEG image sets are built.  

 From Figure 3.9, it is observed that the proposed 3058-D feature model can also 

achieve remarkable performance on detecting seam carving in JPEG images. Concretely, 

the 3058-D model can detect low carving rate cases better than the other two methods. 

Similarly to the test results on uncompressed image sets, the energy based approaches, i.e., 

[40, 41], have better performance on detecting high carving rate cases than the 3058-D 

model.  
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(a) 

 

 
(b) 

 
Figure 3.9 Detection accuracy of proposed 3058-D model versus other methods on 
detecting seam carving in JPEG images with QF=70. 
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3.2.6 Performance of 3058-D Model on Detecting Seam Carving in Rotated Images 
and Rescaled Images 

Additionally, we conducted a series of experiments to investigate if our proposed 3058-D 

model is robust to geometric transforms, i.e., image rotation and scaling. The image sets 

are generated based on our pre-established uncompressed seam carving sets. For the 

rotated-image sets, each of the un-seam carved images and seam carved images are rotated 

clockwise with an angle of 30o or 60o, respectively. For the rescaled image sets, each image 

is rescaled with a scaling factor of 0.9 and 1.1, respectively. All the process is conducted 

in MATLAB and bilinear interpolation is applied. Observed from Table 3.4 and 3.5, 

although on low carving rate cases the detection accuracies are degraded, the overall 

performance of the proposed 3058-D model is still promising. 

 

Table 3.4 Detection Accuracy of Proposed 3058-D Model on Detecting Seam Carving in 
Rotated Images. 

Angle 5%H 10%H 20%H 30%H 40%H 50%H 
30o 72.53% 83.15% 95.10% 98.37% 99.26% 99.67% 
60o 72.59% 84.19% 95.63% 98.39% 99.19% 99.66% 

 

Angle 5%V 10%V 20%V 30%V 40%V 50%V 
30o 69.96% 84.01% 95.44% 98.47% 99.26% 99.62% 
60o 71.39% 84.26% 95.65% 98.20% 99.21% 99.67% 

 

 

 

 

 

Table 3.5 Detection Accuracy of Proposed 3058-D Model on Detecting Seam Carving in 
Rescaled Images. 

Scale 5%H 10%H 20%H 30%H 40%H 50%H 
0.9 67.15% 76.51% 85.71% 91.93% 94.90% 96.66% 
1.1 71.47% 80.30% 89.68% 94.05% 96.76% 97.82% 

 

Scale 5%V 10%V 20%V 30%V 40%V 50%V 
0.9 66.77% 74.84% 86.18% 92.90% 95.96% 97.77% 
1.1 74.73% 82.09% 91.86% 95.28% 96.85% 98.21% 
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3.3 Conclusion 

In this chapter, an advanced statistical feature model consisting of LDP features, Markov 

features and SPAM features is proposed to detect seam carving in uncompressed grayscale 

images. The experimental results have indicated the proposed 3058-D feature model 

outperforms the state-of-the-art on detecting the low carving rate images. By applying 

SVM-RFE, the proposed approach can be improved and the detection accuracy on low 

carving rate cases such as 5%, 10% and 20% is boosted to 81%, 90% and 96%, respectively, 

while the prior state-of-the-art has 66%, 75% and 87%, respectively, accuracy on the same 

cases. The experimental results also illustrate that the proposed 3058-D feature model are 

capable to detect seam carving process in JPEG images, and robust to geometrical 

transforms, i.e., image rotation and scaling.  
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CHAPTER 4 

A HYBRID FEATURE MODEL FOR SEAM CARVING DETECTION  

 

So far, two different feature models have been presented in this dissertation to reveal the 

process of seam carving applied to digital images. By seizing the statistical variation of 

energy distribution caused by seam carving, the first proposed method, i.e., the 96-D 

feature model, is able to differentiate seam carved images from non-seam carved ones. 

From a different perspective, the 3058-D model is later presented to catch the changes of 

the relationship between neighboring pixels so as to decide whether an image has gone 

through seam carving or not. Both methods have been achieved remarkable performance 

in the experimental works. In this chapter, an advanced feature model is designed based on 

the ideas behind aforementioned two feature models so as to further improve the detection 

accuracy against seam carving at low carving rate, e.g., such as 5% and 10%. To construct 

the proposed model, the features included in the 3058-D model are all adopted, and 180 

features are inspired by the 96-D model. By introducing twelve new features to capture the 

energy changes of the optimal quarter and three-quarter seams, and applying the energy 

features extracted from spatial domain, the dimensionality of the 96-D model has been 

increased to 180. According to the experimental results, the proposed hybrid feature model 

has achieved remarkable performance on detecting low carving rate cases. The detail of 

the proposed feature model is introduced in Section 4.1. In Section 4.2, the experimental 

results are reported, then the conclusion is made in Section 4.3.  
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4.1 Proposed Feature Model  

As proved in Chapter 3, it is effective on determining whether a digital image has been 

seam carved or not by employing powerful features which can reflect the variation of 

relationship between neighboring pixels, such as the proposed 3058-D feature model. Also, 

the 96-D feature model has shown the efficiency on tracking the trace of seam carving in 

an image through investigating the changes of energy distribution. Although both methods 

have been achieved better performance comparing with the state-of-the-art in the 

conducted experimental works, the performance on detecting seam carved images with low 

carving rate, such as 5% and 10%, is still need to be further improved because these cases 

are considered more important, and more general in real life. Therefore, an advanced 

feature model, i.e., 3238-D feature model, is presented in this chapter for seam carving 

detection.  

 The proposed 3058-D feature model consists of two groups of features: one group 

of features is utilized for monitoring the statistical changes of relationship between local 

pixels, while another group is utilized for measuring the changes of energy distribution of 

an image. To form the first group of features, the previously proposed 3058-D model is 

adopted due to its remarkable performance as reported in Chapter 3. Noted, since it has 

been also indicated in the experiment works that the performance of the 3058-D model 

could not be further improved by adding more similar features, such as LDP features with 

higher orders or larger radius, the 3058-D model is kept without any changes accordingly 

(refer to Chapter 3).  

 As presented in Chapter 2, in order to obtain the 96-D feature vector, the input 

image is firstly pre-processed by four different LDP operators to produce four LDP images. 
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Then, 24 features are extracted from each LDP image, thus total 96 features are acquired. 

In the proposed feature model, the way how the 96 features are extracted is also followed 

and the 96 features are all included. Besides, in addition to the set of 24 features, another 

12 newly designed features are proposed to be extracted from each LDP image as well. As 

illustrated in Table 4.1, six features are proposed to measure the energy of the optimal 

quarter seams in the image, while the other six features are measuring the energy of the 

optimal three-quarter seams. Therefore, a 36-D feature vector is acquired for each LDP 

images. Furthermore, a set of 36 features is extracted from the original input image. 

Consequently, five sets of 36 features, as shown in Figure 4.1, can be obtained for each 

input image to capture the changes caused by seam carving from the view of energy 

distribution, and the obtained total 180 features form the second group of features in the 

proposed feature model.   

 By combining the above presented two groups of features, i.e., 3058-D and 180-D, 

the proposed feature model is formed with a dimensionality as 3238 in total, and whole 

framework is illustrated in Figure 4.2.  
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Figure 4.1 Feature formation procedure of proposed 180 energy features. 
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Figure 4.2 Framework of proposed 3238-D feature model.  
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Table 4.1. Description of 12 Energy Features  
 

Feature Description 

1. Quarter Horizontal Seammax 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑀𝑀(𝑖𝑖,
𝑛𝑛
4

) 

2. Quarter Horizontal Seammin 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑀𝑀(𝑖𝑖,
𝑛𝑛
4

) 

3. Quarter Horizontal Seammean 
1
𝑚𝑚
� 𝑀𝑀(𝑖𝑖,

𝑛𝑛
4

)
𝑚𝑚

𝑖𝑖=1
 

4. Quarter Vertical Seammax 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 𝑀𝑀(
𝑚𝑚
4

, 𝑖𝑖) 

5. Quarter Vertical Seammin 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 𝑀𝑀(
𝑚𝑚
4

, 𝑖𝑖) 

6. Quarter Vertical Seammean 
1
𝑛𝑛
� 𝑀𝑀(

𝑚𝑚
4

, 𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
 

7. Three-Quarter Horizontal Seammax 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑀𝑀(𝑖𝑖,
3𝑛𝑛
4

) 

8. Three-Quarter Horizontal Seammin 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑚𝑚 𝑀𝑀(𝑖𝑖,
3𝑛𝑛
4

) 

9. Three-Quarter Horizontal Seammean 
1
𝑚𝑚
� 𝑀𝑀(𝑖𝑖,

3𝑛𝑛
4

)
𝑚𝑚

𝑖𝑖=1
 

10. Three-Quarter Vertical Seammax 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 𝑀𝑀(
3𝑚𝑚
4

, 𝑖𝑖) 

11. Three-Quarter Vertical Seammin 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖=1𝑛𝑛 𝑀𝑀(
3𝑚𝑚
4

, 𝑖𝑖) 

12. Three-Quarter Vertical Seammean 
1
𝑛𝑛
� 𝑀𝑀(

3𝑚𝑚
4

, 𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
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4.2 Experimental Results 

To evaluate the performance of proposed 3238-D feature model, the same database utilized 

in Chapters 2 and 3, i.e., 12 different seam carving scenarios and each has 1338 

uncompressed grayscale images, is employed. Furthermore, since it has been indicated in 

the conducted experiments of previous chapters that both 96-D and 3058-D models 

outperform the state-of-the-art, the proposed 3238-D model is only compared with the two 

models aforementioned, and the enhanced model of 3058-D, i.e., 500-D feature model 

which has been presented in Chapter 3. The reason 500-D model is picked for comparison 

is that it has been achieved the best results as reported in Chapter 3. Lib-SVM with linear 

kernel is adopted as the classifier, while all reported accuracies are based on the average 

results of 10 times’ 6-fold validation strategy.  

 As illustrated in Figure 4.3, it is observed that the proposed 3238-D model is much 

more effective versus 96-D model and 3058-D model on detecting seam carving images 

with a carving rate lower than 30%. In particular, as reported in Table 4.2, 96-D and 3058-

D can only achieve 73.03% and 76.67% average detection accuracies on detecting seam 

carving with a carving rate as 5%, respectively, while the performance has been boosted to 

85.75% by the proposed 3238-D model. Similarly, the average detection accuracy achieved 

by 3238-D is 6% higher than the best of 96-D and 3058-D on detecting cases with a carving 

rate equal to 10%. Moreover, 3238-D outperforms 500-D on detecting all designed seam 

carving scenarios, and the average detection accuracies achieved by 3238-D on detecting 

5% and 10% carving rate cases are 4% higher that achieved by 500-D. The ROC curves 

shown in Figures 4.4 and 4.5 also indicated that the proposed 3238-D model is more 
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reliable and effective on revealing seam carving at low carving rate versus the other three 

models as expected.  

 It is also noted, although the 3238-D model has been dominated on discriminating 

seam carved images at low carving rate from un-carved images, the 96-D model have been 

achieved almost equal performance, or even better, as that achieved by 3238-D on detecting 

high carving rate cases, particularly cases at a carving rate as 40% and 50%. To reveal the 

reason behind such observation, the performance has been achieved by the 96-D model, 

the 3058-D model, and the 3238-D model during the training is investigated and reported 

in Table 4.3. As shown in Table 4.3, the 3238-D model has achieved the best training 

performance, and the training accuracy reaches 100% when carving rate is higher than 20%. 

Obviously, because the 3238-D model is more advanced and more complex than the 98-D 

model, the overfitting is more significant when 3238-D is applied. It should be also aware 

that even though the 3238-D over modeled the training data, it has outperformed other 

existing methods on most of designed seam carving scenarios, especially when the carving 

rate is as low as 5% or 10% which are considered more general in real life and more 

difficult to be detected.  
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Table 4.2 Average Detection Accuracy of Proposed 3238-D Feature Model versus the 
State-of-the-Art. 

 5% 10% 20% 30% 40% 50% 
96-D 73.03% 88.88% 97.78% 99.44% 99.91% 99.96% 

3058-D 76.67% 85.94% 93.29% 96.59% 97.97% 98.92% 
500-D 81.13% 90.26% 96.04% 98.38% 99.26% 99.62% 
3238-D 85.75% 94.87% 98.91% 99.65% 99.89% 99.94% 

 

 

Table 4.3 Average Training Accuracy of Proposed 3238-D Feature Model versus the State-
of-the-Art. 

 5% 10% 20% 30% 40% 50% 
96-D 73.76% 89.69% 98.14% 99.68% 99.94% 99.98% 

3058-D 89.47% 96.01% 99.09% 99.73% 99.99% 100.00% 
3238-D 96.46% 99.43% 99.98% 100.00% 100.00% 100.00% 
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(a) 

 

 
(b) 

 
Figure 4.3 Performance of proposed 3238-D model versus the state-of-the-art on detecting 
12 different seam carving scenarios. 
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(a) 

 

 
(b) 

 
Figure 4.4 ROCs of proposed 3238-D feature model and other compared methods on 
detecting seam carving with carving rate as 5%. 
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(a) 

 

 
(b) 

 
Figure 4.5 ROCs of proposed 3238-D feature model and other compared methods on 
detecting seam carving with carving rate as 10%. 
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4.3 Conclusion and Discussion   

In this chapter, an advanced model is designed to further improve the performance of the 

state-of-the art on detecting the process of seam carving applied to digital images at low 

carving rate. In order to catch the imperceptible traces left by low carving rate seam carving, 

a 3258-D feature vector is proposed, in which 3028 features are adopted to capture the 

changes of relationship between neighboring pixels, and 180 features are utilized for 

detecting the changes of energy distribution. Based on the conducted experimental works, 

the average accuracies of detecting a carving rate as 5% or 10% has been boosted from 

76.67% (achieved by the 3058-D model) and 88.88% (achieved by the 96-D model) to 

85.75% and 94.87%. Although it has been observed that overfitting is more significant 

when the feature model is more complex, the performance of the proposed 3258-D model 

is still better than the state-of-the-art on most of the designed seam carving scenarios. The 

possible way to further improve the proposed 3258-D model and to reduce overfitting is to 

utilize advanced feature reduction techniques, such as SVM-RFE, and it is very likely to 

be succeeded based on experiences as presented in Chapter 3.     

 

 

 

 

 

 

 

 



67 

CHAPTER 5 

A CONVOLUTIONAL NEURAL NETWORK DESIGNED FOR  

SEAM CARVING DETECTIION 

 

As introduced in previous chapters, forensic research of detecting seam carving is kept 

pushing forward. However, most of the existing methods designed for seam carving 

detection, including the three methods presented in this dissertation, focus on feature 

engineering; and classifiers have been applied to map the features to class labels to ensure 

better performance, as shown in Figure 5.1. Although the detection accuracy has been 

boosted significantly since this forensic subject was addressed, the optimal performance is 

undoubtedly restricted by the handcrafted features. Therefore, a system with more machine 

self-learning and less manual feature designing is assumed to have better performance than 

conventional method. Inspired by the tremendous success achieved by deep learning on 

computer vision and image forensics, a deep learning framework, more specifically, a deep 

convolutional neural network (CNN) based framework, is proposed in this chapter to detect 

seam carving applied to digital images. Unlike the existing seam carving detection methods, 

whose feature extraction and pattern classification are two separate procedures, the 

proposed CNN-based deep learning architecture jointly optimizes these two procedures. In 

 

Input
Image

Feature
Extraction Classification Seam

Carved?
 

Figure 5.1 General framework of exiting blind passive forensic methods for seam 
carving detection. 
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the designed architecture, six convolutional modules are employed to reveal the traces left 

by the process of seam carving, and a pre-processing layer is adopted to further improve 

the performance. The experiments conducted on a large dataset have demonstrated that, 

compared with the current state-of-the-art, our CNN-based method significantly boosts the 

classification accuracies at the medium and low seam carving rates, and retains near-to-

perfect classification performance at high seam carving rates. 

 

5.1  Background of Deep CNN  

In 1989, a neural network named ‘Net-5’ was designed for a designed handwritten digit 

recognition problem [51]. The idea behind this structure is based on two major concerns: 

reducing the number of free parameters to gain better generalization, and forcing hidden 

units to learn from local information to achieve better results. The hidden layers in the Net-

5 are composed of numbers of feature maps, while each unit in one feature map is 

connected to units within a size fixed neighbourhood, for instance 3×3, on the input plane. 

Therefore, the number of free parameters is largely reduced comparing with traditional 

fully connected neural networks. Furthermore, weight sharing strategy is applied that is all 

units in a feature map share the same set of weights, and subsampling is utilized as well to 

reduce the complexity of the network. Thus, much less parameters are considered during 

the computation. Besides, back propagation technique [52] is also employed to train the 

neural network. According to the reported results, Net-5 has achieved the best performance 

among five compared structures. Noted, Net-5 is the first CNN as known and the idea 

behind is still the essence of today’s various deep CNNs. Later in [53], the above 

introduced work was applied on recognizing handwritten digits taken by U.S. Mail, and 
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the network has been extended from Net-5’s two hidden layers to three hidden layers, 

including two convolutional layers, and one fully connected layer. Although the number of 

convolutional layer was not increased, the number of kernels adopted, that is the set of in 

each hidden layer are significantly increased. The results turned out to be the state of the 

art. In [54], another CNN named ‘LeNet-5’ is proposed for handwritten character 

recognition. However, the network is still shallow. The first deep CNN architecture called 

‘AlexNet’ was presented in 2012 [55]. This network has achieved remarkable success in 

the ILSVRC-2012 competition which is considered as a huge step to the machine learning 

society. In ‘AlexNet’, five convolutional layer are employed to generate hierarchical 

feature maps. Besides, max-pooling is applied to reduce the size of the network. To 

increase non-linearity, ReLU is utilized in ‘AlexNet’ as well. Finally, ‘AlexNet’ achieved 

a top-5 test error rate of 15.3% on the ImageNet database [56] while the second-best result 

was 26.2%.  

 After the big success of ‘AlexNet’, deep CNN has aroused tremendous interests 

and several successful CNNs have been presented for image classification, such as ‘ZF Net’ 

[57], ‘VGGNet’ [58], ‘GoogLeNet’ [59], ‘ResNet’ [60], etc. Not only the research of image 

classification, deep CNN has been widely spread to other related areas and achieved 

successes, such as face recognition, human action recognition, and steganalysis [61-63] as 

well.  

 By reviewing the proposed CNNs, most of the networks are based on a similar 

structure that is a hierarchical architecture starts with multiple stages of convolutional 

modules and ends with a classification module. A common convolutional module includes 

a convolutional layer, an activation layer, and a pooling layer. The convolutional layer is a 
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trainable filter bank which can be considered as a feature extractor. The activation layer 

brings non-linearity to the network. The pooling layer reduces the quantity of features 

extracted from immediately prior convolutional layer to avoid overfitting. By stacking a 

series of convolutional modules, hierarchical feature maps are extracted and then fed into 

the classification module composed of one or more fully-connected layers, and the softmax 

layer with cross-entropy loss. Through back-propagation, weights and biases in 

convolutional layers will be optimized so as to reduce the training loss, and the power of 

the network will then be enforced to predict the labels of unseen data. 

 

5.2  Proposed Deep CNN  

The overall architecture of the proposed CNN is illustrated in Figure 5.2. Instead of directly 

feeding the original images into the networks, a high-pass filtering (HPF) layer with kernel 

size of 5×5×1 [61-63] (height × width × number of input feature maps) is employed to pre-

process input images. The reasons of doing so are: 1) The operation of seam carving will 

delete low energy seams from the image which could generate slightly but somehow 

different textures. Therefore, the discriminative information carried by the original image 

could be amplified by the high-pass filtering; 2) According to our conducted experiments, 

the performance of the deep CNNs decreases significantly while HPF layer is excluded. 

Based on these consideration, HPF layer has been employed as pre-processing in our 

proposed deep CNN architecture.  
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Figure 5.2 The proposed CNN architecture. Parametric setting of each layer is included in 
the corresponding box. 
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 Following the HPF layer is the CNN hierarchical structure which consists of six 

convolutional modules and one fully-connected linear classification module. In the first 

convolutional layer (Conv1), the input, i.e., the pre-processed input image, is to be filtered 

by 8 kernels of size 3×3×1 each. In the following convolutional layers (Conv2 – Conv6), 

there are 16 kernels of size 3×3×8 in Conv2, 32 kernels of size 3×3×16 in Conv3, 64 kernels 

of size 3×3×32 in Conv4, 128 kernels of size 3×3×64 in Conv5 and 256 kernels of size 

3×3×128 in Conv6, respectively, so as to generate hierarchical feature maps.   

 Different from the introduced conventional CNN module, an additional layer, 

called batch normalization (BN) layer [64], is employed between each convolutional layer 

and the following activation layer. As the outputs generated by the convolutional layer are 

normalized by the corresponding BN layer, the so called ‘internal covariate shift’ [64] is 

reduced which helps to accelerate the training speed and to reduce the influence caused by 

poor initialization.   

 To increase the non-linearity of the proposed deep architecture, rectified linear units 

(ReLU) are served as the non-linear activation functions in each of the convolutional 

modules, as shown in Figure 5.3. Comparing with other popular non-linear functions, such 

as hyperbolic tangent and Sigmoid, ReLU has relatively simple form, i.e., gradient is 1 for 

positive inputs and 0 for negative inputs. Such characteristics could accelerate the speed 

on training deep neural networks, and also avoid the vanishing of gradient happens during 

the training stage [65].  

 As the process of seam carving is to remove lower energy pixels, those higher 

energy pixels which normally have large intensity value are more likely remained in the 

image. Because of this characteristics, focusing on the maximum pixel value of a local 
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region, which is normally considered in computer vision, is intuitively insufficient to 

discover the trace of seam carving. Therefore, average pooling is employed in the proposed 

deep CNN framework for spatial sub-sampling instead of max pooling popularly utilized 

in computer vision. In the last pooling layer, namely, in Pool6, the kernel size for pooling 

is fixed to the spatial size of the input feature maps. Therefore, each input feature map will 

be aggregated to one single number, which serves as a feature for the classification. As 256 

feature maps are inputted into pool6, 256 features are generated and fed into the fully-

connected linear classification module for each image.  
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𝑥𝑥, 𝑥𝑥 > 0 

 
Figure 5.3 Rectified linear unit (ReLU). 
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5.3  Experimental Results 

In this work, we also implemented the seam carving algorithm [29] in MATLAB and 

established 12 seam carved image sets using the BOSSbase v1.01 [66], a well-established 

image database to benchmark steganography and steganalysis algorithms. It contains 

10,000 never-compressed grayscale images with the size of 512×512. For each image in 

the BOSSbase, the seam carving algorithm reduced the image height by 5%, 10%, 20%, 

30%, 40% and 50%, respectively. Similarly, by scaling the width in the same manner, 

totally 12 different seam carved images were obtained for each image in the BOSSBase. 

Therefore, 12 seam carved sets were created and each contains 10,000 seam carved images, 

denoted as ‘5%H’, ‘10%H’, ‘20%H’, ‘30%H’, ‘40%H’, ‘50%H’, ‘5%V’, ‘10%V’, ‘20%V’, 

‘30%V’, ‘40%V’, and ‘50%V’, respectively. To evaluate the performance of the proposed 

CNN architecture, the experiments were conducted to detect the 12 designed seam carving 

cases.  

 In the experiments, the proposed CNN architecture was implemented using the 

Caffe toolbox [67], and stochastic gradient descent was applied to train all the CNNs with 

the batchsize of 64 images. We fixed the momentum as 0.9 and the weight decay as 0.0005. 

The learning rate was initialized to 0.001 and forced to decrease 10% after each 5000 

iterations. To fairly compare the performance with the state-of-the-art, we not only 

implemented and tested methods proposed by Ryu et al. [40] and Yin et al. [41], but also 

examined the performance of the 3238-D feature model which has been proposed in 

Chapter 4. Each of the three compared methods was tested on the 12 seam carving cases 

with linear SVM as the classifier [46]. Additionally, 2-fold cross validation was applied 

throughout the experiments. 
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 As shown in Table 4.1, the proposed CNN architecture performs significantly better 

than the two state-of-the-art of seam carving detection when the scaling rate is below 30%. 

In particularly, our method achieves 90% and 93% detection accuracies when testing ‘5%H’ 

and ‘5%V’, which is 20% higher than the performance achieved by Ryu et al.’s and Yin et 

al.’s methods. It is also observed that the 3238-D model outperforms the on those low 

carving rate cases although it still underperforms the proposed deep CNNs. Notably, the 

detection accuracy increases monotonically with the carving rate for all tested methods, 

and the gap between the proposed method and the tested prior arts is getting smaller as 

well. The reason behind is that, overfitting is more significant for the methods which are 

more complicated and more powerful on modelling, such as proposed deep CNN and 3238-

D as well, on detecting easy cases, i.e., detecting images in which a large amount of seams 

are carved out. Performance of the proposed CNN architecture without the HPF layer is 

also investigated. As illustrated in Figure 5.4, the detection accuracy is dramatically 

boosted by employing the HPF layer, particularly for seam carved images at low carving 

rate, such as ‘5%H’ and ‘5%V’. Furthermore, performance of the proposed CNN with a 

fixed kernel size as 3×3 or 7×7 for all included convolutional layers are investigated, 

respectively. As observed from Figures 5.5, 5.6, 5.7, and 5.8, by setting kernel size as 7×7, 

the CNN has achieved the lowest training loss than other four configurations. However, 

the proposed CNN, in which kernel size for all convolutional layers is set as 5×5, achieves 

equal or lower error rates than 7×7 in the testing. Moreover, the larger the kernel size is, 

the more complex the deep CNN is to be, and more computational resources are needed. 

Therefore, kernel size as 5×5 is applied to each convolutional layers in the proposed CNN.    
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 In Figures 5.9, 5.10, and 5.11, three samples are presented, and the feature maps 

learnt by the proposed deep CNNs are visualized as heat maps. The larger the value is in 

the heat map, the more suspicious the region is   It is observed that the trained deep neural 

network can effectively discover the region where the seams are deleted,  by learning from 

the seam carved copies, while irrelevant regions are learnt from the non-seam carved 

images. This has also illustrated the effectiveness of the proposed CNN architecture on 

detecting seam carving.   

 

 

Table 5.1 Average Detection Accuracy of Proposed CNN versus the State-of-the-Art. 

 5%H 10%H 20%H 30%H 40%H 50%H 
Ryu et al. 65.92% 72.88% 82.78% 90.31% 95.01% 97.77% 
Yin et al. 70.26% 83.60% 94.35% 97.90% 99.16% 99.71% 
3238-D 85.23% 92.29% 96.22% 97.84% 98.51% 98.99% 
CNN 90.37% 95.18% 97.84% 98.76% 99.21% 99.56% 

 

 5%V 10%V 20%V 30%V 40%V 50%V 
Ryu et al. 71.13% 79.83% 88.36% 93.18% 96.08% 97.79% 
Yin et al. 58.74% 71.50% 85.68% 93.31% 97.25% 98.97% 
3238-D 86.10% 93.64% 97.50% 98.74% 99.24% 99.52% 
CNN 93.99% 96.71% 98.55% 99.08% 99.45% 99.60% 
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(a) 

 

 
(b) 

 
Figure 5.4 Performance of proposed CNN versus the similar architecture without HPF 
layer (noHPF) on detecting 12 seam carving scenarios. 
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(a) 

 

 
(b) 

 
Figure 5.5 Training loss and testing error rate of four compared architectures on detecting 
horizontal seam carving with carving rate as 5%. 
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(a) 

 

 
(b) 

 
Figure 5.6 Training loss and testing error rate of four compared architectures on detecting 
vertical seam carving with carving rate as 5%. 
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(a) 

 

 
(b) 

 
Figure 5.7 Training loss and testing error rate of four compared architectures on detecting 
horizontal seam carving with carving rate as 10%. 
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(a) 

 

 
(b) 

 
Figure 5.8 Training loss and testing error rate of four compared architectures on detecting 
vertical seam carving with carving rate as 10%. 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.9 (a) The ground truth of carved seams shown in the original sample image with 
carving rate as 5%; (b) The heat map learnt from the original non-seam carved image; (c) 
The heart map learnt from the seam carved copy. 
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(a) 

 
(b) 

 
(c) 

 
 
Figure 5.10 (a) The ground truth of carved seams shown in the original sample image with 
carving rate as 5%; (b) The heat map learnt from the original non-seam carved image; (c) 
The heart map learnt from the seam carved copy. 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.11 (a)The ground truth of carved seams shown in the original sample image with 
carving rate as 5%; (b) The heat map learnt from the original non-seam carved image; (c) 
The heart map learnt from the seam carved copy. 
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5.4  Conclusion 

In this chapter, a convolutional neural network architecture has been described and utilized 

for seam carving detection. It is the first deep learning framework on this research topic as 

far as we know. Indicated by experimental results, the proposed deep learning method can 

successfully detect seam carving in uncompressed digital images, and outperform the state-

of-the-art in most of the experiments. In particular, the proposed deep convolutional neural 

network has achieved remarkable performance on detecting low carving rate cases, i.e., 5% 

and 10% carving rate cases. However, it should be also noticed that the proposed deep 

CNN could underperform the prior arts on detecting seam carving with extremely high 

carving rate due to the overfitting, and the performance of deep neural network on detecting 

seam carving in compressed images, i.e., JPEG images, needs to be further investigated. 

Therefore, the future work will be focusing on the remaining questions. Overall, through 

our work, it has been shown that deep learning could be a new direction for the forensic 

research of seam carving detection, and it could be far more successful than we have 

achieved.   
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CHAPTER 6 

SUMMARY 

 

6.1 Contributions 

The contributions of this dissertation can be concluded as follows. 

 1. Four passive blind forensic methods have been proposed for seam carving 
detection, and the performance achieved by the current state-of-the-art in this area has been 
successively improved. Especially the accuracies in detecting seam carved images with a 
carving rate as 5% or 10%, which are most difficult for seam carving can now be 
successfully detected. 

 2. The local derivative pattern (LDP) has been firstly introduced to this forensic 
research. The remarkable performance has been achieved in the comprehensive 
experimental works. They are reported in Chapters 2, 3, and 4 respectively, which have 
indicated that the effectiveness and potential of LDP on detecting seam carving.  

 3. Support vector machine based recursive feature elimination (SVM-RFE) is 
firstly applied for feature selection in the research on seam carving detection. With the 500 
features selected by using SVM-RFE, the performance achieved by the proposed 3058-D 
feature model has been significantly improved.  

 4. The deep neural network, specifically deep convolutional neural network, has 
been designed for and utilized to detect seam carving. The experimental results have 
indicated that the deep learning technologies could be the ultimate solution for this forensic 
research. 
 

6.2 Discussion and Future Works 

From the first three pieces of the proposed works, it can be concluded that a hand designed 

feature model comprised of various types of advanced features could have better 

performance than any individual on detecting seam carving with low carving rate. It is 

because the difference between un-seam carved images and seam carved images at low 

carving rate is almost imperceptible which makes these two classes of images extremely 

hard to be separated. Thus, a more powerful feature model, generally to be complex, could 
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have more chance to perform better than a less complex feature model on detecting such 

difficult seam carving scenarios. It should also be noticed that, more significant overfitting 

is a potential weakness of complex feature models. Although the detection accuracies 

achieved on UCID database has been improved significantly by this dissertation research, 

it is believed that the performance on detecting low carving rate seam carving can be further 

improved. Therefore, to design a more advanced feature model which has better overall 

performance could be an important future work in this field.  

 In Chapter 5, a deep learning based method, specifically a convolutional neural 

network based architecture, has been proposed for detecting seam carving applied to 

uncompressed images. This is the first piece of work which has successfully applied deep 

learning to this forensic topic. However, due to the limited computational resources, the 

design of the deep network is somehow constrained. Hence, it is believed that the potential 

of this novel technique on seam carving detection has not been fully discovered yet. 

Modifications, such as increasing the depth of the CNN, increasing the channels of each 

convolutional layer, enlarging the size of receptive field, could all possibly enhance the 

current network, and these could be future research works. 

 Although a few results have been reported in Chapter 3 for detecting seam carving 

applied to JPEG images, the research work of seam carving detection in JPEG domain that 

has been done in this dissertation is far from enough. As JPEG is widely utilized nowadays, 

it is important to provide robust and efficient forensic techniques to detect seam carving 

applied to JPEG images. This should be addressed in the future research. 
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