New Jersey Institute of Technology Digital Commons @ NJIT

Biology Syllabi NJIT Syllabi

Fall 2018

BIOL 640-001: Cellular Neurophysiology

Dirk Bucher

Follow this and additional works at: https://digitalcommons.njit.edu/bio-syllabi

Recommended Citation

Bucher, Dirk, "BIOL 640-001: Cellular Neurophysiology" (2018). Biology Syllabi. 22. https://digitalcommons.njit.edu/bio-syllabi/22

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Biology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

BIOLOGY 640-001: Cellular Neurophysiology

INSTRUCTOR:	Dr. Dirk Bucher	EMAIL:	bucher@njit.edu
OFFICE:	420G Central King Bldg.	OFFICE HOURS:	W, F: 2:30PM - 3:30PM
Course Schedule:	W, F: 1:00PM – 2:20PM ■ CKB 114	COURSE WEBSITE:	http://moodle.njit.edu/

COURSE DESCRIPTION: This course will examine the nervous system from a functional perspective. The goal is to understand how ion channels and other components of nerve cells give rise to electrical excitability and synaptic function, and how those properties are then used for coding information and higher order function in the nervous system.

Техтвоок:

"From Neuron to Brain", 5th Ed, Nicholls et al.; Sinauer 2012; ISBN 9780878936090. Be sure to have access to Moodle2, login with UCID).

LEARNING OUTCOMES:

STUDENTS WILL BE ABLE TO:

- To understand in some detail how electrical and chemical signaling within and between nerve cells works.
- To understand the experimental and theoretical approaches used to study neurophysiology, both for basic research and medical diagnostics.
- To understand fundamental principles of how the nervous system uses electrical activity to encode and decode information about the outside world and internal states.
- To further develop critical thinking and communication skills. This will be measured in the ability to interpret
 graphs, experimental designs, and problem discussion. Students will be required to participate in instructorled discussions of the material as they analyze problems and propose possible mechanisms used by
 neurons to solve them. Weekly quizzes will be used to test some of these goals and reinforce the learning of
 the material.

IMPORTANT RULES AND COURSE POLICIES:

Academic Integrity: The <u>Academic Integrity Code</u> strictly enforced!
Electronic Devices: The use of cell phones and other electronic devices during class or exam times is prohibited.
Make-Up Exams and Quizzes: If you miss an exam due to a valid medical excuse you need to provide a doctor's note or other valid and verifiable documentation. The grade of exams missed for a valid reason will be determined on a case-by-case basis.

BIOLOGY 640-001: Cellular Neurophysiology

GRADING POLICY: The final grade in this course is determined as follows:

ASSIGNMENT	PERCENTAGE
Participation & Weekly Quizzes	25%
Midterm Exam I:	20%
Midterm Exam II:	20%
Final Exam:	35%
TOTAL:	100%

GRADE SCALE:			
А	88.1-100		
B+	80.1-88		
В	73.1-80		
C+	66.1-73		
С	60.1-66		
F	0-60		

TENTATIVE Course Outline: Class will meet twice every week, unless otherwise noted.

	LECTURE TOPICS
Week 1	Introduction and course overview - What is Neurophysiology?
week i	Section 1: Intrinsic neuronal properties
Week 2	[Sept. 10: last day to Add/Drop a class] Neurons and glia cells: Morphological and molecular diversity.
	Membrane potential I: Ions, channels, Nernst Equation.
Week 3	Membrane potential II: GHK equation and equivalent circuit
	Passive properties: Input resistance, capacitance, length constant, time constant.
Week 4	Action potential I: Ionic mechanisms
week 4	Action potential II: Hodgkin-Huxley formalism, propagation, myelination
Week 5	Diversity of voltage-gated channels: molecular identities and effect on neuronal firing
	Diversity of voltage-gated channels: molecular identities and effect on neuronal firing
Week 6	Section 2: Synaptic signaling
week o	Review, Q&A session
	MIDTERM EXAM I
Week 7	Electrical and chemical transmission: Gap junctions, crayfish escape system, frog neuromuscular junction.
Week 8	Central synapses, small molecule transmitters and ionotropic receptors.
	Metabotropic transmission, GPCRs, 2nd messenger signaling.
Week 9	Transmitter release I: Quantal analysis.
week 9	Transmitter release II: SNARE complex, vesicle pools, postsynaptic receptors.
Week 10	Transmitter types: Synthesis, transport, release, re-uptake and degradation.
	Types of communication: Transmitters, neuromodulators, neurohormones.
Week 11	Synaptic plasticity I: Short-term synaptic dynamics.
vveek 11	Synaptic plasticity II: Long-term synaptic dynamics. Aplysia gill withdrawal, LTP, LTD
Week 12	MIDTERM EXAM II

	FINAL EXAM WEEK: DECEMBER 15-21, 2018
week 15	READING DAY
Week 15	Review, Q&A session
	Motor coding: posture and movement control
Week 14	Visual and chemosensory coding
	Somatosensory and auditory coding
Week 13	Section 3: Sensory transduction mechanisms and simple coding principles Sensory transduction, modalities, coding principles.
	THANKSGIVIVING BREAK, NO CLASS! 11/23-26