New Jersey Institute of Technology Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Fall 2019

FED 101-L61: Fundamentals of Engineering Design

B. S. Mani

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Mani, B. S., "FED 101-L61: Fundamentals of Engineering Design" (2019). *Mechanical and Industrial Engineering Syllabi*. 16. https://digitalcommons.njit.edu/mie-syllabi/16

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

ME - FUNDAMENTALS OF ENGINEERING DESIGN

FED 101 - ME TRACK

September 1, 2019

Fall 2019

COURSE ADMINISTRATIVE INFORMATION

Course Name:	ME – FUNDAMENTALS OF ENGINEERING DESIGN
Course Number:	FED 101-L60 (95170) / L61 (95171) / L62 (95172)
Class meeting Room:	MALL FENS160 / PC36 / PC40
After Class office room:	MEC 330
Instructor's Name:	B. S. Mani
Instructor's Téléphone:	(973) 596-3339 (office)
	(630) 345-0558 (mobile)
Instructor's e-mail id:	<u>mani@njit.edu</u>
Class meeting hours:	08:30AM–11:20 AM (M: L60, W: L61, R:L62)
After Class office hours:	Mondays & Thursdays, 11:30 AM to 12:55 PM
	Other times by reservation of open time slots
Complaints / Compliments:	Dr. Joga Rao (973) 596-5601
	<u>i.j.Rao@njit.edu</u>

COURSE DESCRIPTION

Study technical graphics and the computer as a technical drawing tool; Introduction to projections and multiview drawings and visualization; Discuss geometry commonly used in engineering design graphics, orthographic projections; Dimensioning techniques, tolerancing and introduction to auxiliary and sectional views; Apply software program Creo Parametric 6.0 (previously known as Pro/Engineer/Wildfire) to various problems.

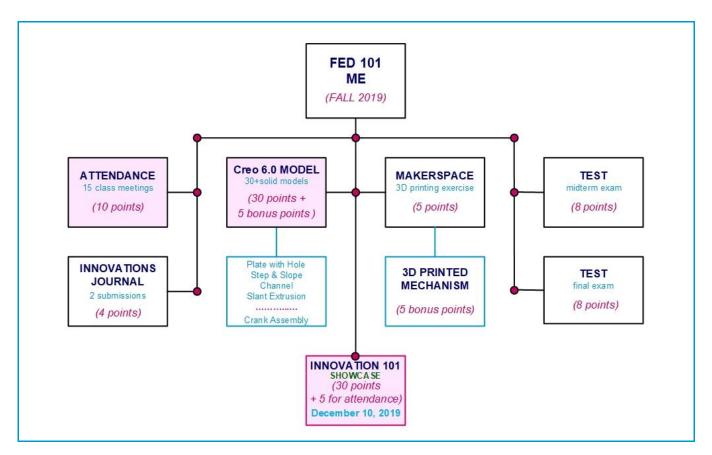
GENERAL REQUIREMENTS

- Regular Attendance to all lecture classes is required
- Paying attention to lectures during class is expected
- ALL assignments shall be submitted on schedule
- Penalty for late submission: 33.3%
- Final (ONLY final) version of Creo 6.0 models shall be submitted in soft copy to 'CANVAS' student folder
- Reasonably equal Team Participation in Team Project is required for a grade
- Unequal Team Participation in Team Project will affect the grade of ALL the members of a team
- Team working for all general class / home work is highly encouraged
- Submission of the Final Team Project is mandatory to receive a final course grade
- Taking the Mid Term Test is mandatory to receive a final grade in the course
- Web browsing during class with links NOT connected with classwork will NOT be allowed
- IPOD use inside class room, during class will NOT be allowed

- Cell Phone or i-Phone use or T'xting from inside class room, during class is NOT allowed and not tolerated
- Students browsing NON-CLASS links and/or e-mail and/or other forms of text messages for non-class needs during class will be expelled from class and marked absent
- Eating and/or drinking inside the class room, will NOT be allowed
- Make-up examination, except for authentic MEDICAL reason(s), will NOT be allowed
- Students shall NOT schedule games, conferences and other activities in conflict with class schedule
- 'ZERO TOLERANCE' policy shall apply to any proven cheating with any submission

REQUIRED TEXT BOOKS

- FUNDAMENTALS OF GRAPHICS COMMUNICATION by Gary R. Bertoline, Eric N. Wiebe et al. ISBN: 978-0-07-352263-0 (0-07-352263-5); 6th Edition, McGraw Hill 2010 (Alternatively, ISBN: 978-1259538360 – 7 th edition available as loose leaf book)
- 2. Creo Parametric 6.0 Tutorial by Roger Toogood ISBN: 978-1-63057-291-4, Schroff Development Corporation 2018


RECOMMENDED DRAWING AND OTHER MATERIALS

- Mechanical pencil 0.5 mm with HB and H leads, good pencil eraser (one each)
- Dedicated Flash drive, capacity ~ 2GB (one)
- Install Creo Parametric 6.0 as soon as possible in your computer, (I assume that you have a computer)
- Journal (composition graph ruled with 5 squares per inch or 8 squares per inch or wide ruled note book) to maintain your 'innovations journal' (one)
- Digital Calipers priced about \$20
- Project report must be submitted spiral bound (one per team)
- 3D printing services available at the Makerspace at a small charge

GRADING SCHEME (SUBJECT TO CHANGE)

DESCRIPTION	POINTS	
Attendance	10	
Design – Creo 6.0 Models	30	
Innovations Journal	4	
3D printed part	5	
Midterm Exam	8	
Final Exam	8	
Showcase attendance	5	
Innovation-101 Project	30	
Total	100	

drawing is the language of engineers

FINAL LETTER GRADE

LETTER GRADE	QUANTITATIVE REQUIREMENT	QUALITATIVE ACHIEVEMENT
Α	90% & above	Superior Achievement
B plus	85% to 89.99%	Excellent Achievement
В	80% to 84.99%	Very Good Achievement
C plus	75% to 79.99%	Good Achievement
С	70% to 74.99%	Acceptable Achievement
D	60% to 69.99%	Minimum Achievement (Pass)
F	59.99% and below	Inadequate Achievement (Fail)

THEME FOR 2019

Whatever you do, do it with Passion Teamwork will bring the success which an individual cannot working alone PRIDE = #urpose, *seponsibility, *ndividuality, *setermination, & *cellence

ACADEMIC INTEGRITY

• No tolerance for *cheating* in any manner in any test.

•

- Any student found cheating during a test will be awarded a course grade of 'F.'
- SEVERE PENALTY for Compromising on Creo 6.0 Parametric model and Homework assignment.
 - Penalty for **EACH** Creo 6.0 Parametric Model and Homework assignment compromised:
 - A grade of 'zero' will be awarded for the compromised assignment,
 - Overall course grade will be dropped by one full grade level for each incident, and
 - The student who compromised as well as the student who allowed will **BOTH** earn the **SAME** penalty:
 - For example, if a student happens to copy a Creo 6.0 model from another student and submit for his (or her) assignment, if discovered, he (or she) and the student who provided the model for copying, will **BOTH** receive the **SAME** penalty.
- Please refer to the University Policy on Academic Integrity at <u>https://www.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf</u>

#	Description	Source	Page No	Figure No	Description	Assy Item	Score	Part Number
1	Plate with Hole	Lecture			Model		1	11901XXX100
2	Slope & Step	Handout	Pg 1		Model		1	11902XXX100
3	Stop Base	Handout	Pg 2		Model		1	11903XXX100
4	Wedge Block	Handout	Pg 1		Model		1	11904XXX100
5	Channel	Toogood	3.28	40	Model		1	11905XXX100
6	Shaft Support	Handout	Pg 2		Model		1	11906XXX100
7	Plate Anchor	Toogood	3.34		Model	1	1	11927XXX001
8	Guide Pin	Toogood	4.1	1	Model		1	11907XXX100
9	Vice Handle	Toogood	4.28		Model	2	1	11927XXX002
10	Slant Extrusion	Handout	Pg 3		Model		1	11908XXX100
11	Slant Support	Handout	Pg 3		Model		1	11909XXX100
12	Dial Bracket	Handout	Pg 4		Model		1	11910XXX100
13	Pin	Toogood	5.23	1	Model	3	1	11927XXX003
14	Acorn nut	Toogood	5.23	2	Model	4	1	11927XXX004
15	Screw	Toogood	5.23	3	Model	5	1	11927XXX005
16	Cutter	Toogood	6.17	27	Model		1	11911XXX100
17	Disc	Toogood	6.23		Model	6	1	11927XXX006
18	Pattern holes-Ring	Toogood	7.11	20 & 21	2 Models		1	11912XXX100
19	Pattern-Group	Toogood	7.12	22	Model		1	11913XXX100
20	Pattern-Blade	Toogood	7.17	29	Model		1	11914XXX100
21	Pattern-Wheel	Toogood	7.18	30	Model		1	11915XXX100
22	Copy-Ears	Toogood	7.24	43	Model		1	11916XXX100
23	Copy-Cut	Toogood	7.27	49 & 50	Model		1	11917XXX100
24	Hemisphere	Toogood	7.35 & 7.36	Left & Right	Model	7 & 8	1	11927XXX007 & 11927XXX008
25	Bracket	Toogood	8.12 & 8.22	10 & 22	Model & Drawing	1	1	11926XXX001
26	Pulley	Toogood	8.28 & 8.39	26 & 40	Model & Drawing	2	1	11926XXX002

TENTATIVE LIST OF MODELING ASSIGNMENTS

B. S. Mani

drawing is the language of engineers

09/01/2019

#	Description	Source	Page No	Figure No	Description	Assy Item	Score	Part Number
27	Flanged Cover	Toogood	8.44 & 8.45		Model	9	1	11927XXX009
28	Pulley Assembly	Toogood	9. 1	1	Assembly		1	11926XXX000
29	Pulley Assembly	Toogood	10.27	32	Assy Drg+BOM		1	11926XXX000
30	Vice Anchor Assy	Toogood	9.31		Sub Assembly		1	11927XXX000
31	Vice Assembly	Toogood	10.30 & 10.31		Assembly		1	11927XXX000
32	Vice Assembly	Toogood			Assy Drg+BOM		1	11927XXX000
33	Сар	Handout	Pg 4-5		Model		1	11918XXX100
34	Wall Bracket	Handout	Pg 5-8		Model		1	11919XXX100
35	Air Duct	Handout	Pg 9		Model+Drg		1	11920XXX100
36	Compression Spring	Handout	Sample Model		Model		1	11921XXX100
37	Hex headed bolt	Handout	Sample Model		Model		1	11922XXX100
38	Wave Washer	Handout	Sample Model		Model		1	11923XXX100
39	Rot Blend–(Mobius)	Handout	Sample Model		Model		1	11924XXX100
40	Surf. Model-Mouse	Handout	Sample Model		Model		1	11925XXX100

TENTATIVE LIST OF MODELING ASSIGNMENTS (contd..)

GRADING RUBRIC AND CONTENT OF EACH CREO MODEL SUBMISSION

#	DESCRIPTION	Possible Score
1	Soft Copy: Final version of MODEL uploaded to CANVAS OR	0.3
	Soft Copy: Final version of MODEL & DRAWING in one folder in case of drawings OR	
	Soft Copy: Final version of MODEL & ASSEMBLY in one folder in case of assemblies	
2	DIP Sheet (DIPS) for the model or assembly in PDF form uploaded to CANVAS	0.2
3	Correctness of part model or assembly model or drawing	0.5

INNOVATION-101 TEAM PROJECT: REQUIREMENTS & GRADING CRITERIA

#	DESCRIPTION	POSSIBLE SCORE				
0	Work as team of 3 – Instructor will match Team					
1	Create 24 (3x8) or more unique part models					
	Create a dimensioned drawing for 4 or more models					
	Create DIPS for four or more models					
	Incorporate adequate complexity					
	⊕ Use color shading					
	Φ Use parameters, material and finish in each model					
	Φ Try to use family tables, patterns, relations and sections					
2	All part models MUST assemble into one unit					
	Use exploded view and interference check					
	Create a drawing for assembly with BOM & BOM balloons					
	Incorporate adequate complexity					
	Create DIPS for assembly					
	Use relations and sections in Assembly					
	Create animations where possible (optional)					
3	Report submitted - spiral bound:					
	Report must be spiral bound with transparent cover					
	Table of contents and page numbers					
	Product description					
	Creo print of all models					
	Creo print of all drawings					
	Φ Interference check display printout showing no interference					
	DIPS for each model and assembly					
	• One page (maximum) commentary of your project work.					
4	Soft copy of all models + drawings uploaded in zipped folder to Moodle	2 points				
5	Judges' (two judges) grade from 1nn0vat1on™ showcase event	15 points				
No	te: Your team presentation will be on Dec 10th, 2019.					

LIST OF PLANNED LECTURES OTHER THAN CREO MODELS

#	LECTURE	DESCRIPTION
1	Module 01	Syllabus
2	Module 02	Engineering Ethics – Hand-out and Review
3	Module 03	3D models – CREO Parametric 6.0 – DIPS – Numbering system
4	Module 04	Lines – line drawing techniques – free hand sketching – constructions
5	Module 05	Engineering Geometry – introduction to projection –isometric view -multiview
6	Module 06	Visualizing multiview drawings - projections
7	Module 07	Fundamental views of edges, and planes for visualization
8	Module 08	Multiview representation for sketches – ANSI Standards for multiview drawings
9	Module 09	Visualization for design – multiview drawing visualization
10	Module 10	Detail dimensioning techniques
11	Module 11	Auxiliary views: projection theory, classifications, applications, & CAD
12	Module 12	Pictorial, axonometric and perspective projections, isometric assembly drawings
13	Module 13	Section views: Basics - Techniques and conventions
14	Module 14	Geometric dimensioning and tolerancing (GDT)
15	Module 15	Tolerance representation
16	Module 16	Materials, finishes and assembly
17	Module 17	DFM, DFI, DFA
18	Module 18	Working drawing and assemblies
19	Module 19	CAD, CAE, CAM, design automation, concurrent engineering, product design
20	Module 20	Reverse Engineering as a learning tool

Note: The intention to cover as many of these lectures as possible -