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ABSTRACT

SOURCE-CHANNEL CODING
FOR COORDINATION OVER A NOISY TWO-NODE NETWORK

by
Sarah A. Obead

Recently, the concept of coordinating actions between distributed agents has emerged

in the information theory literature. It was first introduced by Cuff in 2008 for the

point-to-point case of coordination. However, Cuff’s work and the vast majority

of the follow-up research are based on establishing coordination over noise-free

communication links. In contrast, this thesis investigates the open problem of

coordination over noisy point-to-point links. The aim of this study is to examine

Shannon’s source-channel separation theorem in the context of coordination. To that

end, a general joint scheme to achieve the strong notion of coordination over a discrete

memoryless channel is introduced. The strong coordination notion requires that the

L1 distance between the induced joint distribution of action sequences selected by the

nodes and a prescribed joint distribution vanishes exponentially fast with the sequence

block length. From the general joint scheme, three special cases are constructed, one

of which resembles Shannon’s separation scheme. As a surprising result, the proposed

joint scheme has been found to be able to perform better than a strictly separate

scheme. Finally, the last part of the thesis provides simulation results to confirm the

presented argument based on comparing the achievable rate regions for the scheme

resembling Shannon’s separation and a special case of the general joint scheme.
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CHAPTER 1

INTRODUCTION

Communication and coordination are two essential concepts supporting natural and

man-made multi-agent infrastructures. The numerous applications of distributed and

event-driven multi-agent platforms have motivated researchers to carry on detailed

analysis on many coordinated behaviors. Examples of coordinated behaviors rise in a

wide range of infrastructures, from biological-based case like ant colonies to networks

of mobile robots. Theoretic and applied studies on multi-agents coordination target

several open questions regarding how agents exchange information and how their

actions can be correlated to achieve a desired overall behavior. Models to analyze

and implement the collective behavior of multi-agent systems, especially those that

operate without any central control, are getting a lot of attention.

For instance, [1] studied how harvester ants coordinate their actions and assign

workers to different tasks while searching for scattered seeds. The work was motivated

by the question of how the actions taken by individual ants add up to form a

meaningful behavior without any central planning or decision making. That kind

of collective behavior is what makes it possible for ant colonies to tackle survival

challenges, reallocate and evolve. This study also sheds a light on fascinating

similarities between the coordination behavior of ant colonies and how the bandwidth

and the traffic are regulated throughout the Internet. In particular, [1] reported

how ants returning from foraging interact with outgoing forgers using brief antennal

contact. Based on this interaction, the rate at which outgoing foragers leave the

nest changes with the availability of food. If there is plenty of food, more ants are

recruited and vice versa. The similarity with communicating over the Internet lies

within how the transport layer protocol (TCP) regulates data transmission based on
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the rate of the receiving acknowledgment messages. If the rate is low, that means

there is a scarcity in the bandwidth and thus the data transmission is reduced.

There are two approaches for agents to exchange information in order to

coordinate their actions, implicitly and explicitly. Implicit coordination is based on

observation or sensing. Examples of implicit coordination from nature include the

flocking behavior of birds and how a groups of fish swim in the same direction and

redirect simultaneously (i.e., schooling of fish). In both examples, individuals sense

variation in air or water current to indicate a change in the direction of the group

movement, and then synchronize their movement accordingly. On the other hand,

explicit coordination is communication-based. The problem of communication-based

coordination of multi-agent systems arises in applications including mobile robot

networks and distributed computing platforms such as distributed games, grid

computing, and smart traffic control networks [2]. Throughout our discussion, we

focus on communication-based coordination.

1.1 Literature Review

To answer the question of how agents can correlate their actions to achieve a desired

overall behavior via communication, Cuff in [3] presented the elements of a theory of

coordination in networks. In a coordination network model, the collective behavior

is described by a joint probability distribution (i.e., a prescribed target distribution)

of the action of the agents, and agents are modeled as the nodes in the network.

Moreover, for a target joint behavior, the theory classifies coordination into empirical

and strong coordination based on different performance metrics. These two metrics

determine how well the target distribution is approximated by the coordination

network scheme. The empirical coordination criterion requires the histogram of the

joint behavior to be asymptotically close to the target distribution. On the other

hand, strong coordination has a more strict criterion where the joint distribution
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must be statistically indistinguishable from the target distribution. Nevertheless,

the notion of strong coordination was first studied extensively by Soljanin [4] in the

context of quantum compression with unlimited common randomness.

The information theory community has recently devoted much effort to study

strong and empirical coordination. As a result, the capacity regions of several classes

of both empirical and strong coordination networks have been established [2–7]. The

capacity region characterizes the achievable joint distributions and the limits of the

communication rates required to establish such joint behavior among the nodes in the

networks. Based on the results of [2,3], several extensions and applications have been

made. Based on a generalization on [3], new lower and upper bounds for the capacity

region of the two-node network as established in [8]. These new bound were generated

for strong coordination criterion under the assumption that the nodes communicate

in a bidirectional fashion in order to achieve coordination. A smiler framework was

adopted and improved in [9].

In [5,10], the authors addressed inner and outer bounds for the capacity region of

a three-terminal network with the presence of a relay node. On one hand, [5] focused

on the strong coordination network setup when the communication is in one direction

and the actions are generated in all nodes. On the other hand, [10] developed inner

and outer bounds for the capacity region when the communication is bidirectional.

Finally, an inner and outer bound for the capacity region of the three-terminal network

setup was studied with respect to empirical coordination in [7]. The work of [5] was

later extended in [6,11] to a precise characterization of the strong coordination region

for a line network and a multi-hop line network, respectively. [12] also characterized

the strong coordination region of multi-hop line network but in the context of secure

communication.

Other extensions have focused on developing practical coding schemes based on

polar codes. First, based on results from rate-distortion coding with polar codes, [13]
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presented codes for empirical coordination in cascade network setup. [14] studied the

design of polar codes for strong coordination in two-node networks, in which the

input action is uniformly distributed over a binary alphabet and the target joint

distribution of actions is doubly binary symmetric. Later, the coding scheme of [14]

was expanded to include empirical and strong coordination in [15]. However, the later

coding scheme achieves the capacity region for doubly non-binary actions in which

the input alphabet takes value of prime cardinality.

Most of the efforts mentioned above in achieving strong coordination, is heavily

centered around the channel resolvability theorem [16]. The channel resolvability

theorem approximates a channel output statistic using a codebook associated with

a finite set of uniformly distributed messages. Besides the problem of strong

coordination, this theorem is used to study several information theoretic problems

including channel synthesis [17] and strong secrecy over wiretap channels [18].

Nevertheless, several exceptions are made in [9], [10], and [19]1 where the achievability

proof is based on a random binning technique [20].

1.2 Motivation

Coordination via realistic communication links implies many inevitable physical

constraints such as limited bandwidth and the existence of noise. As a result, this

motivates questions of significant interest: How do the noisy communication links

affect the ability to achieve coordination? Does communication over such links provide

any additional restrictions or benefits? To gain insight into more practical networks,

it make sense to consider coordination networks in which the communication links

1During the course of writing this thesis, we discovered an independent work related to this
thesis in [19]. Although [19] focuses on simulating a channel using another channel, the
notion of strong coordination is applied in a similar way as in this thesis. Moreover, the
proposed scheme is also close to the general scheme we propose in Chapter 4. However, there
is a significant difference in terms of codebook construction, the network framework, the
proof methodology, and the consideration of common and local randomness which highlight
our contribution.
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are subject to noise. However, the majority of the recent works on coordination

have considered noise-free communication channels. Coordination over noisy channels

seems to be little explored. Cuff [2] pointed out that the problem of coordination

in networks can be recognized as a network source coding problem that branches,

to some extend, from traditional source coding. Specifically, the source-channel

separation theorem, that was established by Shannon [21], states that the general

point-two-point communication system can be broken into two parts. That is, we

can separately consider the problem of efficient data compression (i.e., source coding)

and the problem of reliable data transmission (i.e., channel coding) and then pair the

optimal rates obtained by the two. Shannon showed that, by considering joint coding,

benefit in terms of minimum achievable rates is not obtained. As a main contribution

of this thesis, we derive achievability results for the two-node coordination network

and determine if Shannon’s separation theorem also holds in the context of strong

coordination over noisy channels.

To provide a suitable background for rest of the thesis, in the following chapter

we briefly present the most fundamental tools and quantities of the information

theory. The thesis then proceeds as follows: The nature of both empirical and strong

coordination problems and the capacity region obtained by coordination over noiseless

links are presented in Chapter 3. We then derive achievability results for the two-node

coordination network with a noisy communication link in Chapter 4. In Chapter 5

we present a motivating example and simulation results for separate and joint strong

coordination schemes to simulating a target distribution given by a doubly binary

symmetric source. Finally, Chapter 6 concludes the thesis and suggests future work.
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CHAPTER 2

INFORMATION THEORETIC BASICS

In this chapter, we first present the employed notation in the following. We then

introduce most of the basic information theoretical entities and tools used during the

development of this thesis.

2.1 Notation

Throughout the thesis, we denote a discrete random variable with an upper-case letter

(e.g., X) and its realization with the lower case letter (e.g., x). The alphabet size of

the random variable X is denoted as |X |. We use Xn to denote the finite sequence

(X1, X2, ..., Xn). In addition, all logs are taken with respect to base 2, we denote

the indicator function by 1(w), which is equal to 1 if the predicate w is true and 0

otherwise, and the counting function N(w|wn) =
∑n

i=1 1(wi = w).

The probability notation used is as follows: Pr[A] is the probability that the

event A occurs; Pr[A|B] is the probability of the event A conditioned on the event B.

The probability mass function (pmf) of the discrete random variable X is denoted as

PX(x). However, we sometime use the lower case notation (e.g., pX(x)) to distinguish

target pmfs or alternative definitions. The conditional probability distribution of a

random variable X given the random variable Y is PX|Y (x|y). Finally, the expectation

of the random variable X and conditional expectation given Y are denoted with E[X]

and E[X|Y ], respectively.

2.2 Basic Information Measures

Now we present the definitions of the information theoretical entities.

Definition 1 (Entropy [22]). For a given random variable X drawn from the alphabet

X , the entropy measures the amount of information required on average to describe
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the random variable. It is a function of the distribution of a random variable,

measured in bits, and defined as follows:

H(X) = −
∑
x∈X

PX(x) logPX(x).

Given the definition of entropy, we have the following entities:

• Conditional entropy [22]: the entropy of random variable X conditioned on the

random variable Y , with alphabet Y , is given by

H(X|Y ) = −
∑
x∈X

∑
y∈Y

PX(x)PX|Y (x|y) logPX|Y (x|y).

• Binary entropy [22]: the entropy of a random variable that takes on one of two

values p or (1 − p). We use a lower-case notation to define the binary entropy

function as follows:

H(p) = −
[
p log p+ (1− p) log(1− p)

]
.

Definition 2 (Relative entropy [22]). We let D(·||·) denote the Kullback-Leibler

divergence between two distributions PX(x) and QX(x) defined over the sample

space X . The Kullback-Leibler divergence measures the distance between the two

distributions. In the information theory context it is known as relative entropy [22]

and is defined as follows:

D(PX(x)||QX(x)) =
∑
x∈X

PX(x) log
PX(x)

QX(x)
.

Definition 3 (Mutual information [22]). Mutual information is a special case of

the Kullback-Leibler divergence between two distributions. It measures the distance

between the joint distribution of two random variables and the product of the

marginals. Given two random variables X and Y with a joint pmf PXY (x, y) and
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marginal pmfs PX(x), PY (y) the mutual information is defined as follows:

I(X;Y ) = D(PXY (x, y)||PX(x)PY (y)) =
∑
x∈X

∑
y∈Y

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
.

It is also defined in terms of entropy as

I(X;Y ) = H(X)−H(X|Y ).

Following the definition of mutual information we have an extension to

conditional mutual information.

• Conditional mutual information [22]: The mutual information between the

random variables X and Y conditioned on Z is given by

I(X;Y |Z) = H(X|Z)−H(X|Y, Z).

Definition 4 (Total variation). The total variation between two pmfs PX(x) and

QX(x) over the same sample space X is defined by the L1 distance between the two

pmfs as

||PX(x)−QX(x)||TV =
1

2

∑
x∈X

|PX(x)−QX(x)|.

Definition 5 (Pinsker’s inequality [23]). Pinsker’s inequality provides an upper

bound for the total variation between two pmfs, PX(x) and QX(x), based on the

Kullback-Leibler divergence. The bound is defined as follows:

||PX(x)−QX(x)||TV 6
√

2D(PX(x)||QX(x))

Definition 6 (Strongly typical set [24]). Consider a pair of sequences (xn, yn) drawn

according to the joint distribution PXY (x, y) with the marginal pmfs PX(x) and PY (y).
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The strongly jointly typical set T (n)
ε (PXY ) is defined as

T (n)
ε (PXY ) =



(xn, yn) :

∣∣∣∣ 1nN(x|xn)− PX(x)

∣∣∣∣ < ε,∣∣∣∣ 1nN(y|yn)− PY (y)

∣∣∣∣ < ε,∣∣∣∣ 1nN(x, y|xn, yn)− PX,Y (x, y)

∣∣∣∣ < ε


, (2.1)

for all x ∈ X with PX(x) > 0, y ∈ Y with PY (y) > 0, (x, y) ∈ X × Y with

PX,Y (x, y) > 0 and for any ε > 0.

2.3 Rate-Distortion

The problem of efficiently representing an information source (i.e., data compression)

is known as the source coding problem. It was established in Shannon’s earlier work

[25] that for a finite block length n, data compression is achievable with a fidelity

criterion using jointly-typical encoding.

Figure 2.1 Rate distortion encoder and decoder.

A jointly-typical encoder assigns a short description I ∈ {1, 2, ..., 2nR} to the

most frequent (i.e., typical) sequences of the source Xn. The decoder, on the

other hand, constructs a sequence X̂n from the description. The fidelity criterion is

described as the distortion between the original source sequence Xn and the sequence

reconstructed from the description X̂n(I). The distortion is measured with a function

d(x̂, x). Theorem 1 outlines the rate of the description messages required to efficiently

represent a source within an average distortion arbitrary close to D. This process is

9



depicted in Figure 2.1 where D is given by

D = E(d(Xn, X̂n)) =
1

n

n∑
i=1

E(d(Xi, X̂i)).

Theorem 1 (Rate-distortion theorem [24]). For a discrete memoryless source X that

generates sequence (X1, X2, ..., Xn) drawn i.i.d. according to PX(x) and a distortion

measure d(x, x̂), the rate distortion function is given by

R(D) = min
PX̂|X(x̂|x):E[d(X,X̂)]≤D

I(X; X̂). (2.2)

The rate-distortion function provide the minimum rate to describe a source

(i.e., fundamental limit of data compression) while maintaining a prescribed level of

distortion. Lossless source coding is a special case of rate-distortion theory where the

reconstruction of the source sequence is done asymptotically error free (i.e., D = 0).

The achievability of rate-distortion is proved in [24, Theorem 3.5] using jointly typical

encoding based on the strongly typical set given in (2.1). The rate-distortion theorem

is closely related to the criterion of empirical coordination. We will introduce this

relation in Section 3.1.

2.4 Packing Lemma

The packing lemma [24] studies the probability of decoding error (M̂ 6= M) in the

channel coding problem illustrated in Figure 2.2. The question that the lemma

Figure 2.2 Channel coding problem.

investigate is as follows: Given a set of channel codewords C = {Xn(m) ∈ X n :
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m ∈ {2, ..., 2nR}}, a discrete memoryless channel (DMC) PY |X , and a channel output

sequence Y n. What is the probability of observing an output sequence Ỹ n from

sending an independent codeword Xn(1) (i.e., the codeword is not from the set C)

such that (Ỹ n, Xn(m)) for any m 6= 1 are jointly typical? The intuition behind the

packing lemma is depicted in Figure 2.3. The RHS ellipse represents the sample space

of the output sequences Yn. The LHS ellipse represents the sample space of channel

codewords. The smaller gray ellipses represent all possible output sequences for a

specific codeword PY |X(Y n|xn) which can be decoded. The packing lemma answers

the question of the maximum number of codewords |M| that can be sent over the

channel such that the output can be decoded correctly with a probability of decoding

error that vanishes asymptotically with the channel use (i.e., as n→∞).

Figure 2.3 Packing lemma of channel coding.

Lemma 2 (Packing lemma [24]). Let (X, Y ) be two random variables with the pmf

PXY (x, y) = PX(x)PY |X(y|x). Let (X̃n, Ỹ n) ∼ PX(x)PY (y). Let Xn(m), where m ∈

{1, 2, ..., 2nR}, be random sequences. Then, there exists δ(ε) that tends to zero as

ε→ 0 with n→∞ such that

Pr
[
(X̃n, Ỹ n) ∈ T (n)

ε (PXY )
]
→ 0

if

R < I(X;Y )− δ(ε). (2.3)
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Based on the result of this lemma, the channel capacity [24, Theorem 3.1] is

defined as the maximum of all achievable rates for the channel PY |X :

C = max
pX(x)

I(X;Y ). (2.4)

2.5 Source-Channel Separation

Another important information theoretic result, the source-channel separation theorem

was also established by Shannon [25]. The theorem combines the rate limits of source

coding (2.2) and channel coding (2.4). It states that we can construct an optimal code

to represent a source using a finite set of messages, and separately design an optimal

channel code to reliably communicate these message while maintaining a desired

minimum distortion. Specifically, the theorem argues that the two-stage method of

coding depicted in Figure 2.4 (b) is as efficient as any other joint source-channel

coding scheme for the problem illustrated in Figure 2.4 (a).

Figure 2.4 Source channel coding: (a) The joint coding problem. (b) The
separation between the source coding and the channel coding problems.

Theorem 3 (Source-channel separation theorem [24]). Given a discrete memoryless

source X, a distortion measure d(x, x̂) with rate-distortion function R(D), and a

DMC PB|A(b|a) with capacity C, the following statement holds:

R(D) < C.

12



That is, we can achieve source compression with any rate R > R(D) satisfying

(2.2) while communicating over a noisy channel if and only if R < C, thus satisfying

(2.4). Note that the setup in Figure 2.4 (b) is translated as

R > I(X; X̂), (2.5)

R < I(A;B). (2.6)

This theorem is the starting point of the study conducted in this thesis. As

mentioned in Section 1.2, Shannon’s source-channel separation has been proved to be

optimal for point-to-point communication. The main goal of this work is to verify if

Shannon’s separation theorem holds in a (strong) coordination context.

2.6 Channel Resolvability

The concept of channel resolvability was first introduced by Wyner [26], then further

developed by the resolvability work of Han and Verdú [16]. While the channel

coding theorem relies on the packing lemma in Section 2.4, channel resolvability

is established based on a soft covering lemma. The question that this lemma

investigates is described in Figure 2.5 as follows: Given a set of channel codewords

C = {Xn(m) ∈ X n : m ∈ {1, ..., 2nR}} and a discrete memoryless channel (DMC)

PY |X as illustrated in Figure 2.6. What is the minimum rate of codewords that yield

jointly typical output sequences which cover the entire sample space Yn? Lemma 4

states the formulation of the soft-covering lemma.

Figure 2.5 Soft covering lemma for channel resolvability.
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Figure 2.6 Channel resolvability.

Lemma 4 (Soft covering lemma [17]). Let X be a discrete random variable with

the pmf PX(x) and C = {Xn(m) ∈ X n : m ∈ {1, ..., 2nR}}. Let M be uniformly

distributed over {1, 2, ..., 2nR}. Then, the induced output distribution defined as

P̂Y n(yn) = 2−nR
2nR∑
m=1

n∏
k=1

PY |X(yk|Xk(m))

is ε-close in total variation to the i.i.d. distribution P⊗nY (yn) =
∏n

i=1 PY (yi). That is,∥∥∥P̂Y n(yn)− P⊗nY (yn)
∥∥∥
TV
→ 0 in probability.

if

R > I(X;Y ). (2.7)

The result of the lemma is summarized by the fact that we can approximately

generate a desired i.i.d. distribution at the output of the DMC by applying a

channel resolvability encoder with a codebook C associated with a finite set of

uniformly distributed messages. The significance of channel resolvability is that it

simplifies achievability proofs for solving channel synthesis, strong coordination, and

secrecy problems. We will utilize channel resolvability in this thesis to generate the

achievability results of strong coordination over noisy communication links.
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CHAPTER 3

POINT-TO-POINT COORDINATION

A coordination network as originally characterized by Cuff [3] is modeled by several

assumptions. First, the action of an agent is modeled as a discrete random variable

with a finite alphabet, and the collective behavior of the agents is modeled by a joint

distribution. Second, nodes have access to noise-free communication channels and a

source of common randomness. Third, only a subset of the nodes receive their action

sequence from nature or an external source. Those nodes initiate the coordination

process. Fourth, a node is allowed to observe a length-n sequence of actions from the

external source before conveying a coordination message to other nodes. Last, each

node in the network selects an action sequence based on the common randomness

information and the coordination message that it receives.

The straightforward approach for nodes to coordinate their behavior is to notify

other nodes with the selected action sequence. This method of coordination is simply

a source coding problem. However, many computerized multi-agent infrastructures

such as the mobile robot network have limited resources including CPU, memory size,

power, and bandwidth. As a result, the goal is to find a resource-efficient coordination

scheme. In particular, we are interested in a coordination scheme that minimizes the

communication rate while providing other nodes with enough information to select

the appropriate set of actions that jointly result in a desired overall behavior.

A comprehensive review of the behavior of coordination networks is beyond the

scope of this study. Here we focus only on the two-node network or point-to-point

coordination depicted in Figure. 3.1 as understanding this simple model suffices as a

building block for bigger, more complicated networks.
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Figure 3.1 Point-to-point coordination network.

As illustrated in Figure 3.1, common randomness J is available to both

nodes at a rate of Ro bit/action, that is J ∈ {1, 2, ..., 2nRo}. Node X receives a

sequence of actions Xn = (X1, X2, ..., Xn) ∈ X n specified by nature. Xn is drawn

i.i.d. according to a distribution p(x). Each nodes node possesses local randomness

at rate ρk, k = 1, 2. Node X initiates coordination by communicating a message

I to node Y . The message I ∈ {1, 2, ..., 2nR} is generated based on the input

action sequence Xn and the common randomness J . Node Y selects its action

sequence Y n = (Y1, Y2, ..., Yn) ∈ Yn according to the received message I and common

randomness J . Finally, we assume the common randomness source to be independent

of the action specified by nature to X. The local randomness M1 ∈ {1, 2, ..., 2nρ1}

is used to generate the message I at node X and the rate of local randomness

M2 ∈ {1, 2, ..., 2nρ2} is used to generate the sequence Y n at node Y .

Next, we outline the performance metrics for coordination [2] that measure how

close the resulting joint distribution is to a desired collective behavior.

3.1 Empirical Coordination

As mentioned in the introduction, empirical coordination constrains the induced joint

distribution such that the normalized histogram of the joint actions of the two nodes,

16



known as a joint type of actions, is asymptotically equal in total variation to the

desired joint behavior pX,Y (x, y) = pX(x)pY |X(y|x). That is,

∥∥∥∥ 1

n
N(x, y|xn, yn)− pX,Y (x, y)

∥∥∥∥
TV

→ 0 in probability.

There are two important observations to take into account with respect to the

point-to-point empirical coordination. First, common randomness does not play a role

in achieving empirical coordination. Second, the rate constraint to achieve empirical

coordination relates to lossy compression (i.e., rate-distortion theory) [3].

The intuition behind this statement follows from the nature of the empirical

distribution and the definition of the strongly typical set (2.1) (see Definition 6). It can

be seen that achieving empirical coordination is a matter of generating sequences Y n

that are strongly typical with Xn (i.e., (xn, yn) ∈ T (n)
ε (PXY )) with high probability.

Specifically, the jointly-typical encoder for the rate-distortion setup in Figure 2.1 can

be seen as coordinator of a reconstruction sequence Y n with the source sequence Xn

according to a joint distribution pX(x)pX|Y (y|x). Thus, to achieve such requirement,

the capacity region for empirical coordination is given as follows:

C = {R, p(y|x) : R ≥ I(X;Y )}. (3.1)

Now, we briefly consider the case of noisy communication link as illustrated in

Figure 3.2. This setup differs from the empirical coordination setup demonstrated in

Figure 3.1 in the sense that a channel codeword now communicates the message I

over a discrete memoryless channel (DMC) PB|A(b|a) to node Y so that it generates

a sequence of actions Y n = (Y1, Y2, ..., Yn).

As mentioned in Section 2.5, the source-channel separation theorem states

that we can divide the problem of communicating an information source over a

noisy channel into two stages. That is, that we can construct an optimal code to
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Figure 3.2 Point-to-point empirical coordination over a DMC.

represent a source using a finite set of messages (i.e., lossy source compression),

and independently design an optimal channel code to reliably communicate these

message while maintaining a desired minimum distortion. The theorem argues that

this two-stage coding method is as efficient as any other joint source-channel code. As

a result, based on the tight relation between rate-distortion (i.e., lossy source coding)

and empirical coordination, we can extend the results of rate-distortion channel code

separation to the two-node empirical coordination scheme as outlined in Corollary

4.1.

Corollary 4.1. The coordination capacity region C for empirical coordination in the

two-node network of Figure 4.1 is the set of rate-coordination pairs for which the rate

is greater than the mutual information between X and Y and less than the capacity

C of the DMC PB|A(b|a). Thus

C ,
{

(R, py|x(y|x) : I(X;Y ) < R < C
}
. (3.2)

3.2 Strong Coordination

Strong coordination has a more demanding constraint. Here, the induced joint

distribution of time sequence of actions, P̂Xn,Y n(xn, yn) is intended to be statistically

indistinguishable in total variation from the desired joint distribution P⊗nXY (xn, yn) =∏n
i=1 p(xi)p(yi|xi). That is,∥∥∥P̂Xn,Y n(xn, yn)− P⊗nXY (xn, yn)

∥∥∥
TV
→ 0 in probability.
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To achieve such requirement, the capacity region for strong coordination [3] is

given as follows:

C ,



∃p(u|x, y) such that

(Ro, R, p(y|x)) : |U| ≤ |X ||Y|+ 1,

R ≥ I(X;U),

R +Ro ≥ I(X, Y ;U).


. (3.3)

The intuition behind this region follows from the channel resolvability theorem

in Section 2.6. Consider the setup shown in Figure 2.6. The joint distribution

PXY (x, y) is intended to be the output distribution we aim to approximate at the

output of the channel. Choose PU(u) to be an auxiliary random variable to generate

the channel resolvability codebook

C =
{
Un(I, J) ∈ Un : I ∈ {1, ..., 2nR}, J ∈ {1, ..., 2nRo}

}
.

Select (I, J) ∼ Unif(I × J ). Finally, select the channel in Figure 2.6 to be PXY |U

(i.e., the channel has a joint output XY ). Then, as a result of Lemma 4, if Ro+R ≥

I(X, Y ;U) ∥∥∥P̂XnY n(xn, yn)− P⊗nXY (xn, yn)
∥∥∥
TV
→ 0 in probability.

According to this result, the channel resolvability theorem provides a feasible

way to prove a part of the capacity region of (3.3). However, the structure of the

strong coordination problem and the channel resolvability problem is different in

terms of the communication direction between node X and the source of common

randomness. In the strong coordination problem, node X receives the sequence Xn

from nature and generate I according to the message J of common randomness. On

the other hand, in the channel resolvability model, node X receives both messages

and generates Xn accordingly. The technique to obtain the region is by altering the
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channel resolvability problem to mimic the behavior of strong coordination structure

as depicted in Figure 3.1. To that extend several steps need to be taken as follow:

• Choose the axillary random variable U such that we have the Markov chain [22]

X − U − Y . As a result PXY |U = PX|UPY |U and we obtain the allied structure

in Figure 3.3.

Figure 3.3 Strong coordination allied structure.

• Choose R > I(X;U). This constraint is known as secrecy constraint [18]. It is

used to establish close-independence between random variables in a 3-terminal

network setup known as wiretap channel [27]. It is needed here to mimic the

behavior of the two-node coordination network where the common randomness

is independent of the action provided to node X from nature. The condition

R > I(X;U) reinforce this constraint in the model of Figure 3.3 and constitutes

the second condition in the capacity region (3.3).

In this chapter, we have presented two performance metric for the coordi-

nation networks. Moreover, have examined source-channel separation for empirical

coordination. In the following chapter, we will discuss achievable schemes for strong

coordination over noisy communication links by leveraging the channel resolvability

theorem in a similar manner.
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CHAPTER 4

STRONG COORDINATION OVER A DMC

The complexity of the strong coordination problem under the total variation

constraint mentioned in Section 3.2 makes it difficult to solve as is. However, it

has been previously approached by adopting a widely used problem-solving strategy.

The strategy starts by transforming the strong coordination problem into another

intermediate problem for which a solution exist. Then by applying the solver for the

intermediate problem we can recover a solution for the strong coordination problem

with some approximation guarantees. In this chapter, we present the problem of

strong coordination over a DMC, the corresponding intermediate problem which we

will refer to as allied problem, and the approximation steps for the solution. Finally,

based on our solution, we characterize joint and separate coordination-channel coding

schemes in order to examine code separation for the two-node strong coordination

network.

4.1 Setup Under Consideration

In the two-node coordination network depicted in Figure 4.1, we have node X that

receives a sequence of actions Xn = (X1, X2, ..., Xn) ∈ X n specified by nature. Xn

is i.i.d. according to a distribution pX(x). Both nodes have access to randomness J

at rate Ro bit/action from a common source and each node possess local randomness

at rate ρk, k = 1, 2. We want to communicate a message I over the rate-limited

DMC PB|A(b|a) to node Y . The message I is constructed based on the input action

sequence Xn and the common randomness J . Node Y generates a sequence of

actions Y n = (Y1, Y2, ..., Yn) ∈ Yn based on the received message I and the common

randomness J . The goal is to have the induced joint distribution of the time-sequence

of actions P̂Xn,Y n(xn, yn) arbitrary close in total variation to the desired distribution
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P⊗nXY (xn, yn) =
∏n

i=1 p(xi)p(yi|xi). That is,∥∥∥P̂Xn,Y n(xn, yn)− P⊗nXY (xn, yn)
∥∥∥
TV
→ 0 in probability.

Figure 4.1 Point-to-point strong coordination over a DMC. Node X observes an
action sequence Xn chosen by nature and common randomness message J . A
coordination message I is generated based on Xn and the common randomness
message J . The coordination message is then represented by a channel sequence
An and transmitted to node Y over the DMC. Node Y decodes the received sequence
Bn and regenerates Î. Based on the decoded coordination message Î and the common
randomness J , node Y generates the action sequence Y n.

We assume that the common randomness is independent of the action specified

at node X. The local randomness M1 ∈ {1, 2, ..., 2nρ1} is used to generate the message

I at node X and the rate of local randomness M2 ∈ {1, 2, ..., 2nρ2} is used to generate

the sequence Y n at node Y .

4.2 General Scheme

Here we first present a general scheme for achieving strong coordination over the DMC

channel PB|A(b|a). The scheme follows a similar approach to the work done in [2] and

[6] where the coordination code is designed by analyzing an allied channel resolvability

problem. Similarly we construct an allied structure that exploits Lemma 4 stated

in Section 2.6 to accomplish the strong coordination behavior. First we simulate
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a memoryless channel PXY |AC from auxiliary random variables A and C to the

nodes X and Y . Then, by imposing the Markov chain X − (A,C) − Y the channel

PXY |AC is separated into two sub-channels PX|AC and PY |AC to form the allied scheme.

However, due to the presence of a DMC in the strong coordination problem outlined in

Section 4.1 we impose further modifications. Specifically, we simulate the sub-channel

PY |AC from the DMC PB|A and a test channel PY |BC . Further details are given below.

In Figure 4.2 the allied structure which corresponds to the two-node network in

Figure 4.1 is shown.

Figure 4.2 The allied structure of strong coordination over a DMC. The indices I,
J , and K are used to specify the sequences An and Cn uniformly at random from a
randomly generated codebook of size 2nR. Both sequences are used as channel PX|AC
input at node X to generate Xn. Only the sequence An is used as a channel input
for the DMC. The output sequence Bn is decoded to obtain the index Î. Node Y
regenerates Cn using the decoder output and a side information message J . Both the
channel output sequence Bn and the regenerated sequence Cn are used as input for
the channel with the pmf PY |BC at node Y to generate Y n.

The channel resolvability code for the allied problem with parameters (Ro, Rc, Ra, n)

consists of the following:

• Two nested codebooks:

As illustrated in Figure 4.3 the codebook C of size 2n(Ro+Rc) is generated

i.i.d. according to a distribution pC(c). The codebook is arranged into 2nRo

columns and 2nRc rows. That is, Cn
ij ∼

∏n
l=1 pC(cl) for all (i, j) ∈ I × J ;
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codebook A is generated accordingly i.e., Anijk ∼
∏n

l=1 pA|C(al|cij) for all

(i, j, k) ∈ I × J ×K.

• Encoding functions:

Cn :{1, 2, ..., 2nRc} × {1, 2, ..., 2nRo} → Cn;

An :{1, 2, ..., 2nRc} × {1, 2, ..., 2nRo} × {1, 2, ..., 2nRa} → An.

• Index sets:

i ∈ {1, 2, ..., 2nRc},

j ∈ {1, 2, ..., 2nRo},

k ∈ {1, 2, ..., 2nRa},

where

R , Ro +Rc +Ra.

These indices are used to specify the pair of sequences Cn
IJ and AnIJK uniformly

at random from the codebooks C and A.

• The selected sequences Cn
ij and Anijk are then passed through the memoryless

channel PX|AC(x|ac) at node X, while at node Y sequence Anijk is first passed

through the DMC PB|A(b|a). The DMC output Bn is decoded to reconstruct

the sequence Cn
îj

and both are then passed through the test channel PY |BC(y|bc)

generated using local randomness at rate ρ2. As a result, we have the following

backward induced joint distribution:

P̌XnY nAnCn(xn, yn, an, cn) ,∑
bn

2−nRPX|AC(xn|AnijkCn
ij)PB|A(Bn|An)PY |BC(yn|BnCn

îj
). (4.1)
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Figure 4.3 Random codebook structure. The codebook C is arranged into I columns
and J rows. For each (I, J) codeword in C there exists 2nRa codewords in A.

We start deriving the achievable rates for the problem at hand by dividing the allied

structure into the following subproblems.

4.2.1 Channel Resolvability Constraints

Here we consider the DMC PB|A(b|a) and the test channel PY |BC(y|bc) at node Y

in the allied problem to form one black box. This box has an input sequence An,

reconstructs Cn from Î and side information J and outputs the sequence Y n. At

this point, we assume that Cn is reconstructed perfectly (i.e., Î = I). Consequently,

we find the required channel resolvability rates that satisfies the strong coordination

constraint. These constraints are characterized in Theorem 5.

Theorem 5 (Resolvability constraints). For a discrete memoryless channel defined by

PB|A(b|a), and a nested codebook structure detailed above, the total variation between

the desired i.i.d. distribution P⊗nXY (xn, yn) and the backward induced distribution,

induced by the allied scheme, P̌XnY n(xn, yn) goes to zero as n goes to infinity,

∥∥P̌XnY n(xn, yn)− P⊗nXY (xn, yn)
∥∥
TV
≤ ε,
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if the following is satisfied:

Ra +Ro +Rc ≥ I(XY ;AC),

Ro +Rc ≥ I(XY ;C).

For the following proof, we drop the subscripts from the pmfs; e.g., P (xn|An, Cn)

will denote PX|AC(xn|An, Cn). Moreover, we define ε′ > 0.

Proof.

E[D(P̌XnY n(xn, yn)||P⊗nXY (xn, yn))]

= E

[ ∑
xn,yn

(∑
i,j,k

P (xn|Anijk, Cnij)P (yn|Anijk, Cnij)
2nR

)

log

( ∑
i′,j′,k′

P (xn|Ani′j′k′ , Cni′j′)P (yn|Ani′j′k′ , Cni′j′)
2nRP⊗nXY (xn, yn)

)]

=
∑
xn,yn

E

[(∑
i,j,k

P (xn|Anijk, Cnij)P (yn|Anijk, Cnij)
2nR

)

log

( ∑
i′,j′,k′

P (xn|Ani′j′k′ , Cni′j′)P (yn|Ani′j′k′ , Cni′j′)
2nRP⊗nXY (xn, yn)

)]
(a)
=
∑
xn,yn

EAnijkCnij

[(∑
i,j,k

P (xn|Anijk, Cnij)P (yn|Anijk, Cnij)
2nR

)

Erest

[
log
( ∑
i′,j′,k′

P (xn|Ani′j′k′ , Cni′j′)P (yn|Ani′j′k′ , Cni′j′)
2nRP⊗nXY (xn, yn)

)∣∣∣AnijkCnij]
]

(b)

≤
∑
xn,yn

EAnijkCnij

[(∑
i,j,k

P (xn|Anijk, Cnij)P (yn|Anijk, Cnij)
2nR

)

log
(
Erest

[ ∑
i′,j′,k′

P (xn|Ani′j′k′ , Cni′j′)P (yn|Ani′j′k′ , Cni′j′)
2nRP⊗nXY (xn, yn)

∣∣∣AnijkCnij])
]

=
∑
xn,yn

∑
anijk,c

n
ij

P (anijk, c
n
ij)
(∑
i,j,k

P (xn|Anijk, Cnij)P (yn|Anijk, Cnij)
2nR

)

log
( ∑
i′,j′,k′

Erest

[P (xn|Ani′j′k′ , Cni′j′)P (yn|Ani′j′k′ , Cni′j′)
2nRP⊗nXY (xn, yn)

∣∣∣AnijkCnij])
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(c)
=
∑
xn,yn

∑
anijk,c

n
ij

∑
i,j,k

P (xn, yn, anijk, c
n
ij)

2nR

log

( ∑
i′,j′,k′:

(i′,j′,k′)=(i,j,k)

EAnijkCnij

[P (xn|Ani′j′k′ , Cni′j′)P (yn|Ani′j′k′ , Cni′j′)
2nRP⊗nXY (xn, yn)

∣∣∣AnijkCnij]

+
∑

i′,j′,k′:
(i′,j′)=(i,j),(k′ 6=k)

EAnijkCnij

[P (xn|Ani′j′k′ , Cni′j′)P (yn|Ani′j′k′ , Cni′j′)
2nRP⊗nXY (xn, yn)

∣∣∣AnijkCnij]

+
∑

i′,j′,k′′:
(i′,j′)6=(i,j)

EAnijkCnij

[P (xn|Ani′j′k′ , Cni′j′)P (yn|Ani′j′k′ , Cni′j′)
2nRP⊗nXY (xn, yn)

∣∣∣AnijkCnij]
)

(d)
=
∑
xn,yn

∑
anijk,c

n
ij

∑
i,j,k

P (xn, yn, anijk, c
n
ij)

2nR
log

(
P (xn, yn|anijk, cnij)
2nRP⊗nXY (xn, yn)

+
∑

i′,j′,k′:(i′,j′)=(i,j),(k′ 6=k)

P (xn, yn|cnij)
2nRP⊗nXY (xn, yn)

+
∑

i′,j′,k′:(i′,j′) 6=(i,j)

P⊗nXY (xn, yn)

2nRP⊗nXY (xn, yn)

)
(e)

≤
∑

xn,yn,anijk,c
n
ij

P (xn, yn, anijk, c
n
ij) log

(
P (xn, yn|anijk, cnij)
2nRP⊗nXY (xn, yn)

+ (2Ra)
P (xn, yn|cnij)

2nRP⊗nXY (xn, yn)
+ 1

)

=
∑

xn,yn,anijk,c
n
ij

P (xn, yn, anijk, c
n
ij) log

(
P (xn, yn|anijk, cnij)
2nRP⊗nXY (xn, yn)

+
P (xn, yn|cnij)

2n(Ro+Rc)P⊗nXY (xn, yn)
+ 1

)

(f)

≤

[ ∑
xn,yn,anijk,c

n
ij :

(xn,yn,an,cn)∈T nε (pXYAC)

P (xn, yn, anijk, c
n
ij) log

(
2−nH(XY |AC)(1−ε)

2nR2−nH(XY )(1+ε)
+

2−nH(XY |C)(1−ε)

2n(Ro+Rc)2−nH(XY )(1+ε)
+ 1

)]

+ Pr
(
(xn, yn, anijk, c

n
ij) /∈ T nε (pXYAC)

)
log(2µ−nXY + 1)

(g)

≤

[ ∑
xn,yn,anijk,c

n
ij :

(xn,yn,an,cn)∈T nε (pXYAC)

P (xn, yn, anijk, c
n
ij) log

(
2n(I(XY ;AC)+δ(ε))

2nR
+

2n(I(XY ;C)+δ(ε))

2n(Ro+Rc)
+ 1

)]

+
(
2|X ||Y||A||C|e−nε

2µXYAC
)

log(2µ−nXY + 1)

(h)

≤ ε′

where:

(anijk, c
n
ij) are the codewords corresponding to the indices (i, j, k), and (ani′j′k′ , c

n
i′j′) are

the codewords corresponding to the indices (i′, j′, k′);

(a) follows from the law of iterated expectation;

(b) follows from Jensen’s inequality [22];
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(c) follows from dividing the inner summation over the indices (i′, j′, k′) into three

subsets based on the indices (i, j, k) from the outer summation;

(d) follows as a result from taking the expectation within the subsets in (c) such that

when:

• (i′, j′) = (i, j), (k′ 6= k): ani′j′k′ is conditionally independent of anijk following the

nature of the codebook construction (i.e., i.i.d. at random);

• (i′, j′) 6= (i, j): both codewords (anijk, c
n
ij) are independent of (ani′j′k′ , c

n
i′j′)

regardless of the value of k. As a result, the expected value of the induced

distribution with respect to the input codebooks is the desired distribution

P⊗nXY [2].

(e) follows from

• (i′, j′, k′) = (i, j, k): there is only one pair of codewords (anijk, c
n
ij);

• when (k′ 6= k) while (i′, j′) = (i, j) there are (2nRa − 1) indices in the sum;

• (i′, j′) 6= (i, j): the number of the indices is at most 2nR.

(f) results from splitting the outer summation: The first summation contains typical

sequences and is bounded by using the probabilities of the typical set. The second

summation contains the tuple of sequences when the pair of actions sequences xn, yn

and codewords cn, an are not ε-jointly typical (i.e., (xn, yn, an, cn) /∈ T nε (pXY AC)).

This sum is upper bounded following [5] with µXY = minx,y
(
pXY (x, y)

)
.

(g) following the Chernoff bound of the probability that a sequence is not strongly

typical [28] where µXY AC = minx,y,a,c
(
pXY AC(x, y, a, c)

)
.

(h) consequently, the contribution of typical sequences can be asymptotically made

small if

Ra +Ro +Rc ≥ I(XY ;AC),

Ro +Rc ≥ I(XY ;C),
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while the second term converges to zero exponentially fast with n [28].

Finally, by applying Pinsker’s inequality [23] we have

||P̌XnY n(xn, yn)− P⊗nXY (xn, yn)||TV 6
√

2D(P̌XnY n(xn, yn)||P⊗nXY (xn, yn)),

||P̌XnY n(xn, yn)− P⊗nXY (xn, yn)||TV 6
√

2ε′.

�

After deriving the rates achieving strong coordination over the allied structure,

in Section 4.2.2 and 4.2.3 we will look into the process that will force the allied

structure to match the behavior of the original point-to-point coordination scheme

over a DMC.

4.2.2 Decodability Constraint

Here we look in details to the operation of the DMC PB|A(b|a) and the test channel

PY |BC(y|bc) at node Y, mentioned as the black-box in Section 4.2.1. We want to

send the sequence Anijk over the channel PB|A(b|a) so that node Y can reconstruct the

correlated sequence Cn
îj

using the channel output Bn and the the common randomness

information J as shown in Figure 4.4. In other words, we want to estimate the message

I from the output of the DMC with a negligible probability of error. Theorem 6

outlines the necessary rates for this to occur.

Figure 4.4 Allied structure; simulation of PY |AC .
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Theorem 6 (Decodability constraint). Given a nested codebook of the size 2n(Ro+Rc)

and 2n(Ro+Rc+Ra) producing the codewords Cn
IJ and AnIJK, respectively. Given the

channel output sequence Bn obtained from passing the codeword AnIJK through a DMC

PB|A(b|a). A jointly typical decoder with side information J can estimate the index I

to reconstruct the sequence Cn
ÎJ

from Bn with an estimation error that goes to zero as

n goes to infinity (i.e., Pr(Î 6= I)→ 0), if the codebook rate for the index I satisfies

Rc < I(B;C).

Proof. We begin the proof by constructing the sets

Sj ,{i : ∃k such that (Anijk, B
n, Cn

ij) ∈ T nε (PABC)},

Ŝj ,{i : (Bn, Cn
ij) ∈ T nε (PBC)}.

Sj is the set of the indices i ∈ I such that for a given index J = j the sequences

Anijk, B
n, Cn

ij are jointly-typical. Ŝj is a subset containing the indices i ∈ I where only

Bn and Cn
ij are jointly-typical. Following the jointly typical decoding method [22],

the receiver, node Y, declares that the index I was sent if the following conditions

are met:

1. For I = i and J = j the sequence Bn is jointly typical with Cn. That is

Pr[I ∈ Ŝj]→ 1.

Pr[I ∈ Ŝj] = Pr[I ∈ Ŝj|I=iJ=j]

(a)
= Pr[I ∈ Ŝj|I=1

J=1]

=
∑

an,bn,cn

P (Cn
ij = Cn)P (An|Cn)P (Bn|An)1

(
(Cn, Bn) ∈ T nε (PBC)

)
=
∑
an,cn

P (An, Cn)
∑
bn

P (Bn|An)1
(
(Cn, Bn) ∈ T nε (PBC)

)
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(b)

≥
∑
an,cn

P (An, Cn)
∑
bn

P (Bn|An)1
(
(An, Cn, Bn) ∈ T nε (PABC)

)
=

∑
an,bn,cn

P (An, Bn, Cn)1
(
(An, Cn, Bn) ∈ T nε (PABC)

)
(c)

≥ 1− δ(ε)

where

(a) results from the symmetry of codebook construction,

(b) follows from the fact that Ŝj ⊇ Sj,

(c) follows from the probability of the jointly typical set [28], where δ(ε) → 0

as n→∞.

2. There is no other index I ′ 6= I such that (Cn
I′J , B

n) ∈ T nε (PBC). That is

Pr[|Ŝj| = 1]→ 1

Pr[|Ŝj| = 1] = Pr[Ŝj ∩ {1, 2, .., I − 1, I + 1, ..., 2nRc} = ∅]

=
∑
I,J

P (i, j)Pr[Ŝj ∩ {1, 2, .., I − 1, I + 1, ..., 2nRc} = ∅|I=iJ=j]

= 2−n(Ro+Rc)
∑
I,J

(
1−

∑
i′ 6=i

Pr[i′ ∈ Ŝj|I=iJ=j]

)
= 2−n(Ro+Rc)

∑
I,J

(
1−

∑
i′ 6=i

Pr[(Cn
i′j, B

n) ∈ T nε (PBC)]

)

(a)

≥ 2−n(Ro+Rc)
∑
I,J

(
1−

∑
i′ 6=i

2−n(I(B;C)−δ(ε))
)

= 2−n(Ro+Rc)
∑
I,J

(
1− (2nRc − 1)2−n(I(B;C)−δ(ε))

)
= 1− (2nRc − 1)2−n(I(B;C)−δ(ε))

= 1− 2−n(I(B;C)−Rc−δ(ε)) + 2−nI(B;C)

(b)

≥ 1− δ(ε′)
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where

(a) follows from the packing lemma from Section 2.4 [24],

(b) results if Rc < I(B;C)− δ(ε′) and for sufficiently large n: δ(ε′)→ 0.

�

4.2.3 Secrecy Constraint

We complete modifying the allied structure to mimic to the original problem with

a final step. By assumption, we have a natural independence between the action

sequence Xn and the common randomness source J . As a result, the joint distribution

over Xn and J in the original problem is a product of the marginal distributions

P⊗nX (x) and PJ(j). To mimic this behavior in the allied structure we need to force

that independence by minimizing the mutual information between the two. This

process is outlined in Theorem 7.

In the original structure of Figure 4.1, we are given the input action sequence

xn and the index j available from the common randomness source to implement the

codewords Cn
ij, A

n
ijk respectively. The sequence Anijk is then communicated over the

DMC channel PB|A(b|a) to node Y as pointed out in Section 4.2.2. As a result, the

induced joint distribution by the original problem is given as

P̂XnY nAnCn(xn, yn, an, cn) ,∑
bn

P⊗nX (x)P (j)PAC|XJ(Cn
ij, A

nijk|xn, j)PB|A(Bn|An)PY |BC(yn|Bn, Cn
îj

). (4.2)

Similar to the strong coordination scheme in [2] the joint distribution induced

by the original problem and the backward joint distribution obtained from the allied

structure are derived from a different joint distribution over Xn and J passed through

the same channel

PAC|XJ(Cn
ij, A

n
ijk|xn, j)PB|A(Bn|An)PY |BC(yn|Bn, Cn

îj
).
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We identify the distributions of the action sequence Xn, the test channels of the

allied structure, and the encoder function for the original problem with the following

notation:

PJ(j) = p(j),

P⊗nX (x) = p(xn),

PX|AC(xn|Anijk, Cn
ij) , p̂(xn|i, j, k),

PY |AC(yn|Anijk, Cn
ij) , p̂(yn|i, j, k),

PAC|XJ(Anijk, C
n
ij|xn, j) , p̂(i|xn, j)p̂(k|i, j) = p̂(i, k|xn, j).

Accordingly, with these definitions we re-write the joint distribution induced by

the original problem as

P̂XnY nAnCn(xn, yn, an, cn) = p(xn)p(j)p̂(i, k|xn, j)p̂(yn|̂i, j, k)

and the joint distribution induced by the allied structure as

P̌XnY nAnCn(xn, yn, an, cn) = 2−nRp̂(xn|i, j, k)p̂(yn |̂i, j, k)

= p̂(i, j, k)p̂(xn|i, j, k)p̂(yn|̂i, j, k)

= p̂(xn, i, j, k)p̂(yn|̂i, j, k)

= p̂(xn, j)p̂(i, k|xn, j)p̂(yn|̂i, j, k).

Theorem 7 (Secrecy constraint). Given the input sequence Xn = (X1, X2, ..., Xn),

channel resolvability code with parameters (Ro, Rc, Ra, n) and the common randomness

source, the dependency between the action sequence xn and the common randomness

J converges to zero exponentially fast as n goes to infinity,

||p̂(xn, j)− p(xn)p(j))||TV ≤ ε,
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if the code rates satisfy:

Ra +Rc ≥ I(X;AC),

Rc ≥ I(X;C).

The proof of Theorem 7 is built on the results of Section 4.2.2 (i.e., Î = I with

high probability). The bound on ||p̂(xn, j) − p(xn)p(j))||TV is obtained in a similar

manner as the channel resolvability constraint proof in Section 4.2.1 as follows.

Proof.

E[D(p̂(xn, j)||p(xn)p(j))] = E

[∑
xn,j

(∑
i,k

p̂(xn|i, j, k)

2nR

)
log
(∑
i′,k′

p̂(xn|i′, j′, k′)
2nRp(xn)p(j)

)]

=
∑
xn,i,j,k

E

[( p̂(xn|i, j, k)

2nR

)
log
(∑
i′,k′

p̂(xn|i′, j′, k′)
2n(Ra+Rc)p(xn)

)]
(a)
=
∑
xn,i,j,k

Ei,j,k

[( p̂(xn|i, j, k)

2nR

)
Erest

[
log
(∑
i′,k′

p̂(xn|i′, j′, k′)
2n(Ra+Rc)p(xn)

)∣∣∣i, j, k]]
(b)

≤
∑
xn,i,j,k

Ei,j,k

[( p̂(xn|j, j, k)

2nR

)
log
(
Erest

[∑
i′,k′

p̂(xn|i′, j′, k′)
2n(Ra+Rc)p(xn)

∣∣∣i, j, k])]

=
∑
xn,i,j,k

p̂(xn, i, j, k)
(

log
(∑
i′,k′

Erest

[ p̂(xn|i′, j′, k′)
2n(Ra+Rc)p(xn)

∣∣∣i, j, k])
(c)
=
∑
xn,i,j,k

p̂(xn, i, j, k) log

( ∑
i′,k′:

(i′,j′,k′)=(i,j,k)

Ei,j,k

[ p̂(xn|i′, j′, k′)
2n(Ra+Rc)p(xn)

∣∣∣i, j, k]

+
∑
i′,k′:

(i′,j′)=(i,j),(k′ 6=k)

Ei,j,k

[ p̂(xn|i′, j′, k′)
2n(Ra+Rc)p(xn)

∣∣∣i, j, k]

+
∑
i′,j′,k′:

(i′,j′,k′)6=(i,j,k)

Ei,j,k

[ p̂(xn|i′, j,′ k′)
2n(Ra+Rc)p(xn)

∣∣∣i, j, k])
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(d)
=
∑
xn,i,j,k

p̂(xn, i, j, k) log

(
p̂(xn|i, j, k)

2n(Ra+Rc)p(xn)
+

∑
i′,k′:

(i′,j′)=(i,j),(k′ 6=k)

p̂(xn|i, j)
2n(Ra+Rc)p(xn)

+
∑
i′,k′:

(i′,j′,k′)6=(i,j,k)

p̂(xn)

2n(Ra+Rc)p(xn)

)

(e)

≤
∑
xn,i,j,k

p̂(xn, i, j, k) log

(
p̂(xn|i, j, k)

2n(Ra+Rc)p(xn)
+ (2Ra)

p̂(xn|i, j)
2n(Ra+Rc)p(xn)

+ 1

)
(f)

≤

[ ∑
xn,i,j,k:

(xn,an(i,j,k),cn(i,j)∈T nε (pXAC)

P (xn, i, j, k) log

(
2−nH(X|AC)(1−ε)

2n(Ra+Ro)2−nH(X)(1+ε)
+

2−nH(X|C)(1−ε)

2nRc2−nH(X)(1+ε)

+ 1

)]
+ Pr

(
(xn, an(i, j, k), cn(i, j)) /∈ T nε (pXAC)

)
log(2µ−nX + 1)

(g)

≤

[ ∑
xn,i,j,k:

(xn,an(i,j,k),cn(i,j))∈T nε (pXAC)

P (xn, i, j, k) log

(
2n(I(X;AC)+δ(ε))

2n(Rc+Ra)
+

2n(I(X;C)+δ(ε))

2n(Rc)
+ 1

)]

+
(
2|X ||A||C|e−nε2µXAC

)
log(2µ−nX + 1)

(h)

≤ ε′,

where ε′ > 0;

(a) follows from the law of iterated expectation;

(b) follows from Jensen’s inequality [22];

(c) follows from dividing the inner summation over the indices (i′, k′) into three subsets

based on the indices (i, j, k) from the outer summation;

(d) results from taking the conditional expectation within the subsets in (c);

(e) follows from

• (i′, j′, k′) = (i, j, k): there is only one pair of codewords represented by the

indices Anijk, C
n
ij corresponding to xn;

• when (k′ 6= k) and (i′, j′) = (i, j) there are (2nRa − 1) indices in the sum;
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• (i′, j′, k′) 6= (i, j, k): the number of the indices is at most 2n(Ra+Rc). Moreover,

p̂(x) is less than ε close to p(xn) as a consequence of Theorem 5 and [2, Lemma

16].

(f) results from splitting the outer summation: The first summation contains

typical sequences and is bounded by using the probabilities of the typical set. The

second summation contains the tuple of sequences when the action sequence xn and

codewords (cn, an) represented here by the indices (i, j, k) are not ε-jointly typical

(i.e., (xn, an, cn) /∈ T nε (pXAC)). This sum is upper bounded following [5] using

µX = minx
(
pX(x)

)
.

(g) following from the Chernoff bound on the probability of a non-typical sequence

[28].

(h) consequently, the contribution of typical sequences can be asymptotically made

small if

Ra +Rc ≥ I(X;AC),

Rc ≥ I(X;C).

The second term converges to zero exponentially fast with n [28] and following

Pinsker’s inequality [23] we have

||p̂(xn, j)− p(xn)p(j))||TV 6
√

2D(p̂(xn, j)||p(xn)p(j)),

||p̂(xn, j)− p(xn)p(j))||TV 6
√

2ε′.

Finally, we combine the results of Theorem 5, Theorem 6, and Theorem 7.

From [2] we obtain the following:
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||P̂XnY n(xn, yn)− P⊗nXY (xn, yn)||TV
(a)

≤ ||P̂XnY n(xn, yn)− P̌XnY n(xn, yn)||TV

+ ||P̌XnY n(xn, yn)− P⊗nXY (xn, yn)||TV
(b)

≤ ||P̂XnY nAnCn(xn, yn, an, cn)− P̌XnY nAnCn(xn, yn, an, cn)||TV

+ ||P̌XnY n(xn, yn)− P⊗nXY (xn, yn)||TV
(c)
= ||p̂(xn, j)− p(xn)p(j)||TV + ||PXnY n(xn, yn)− P⊗nXY (xn, yn)||TV
(d)

≤
√

2ε′ +
√

2ε′,

where

ε′ > 0, ε′ → 0 as n→∞;

(a) follows from the triangle inequality;

(b) follows from [2, Lemma 16];

(c) follows from [2, Lemma 17];

(d) the first term is the bound obtained as a result of Theorem 7 and the second term

is the result of Theorem 5 and Theorem 6 combined.

�

As a conclusion, we can achieve strong coordination for the two-node network

of Figure 4.1 using the (Ro, Rc, Ra, n)-channel resolvability code, as constructed in

the presented scheme, given the conditions on the rates as

Ra +Ro +Rc ≥ I(XY ;AC),

Ro +Rc ≥ I(XY ;C),

Ra +Rc ≥ I(X;AC),

Rc ≥ I(X;C),

Rc < I(B;C).


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4.2.4 Local Randomness Rates

In the original coordination network characterized by Cuff [2], each node possesses

unlimited amount of local randomization to probabilistically map its input arguments

onto the range of the encoding and decoding functions. Here we quantify the local

randomness, (ρk, k ∈ {1, 2}), possessed at each node. At node X, local randomness at

rate ρ1 is needed to randomize the selection of indices (i, k) by synthesizing the channel

PIK|XnJ(i, k|xn, j). On the other hand, node Y utilizes local randomness at rate ρ2

to generate the action sequence yn by simulating the channel PY |BC(yn|Bn, Cn).

At node X, according to [6], to achieve the probabilistic selection of indices I,K

the rate of local randomness must satisfy

ρ1 ≥ Ra +Rc − I(X;AC).

Here we have (2Rc+Ra) (i.e., (i, k) ∈ I × K) as this is the size of the selection list

for any (i, k) pair for a given action sequence Xn and common randomness index

J . On the other hand, I(X;AC) is the minimum rate for (Rc + Ra) to establish

independency between X and the common randomness source.

However, for the generation of the action sequence at node Y the necessary

local randomness is bounded by the conditional entropy representing the channel

PY |BC(yn|Bn, Cn). That is,

ρ2 ≥ H(Y |BC).

Moreover, as stated in [6, Lemma 2], if strong coordination is achievable we can

apply the rate-transfer argument. That is, for any 1 ≤ l ≤ 2, δk ≥ 0, k ∈ {1, 2}

and δk ≤ ρl the amount of δk is transferable between the node possessing the local

randomness rate ρl and the rate of common randomness Ro. Accordingly, we can
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obtain the following list of rate conditions:

Ra +Ro +Rc ≥ I(X;AC) + δ1 + δ2,

Ro +Rc ≥ I(XY ;C) + δ1 + δ2,

Ra +Rc ≥ I(X;AC),

Rc ≥ I(X;C),

Rc < I(B;C),

ρ1 ≥ Ra +Rc − I(X;AC)− δ1,

ρ2 ≥ H(Y |BC)− δ2.



(4.3)

Finally, the general scheme is considered as a joint coordination-channel coding

scheme because it achieves strong coordination over the DMC channel in one shot.

Since the objective of this section is to analyze joint versus separate coordination-

channel coding over point-to-point coordination links we now proceed to separation-

based coding schemes.

4.3 Basic Separate Coordination-Channel Coding Scheme

Now we consider the straight forward separation of coordination and channel codes by

combining the main results of the strong coordination over a two-node network in [2]

and the channel coding theorem [22]. We entitle this scheme as the basic separation

scheme, and it is designed as follows:

• Coordination encoder: describes the action sequence Xn using a coordination

code (2nRc , 2nRo , n) with the codebook U as detailed in Section 3.2. This

coordination code is achievable when the rates satisfies
Rc +Ro ≥ I(XY ;U), channel resolvability constraint

Rc ≥ I(X;U), secrecy constraint

 .
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• Channel encoder: uses a channel code (2mRa ,m) with the codebook A to map

the coordination message i with a codeword according to the encoding function

Am : {1, 2, ..., 2mRa} → Am,

where

Rc = λRa,

and λ is the transmission ratio given by m/n.

• Channel decoder: estimate the transmitted message î according to

g(Bm) : Bm → {1, 2, ..., 2mRa}.

According the channel coding theorem [22], this channel code is achievable

and can communicate a block of length m with probability of decoding error

(i.e., Pr(Î 6= I)) that goes to zero as m → ∞ for any rate Ra less than the

channel capacity C; resulting in

nRc = mRa,

Rc = λRa,

Rc ≤ λC,

Rc ≤ λI(A;B).

• Coordination decoder: receives î from the channel decoder. Chooses the

coordination codeword un(̂i, j) accordingly and passes it through a memoryless

channel PY |U to generate the action sequence yn.

Therefore, we can achieve strong coordination with communication over the

DMC PB|A(b|a) when we have coordination rate Rc satisfying

I(X;U) < Rc ≤ λI(A;B).
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Next, similar to the joint scheme, we also quantify the local randomness at both

nodes ρ1 and ρ2, apply the rate transfer Lemma [6, Lemma 2], and assume λ = 1 for

simplicity. As a result we obtain the following rate region:

Rc +Ro ≥ I(XY ;U) + δ1 + δ2, channel resolvability constraint

Rc ≥ I(X;U), secrecy constraint

Rc < I(A;B), decodability constraint

ρ1 ≥ Rc − I(X;U)− δ1, index randomization at node X

ρ2 ≥ H(Y |U)− δ2, sequence generation at node Y


. (4.4)

4.4 Improved Separate Coordination-Channel Coding Schemes

Now we first design an improved separate coordination-channel coding scheme by

modifying the code for the allied problem depicted in Figure 4.5. In this scheme

we imply separation by decoding the DMC input sequence An and separately use

the decoder output to randomly generate Y n. We construct the improved separate

scheme as follows:

Figure 4.5 Allied structure of separation-based code

• Let the channel codebook A be the same size as coordination codebook C. That

can be obtained by setting Ra = 0, |K| = 1 (i.e., a one-by-one mapping between

the codebook A and C in Figure 4.3).
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• At node Y , estimate the index Î from the output of the DMC Bn. The decoding

is based on jointly typical sequences with respect to the channel input An and

side information from the common randomness message J . Use the estimated

index Î to reconstruct both codewords An
îj

and Cn
îj
.

• Pass the reconstructed codewords through a memoryless channel PY |AC(yn|an, cn)

to obtain the output sequence Y n.

As a consequence, this will induce the following distribution

PXnY n(xn, yn) ,
∑
bn,i,j

2−nRPX|AC(xn|Anij, Cn
ij)PB|A(Bn|An)PY |AC(yn|An

îj
, Cn

îj
)

=
∑
i,j

2−nRPX|AC(xn|Anij, Cn
ij)PY |AC(yn|An

îj
, Cn

îj
), (4.5)

where R , Ro +Rc.

Clearly, since this joint distribution is similar to the one for the general scheme,

it can be shown that the following rate conditions are sufficient to achieve strong

coordination:



Ro +Rc ≥ I(XY ;AC) + δ1 + δ2, channel resolvability constraint

Rc ≥ I(X;AC), secrecy constraint

Rc < I(A;B), decodability constraint

ρ1 ≥ Rc − I(X;AC)− δ1, index randomization at node X

ρ2 ≥ H(Y |AC)− δ2, sequence generation at node Y


. (4.6)
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4.5 Hybrid Coordination-Channel Coding Scheme

Finally, a hybrid scheme is formed by altering the allied problem of the general

scheme similarly to the improved separate scheme as depicted in Figure 4.6. However,

this scheme is considered as hybrid because it benefits from the DMC output Bn.

Compared with the improved separate scheme in Section 4.4, the test channel at node

Y incorporates the output of the channel Bn in generating the action sequence Y n. As

a result, the channel coding layer is not completely separated. This is accomplished

by passing the DMC output sequence Bn along with the reconstructed codewords An
îj

and Cn
îj

through the channel PY |ABC(yn|An, Bn, Cn). The induced joint distribution

is as follows:

PXnY n(xn, yn) ,∑
bn,i,j

2−nRPX|AC(xn|Anij, Cn
ij)PB|A(Bn|An)PY |ABC(yn|An

îj
, Bn, Cn

îj
), (4.7)

where R , Ro +Rc.

Figure 4.6 Structure of the hybrid coordination-channel coding scheme.

This process only affects the action generation function at node Y . Specifically,

the amount of local randomness required to simulate the channel PY |ABC(yn|an, bn, cn)
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is given as:

Ro +Rc ≥ I(XY ;AC) + δ1 + δ2, channel resolvability constraint

Rc ≥ I(X;AC), secrecy constraint

Rc < I(B;C), decodability constraint

ρ1 ≥ Rc − I(X;AC)− δ1, index randomization at node X

ρ2 ≥ H(Y |ABC)− δ2 sequence generation at node Y


. (4.8)

4.6 Observations

Here, we will prove that the two-stage basic separate coordination-channel coding

method discussed in Section 4.3 is not necessarily as good as the joint coding method

proposed by the general scheme. In other words, we prove that the general scheme is

able to strictly provide smaller rates to achieve strong coordination. To prove that we

show that the basic scheme is a subset of the proposed joint scheme, and hence, the

coordination rate region of the former is a subregion of the latter scheme. Theorem 8

outlines this inclusion of the rate regions.

Theorem 8 (Rate region inclusion). For the point-to-point coordination over a DMC,

the relation between the rate region of the joint, hybrid, improved separate and basic

separate schemes can be expressed as

Rbasic sep. ⊆ Rimproved sep. ⊆ Rhybrid ⊆ Rjoint (4.9)

Proof. First we see that the basic scheme is constructed as a special case of the

improved separate coordination-channel coding scheme by choosing
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

Separate/Hybrid Basic

X − (A,C)− Y X − U − Y

A = A*

C = U

PAC = PAPU

PX|AC = PX|U

PY |AC = PY |U



. (4.10)

Similarly, we can construct both separate and hybrid schemes from the joint

coordination-channel coding scheme. Choose

Joint Separate/Hybrid

|K| ≥ 1 |K| = 1

A′ = A

C ′ = (A,C)


. (4.11)

Based on the pair-wise construction of schemes, this suggests that the basic

separation scheme is constructed as a special case of the presented joint scheme. As

a result, the rates that are achievable by the basic separate scheme are included in

the rate region of the proposed joint scheme. �

Finally, we derive the criteria to compare the rate regions of the presented

coding schemes. Although the rate constraints specified by the equation sets (4.3),

(4.4), (4.6), and (4.8) incorporate six variables representing rates, in this study, we are

in particular interested in the randomness rates, both local and common. Therefore,

we deploy Fourier–Motzkin elimination [29] on the rate constraints of the mentioned

coding schemes to obtain rate constraints only involving the three randomness rates.

Appendix A details the Fourier-Motzkin elimination steps to obtain the rate regions
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shown in Table 4.1.

Table 4.1 Randomness Rate Regions for the Coordination-channel Coding
Schemes

Joint coding Hybrid coding Improved
separation

Basic separation

λ1 ≥ I(Y ;A′C ′|X)
+H(Y |B′C ′)

I(Y ;AC|X)
+H(Y |BC)

I(Y ;AC|X)
+H(Y |AC)

H(Y |X)

λ2 ≥ I(XY ;C ′)
+H(Y |B′C ′)
−I(B′;C ′)

I(XY ;AC)
+H(Y |BC)
−I(A;B)

I(XY ;AC)
+H(Y |AC)
−I(A;B)

I(XY ;U)
+H(Y |U)
−I(A;B)

λ3 ≥ I(Y ;A′C ′|X) I(Y ;AC|X) I(Y ;AC|X) I(Y ;U |X)

λ4 ≥ I(XY ;C ′)
−I(B′;C ′)

I(XY ;AC)
−I(A;B)

I(XY ;AC)
−I(A;B)

I(XY ;U)
−I(A;B)

I(X;C ′)
< I(B′;C ′)

I(X;AC)
< I(A;B)

I(X;AC)
< I(A;B)

I(X;U)
< I(A*;B*)

where 

λ1 , R0 + ρ1 + ρ2,

λ2 , Ro + ρ2,

λ3 , Ro + ρ1,

λ4 , R0.


.

In principle, Theorem 8 indicates that Shannon’s separation is not necessarily

optimal (i.e., by providing smaller rates for the schemes on the LHS of equation (4.9)

compared to schemes further on the RHS of this equation). In the following Chapter 5,

we will illustrate the mentioned rate region inclusion of Theorem 8 with an example.
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CHAPTER 5

EXAMPLE AND DISCUSSION

In this chapter, we compute the rate region for the hybrid scheme and the

basic separation scheme with an example, and then demonstrate simulation results

highlighting the observations made in Section 4.6.

5.1 Binary Symmetric Action Distribution over Binary Symmetric
Common Channel

For a Bernoulli (1
2
) source X, a joint distribution pXY (x, y), and a common

communication channel PB|A, we derive the common and local randomness region for

the basic strong coordination-channel separation scheme associated with synthesizing

the target joint distribution. Here, the communication channel between the two

nodes is a BSC with a cross over probability po and the joint target behavior

is pXY (x, y) = pX(x)pY |X(y|x) where pY |X(y|x) is described as Binary Symmetric

Channel (BSC) with cross over probability p. For this setup, we assume the

alphabet of the auxiliary random variable C used in generating the coordination

codebook is binary2 (i.e., |C| = 2). Accordingly, we construct the basic separation

scheme to acquire the randomness rate region and, for comparison, the hybrid

coordination-channel coding scheme where we derive a single operating point on its

randomness rate region to demonstrate that the latter scheme is able to provide

strictly better rates than the basic separation scheme. Both the hybrid scheme and

the basic separation schemes are built following the guidelines given in (4.10).

5.1.1 Basic Separation Scheme

To build the basic separation scheme for the setup, we follow a similar approach

as in [2]. Here, the joint distribution PX(x)PU |X(u|x)PY |U(y|u) that produce the

2Although the alphabet size of the auxiliary random variable C may not be optimal, it
provides a reasonable basis for comparing the two mentioned schemes.
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strong coordination capacity region is formed by cascading two BSC as illustrated in

Figure 5.1 forming the Markov chain X − U − Y where

p2 ∈ [0, p], p1 =
p− p2
1− 2p2

.

Figure 5.1 Decomposition of the joint target behavior BSC(p) for the basic
separation coding scheme.

The mutual information terms for the capacity region from the equation set

(4.4) can be written as follows

I(X;U) =1−H(p1),

I(XY ;U) =1 +H(p)−H(p1)−H(p2),

I(A;B) =1−H(po).

By applying these quantities to the local and common randomness region from

Table 4.1 we obtain the following rate constraints:

Ro + ρ1 + ρ2 ≥ H(p), (5.1)

Ro + ρ1 ≥ H(p)−H(p2), (5.2)

Ro + ρ2 > H(p)−H(p1) +H(po), (5.3)

Ro + ρ2 > H(p)−H(p1)−H(p2) +H(po), (5.4)

H(p1) > H(po). (5.5)
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5.1.2 Hybrid Scheme

On the other hand, the hybrid scheme described in Section 4.5 is constructed in

two stages. First, we find a joint distribution PAC(a, c) over the channel codebook

A and the coordination codebook C. The hybrid scheme correlates the codebooks

such that the decodability constraint (i.e., Rc < I(B;C)) from (4.6) is satisfied.

Specifically, we find the joint distribution PC(c)PA|C(a|c) that maximizes the mutual

information between the coordination codeword Cn
ij and the channel output sequence

Bn corresponding to the channel input codeword Anij. Illustrated in Figure 5.2 is the

channel associated with such a distribution where

Capacity(decodability channel) = max
PC(c)PA|C(a|c)

I(B;C) (5.6)

= max
PC(c)PA|C(a|c)

(
H(B)−H(B|C)

)
= 1−H(po)−H(p̃).

The maximum in (5.6) is achieved when PC(c) is uniformly distributed and if p̃ = 0.

Figure 5.2 Codebook correlation channel.

Then, the joint distribution PX(x)PCA|X(c, a|x)PB|A(b|a)PY |BC(y|b, c) from (4.7)

that produces the boundary of the strong coordination region for the hybrid scheme

is formed by cascading two BSCs and a uniformly focusing channel. Recall that in

the hybrid scheme, we only transmit the codeword Anij over the common channel and

then perform full decoding to obtain Cn
î,j

at the other end as described in Section
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4.5. This process forms the Markov chain X − (C,A)− (C,B)− Y characterized in

Figure 5.3 where α ∈ [0, 1], β ∈ [0, 1].

Figure 5.3 Hybrid scheme channel simulation of BSC(p).

We can simplify the channel synthesis for the hybrid scheme to two cascading

BSCs similarly to Figure 5.1 by setting

p2 , (1− po)α + poβ.

Then, the mutual information terms for the capacity region from (4.6) are

written as

I(X;AC) = 1−H(p1),

I(XY ;AC) = 1 +H(p)−H(p1)−H(p2),

I(B;C) = 1−H(po).
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As a result, the sum of the achievable rates for the hybrid scheme rate region

from Table 4.1 becomes

Ro + ρ1 + ρ2 ≥ I(Y ;AC|X) +H(Y |BC)

= H(Y |X)−H(Y |XAC) +H(Y |BC)

(a)
= H(Y |X)−H(Y |AC) +H(Y |BC)

= H(p)−H(p2) + (1− po)H(α) + poH(β),

(5.7)

where (a) is a result of the Markov chain X − (A,C)− Y.

Similarly we obtain the rest of the rate constraints as follows:

Ro + ρ2 > H(p)−H(p1)−H(p2) +H(po) + (1− po)H(α) + poH(β), (5.8)

Ro + ρ1 ≥ H(p)−H(p2), (5.9)

Ro > H(p)−H(p1)−H(p2) +H(po), (5.10)

H(p1) > H(po). (5.11)

On the one hand, the overall achievable randomness from (5.7) for coordinating

the target pXY distribution is characterized by the parameters p2, α, and β.

To find the minimum achievable sum rate we optimize over the selection of the

above mentioned parameters representing PCA|X(c, a|x) and PY |BC(y|b, c) from (4.7),

respectively as follows:

Ro + ρ1 + ρ2 ≥ min
p2,α,β

(
H(p)−H(p2) + (1− po)H(α) + poH(β)

)
= H(p)− max

p2,α,β

(
H(p2)− (1− po)H(α)− poH(β)

)
. (5.12)

On the other hand, for the basic separation scheme from (5.1) we have

Ro + ρ1 + ρ2 ≥ H(p).
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By assumption, the hybrid scheme parameters p2, α, and β can also be selected to

simulate separation. Specifically, by selecting:

α = β,

then

p2 =(1− po)β + poβ = β,

(Ro + ρ1 + ρ2)Hybrid =H(p)−H(β) + (1− po)H(β) + poH(β)

=H(p)

=(Ro + ρ1 + ρ2)Basic Separation.

As a result, at this point where α = β = p2 the hybrid scheme performance will be

identical to the basic separation scheme. This supports our claim in Section 4.6 that

the rate region for the basic separation scheme is strictly included in the rate region

of the hybrid scheme by comparing (5.1) and (5.12).

5.1.3 Simulation Results

For an example suppose that a doubly binary symmetric source pXY (x, y) with pY |X =

BSC(0.4) and a common noisy channel of PB|A = BSC(0.3) are selected to investigate

both the obtained randomness region for the basic separate scheme and a single

operating point of the hybrid scheme which provides the minimum in (5.12). This

sample is collected by performing an exhaustive search over p2, α, and β such that the

second term on the RHS of (5.12) is maximized. Figure 5.4 shows both the boundary

of the basic separation scheme region and the single operating point of the hybrid

scheme, and Figure 5.5 presents a projection to the (Ro , ρ2) plane of Figure 5.4.

As can be seen from Figure 5.4, the hybrid scheme sample provides a smaller

sum rate (Ro + ρ1 + ρ2). Comparing the single operating point of the hybrid scheme

with the corresponding operating point (obtained by the same value of the parameter
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Figure 5.4 Channel randomness region for the separate scheme for a target
distribution modeled as pY |X = BSC(0.4).

Figure 5.5 Channel randomness region for the separate scheme and pY |X =
BSC(0.4) projected on the (Ro , ρ2) plane of Figure 5.4.
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p2) for the separation based scheme yields a difference of about 0.6158 bits in terms

of sum rate. The values of β, α, and p2 returned by the exhaustive search producing

this hybrid scheme sample are 5
6
, 0, and 1

4
, respectively. Hence, the hybrid scheme

provides better rates than the basic separation scheme and that breaks down the

coordination-channel separation.

This simulation has been repeated for a couple of communication BSCs with

different values of the cross over probability po for a fixed p = 0.4. Figure 5.6 and

Figure 5.7 present a comparison between the minimum local randomness ρ2 required

at node Y achieved by both hybrid and separate schemes verses the sum rate Ro+ρ1.

Figure 5.6 Combined rates Ro + ρ1 vs. local randomness rate ρ2 for pY |X =
BSC(0.4) and PB|A = BSC(0.3).

Comparing between the two randomness regions of the hybrid scheme for

different BSCs depicted in Figures 5.6 and 5.7, it can be noticed that for bigger BSC

cross over probabilities the minimum sum rate does not necessary decrease. This

behavior is due to the capacity limitation imposed by the communication channel.
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Figure 5.7 Combined rates Ro + ρ1 vs. local randomness rate ρ2 for pY |X =
BSC(0.4) and PB|A = BSC(0.2).

However, time-sharing can be used to achieve any point on the chord between two

sum rate achieving pairs as illustrated with the red curve in Figures 5.6 and 5.7.

Finally, Figure 5.8 demonstrates how the cross over probability po affects the

minimum randomness sum rate (R0 + ρ1 + ρ2) for the basic separation and hybrid

schemes and pY |X = BSC(0.4). It can be noticed that as po increases, the sum rate of

the hybrid scheme decreases until the point where po = 1−
√
1−2P
2

= 0.2764. After this

point, the channel provides too much randomness for simulating the given doubly

binary symmetric source. As a result, the parameter β in Figure 5.3 is decreased

(i.e, β < 1) to reduce the channel randomness propagating to node Y . As the cross

over probability po increases after this point, the required total randomness of the

hybrid scheme approaches the one for the basic separation scheme again.
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Figure 5.8 Comparison of required randomness sum rates for separate and hybrid
scheme for pY |X = BSC(0.4) versus the BSC cross over probability po.
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CHAPTER 6

CONCLUSION

The source-channel separation theorem states that we can construct an optimal code

to represent a source using a finite set of messages (i.e., lossy source compression),

and independently design an optimal channel code to reliably communicate these

message while maintaining a desired minimum distortion. This theorem is a classical

result of the information theory that was established by Shannon and an essential

concept for reliable point-to-point communication. In this thesis, we have investigated

a fundamental question regarding communication-based coordination: Is Shannon’s

separation theorem optimal in the context of point-to-point coordination networks?

In other words, is designing a coordination code separately from a channel code the

best strategy? For this purpose, we have studied the problem of coordination over

noisy communication links. In particular, we considered the two-node network setup

with a discrete memoryless channel as the communication link. We have examined the

strong coordination notation where the induced joint distribution of action sequences

selected by the nodes is close to a target distribution. Specifically, the induced

distribution is statistically indistinguishable from the target distribution. To achieve

strong coordination, the coding scheme must induce a distribution that simulate the

target joint distribution with tolerance of an arbitrary small error measured by total

variation.

To that extent, we derive achievability for the two-node coordination network

with a noisy communication link and construct a general joint coding scheme.

The proof technique underlying our general coding scheme is based on channel

resolvability, a technique which is widely used in analyzing strong coordination

problems. We derive the necessary constraints over the rates of communication,

local randomness, and common randomness to achieve strong coordination over the
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mentioned setup. In particular, we focus on the trade-off between the required rates

of common and local randomness.

Moreover, we have shown that from our general scheme, three special cases can

be constructed. Specifically, a hybrid coding scheme, an improved separation scheme

and the basic separation scheme that follows Shannon’s separation principle. Based

on this construction, we have established that the set of achievable rates of the basic

separation scheme is a subset of the rates achieved by the joint scheme. As a result,

we conclude that the general scheme which jointly solves the coordination-channel

problem is able, in fact, to provide better performance in terms of a larger achievable

rate region. Specifically, a smaller sum of common and local randomness rate is

obtained by joint encoding and decoding. Surprisingly, this result breaks the classical

information theoretic concept that was established by Shannon and summarizes the

main contribution of this thesis. Finally, a simple example has been studied showing

the construction of a hybrid scheme and a basic separation scheme for coordinating

a doubly binary symmetric source over a binary symmetric communication channel.

The example is followed by some simulation results. The simulation results validate

our claim by showing that the hybrid scheme is capable of providing a smaller

randomness sum rate compared with the basic separation scheme.

Although this work yields some insight in coordination over noisy communi-

cation links, there are still open questions that can be addressed. For example, a

convex proof that would establish that the presented joint coding scheme is indeed

the optimal scheme is absent from this thesis. Further, this work can be extended

to more complicated three-terminal network setups including relay, broadcast, and

multiple access networks. Finally, the work can be extended to code implementation.

In particular, based on the success of poler codes in achieving strong coordination via

channel resolvability, one natural extension is implementing polar codes for the noisy
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two-node network following our general construction and to determine whether the

same rates can be guaranteed asymptotically.
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APPENDIX A

FOURIER-MOTZKIN ELIMINATION

For the purpose of comparing between the achievable schemes from Chapter 4, we

characterize each scheme in terms of local and common randomness rates. In this

appendix we perform the Fourier-Motzkin variable elimination technique [29] in order

to present the randomness rate region sets as listed in Table 4.1 by eliminating the

rate-transfer variables δ1, δ2 and the communication rate Rc from the rate regions as

follows

A.1 Randomness Rate Region for the Basic Separation Scheme

From the equation set (4.4) we have

Ro +Rc ≥ I(XY ;U) + δ1 + δ2, (A.1)

Rc ≥ I(X;U), (A.2)

−Rc > −I(A;B), (A.3)

ρ1 ≥ Rc − I(X;U)− δ1, (A.4)

ρ2 ≥ H(Y |U)− δ2, (A.5)

where

δ1 ≥ 0, (A.6)

δ2 ≥ 0. (A.7)

Steps:

1. Add (A.4) and (A.5) to (A.1):

Ro +Rc + ρ1 + ρ2 ≥ I(XY ;U) + δ1 + δ2,+Rc − I(X;U)− δ1 +H(Y |U)− δ2,

Ro + ρ1 + ρ2 ≥ I(XY ;U)− I(X;U) +H(Y |U),
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= I(Y ;U |X) +H(Y |U),

= H(Y |X)−H(Y |UX) +H(Y |U),

= H(Y |X)−H(Y |U) +H(Y |U),

= H(Y |X). (A.8)

2. Add (A.6), (A.7), and (A.3) to (A.1):

Ro +Rc + δ1 + δ2 −Rc > I(XY ;U) + δ1 + δ2 − I(A;B),

Ro > I(XY ;U)− I(A;B). (A.9)

3. Add (A.4) and (A.7) to (A.1):

Ro +Rc + ρ1 + δ2 ≥ I(XY ;U) + δ1 + δ2 +Rc − I(X;U)− δ1,

Ro + ρ1 ≥ I(XY ;U)− I(X;U),

= I(Y ;U |X). (A.10)

4. Add (A.5), (A.6), and (A.3) to (A.1):

Ro +Rc + ρ2 + δ1 −Rc > I(XY ;U) + δ1 + δ2 +H(Y |U)− δ2 − I(A;B),

Ro + ρ2 > I(XY ;U) +H(Y |U)− I(A;B). (A.11)

5. Add (A.2) to (A.3):

Rc −Rc > I(X;U)− I(A;B),

I(A;B) > I(X;U). (A.12)
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A.2 Randomness Rate Region for the Separate Scheme

For the separate scheme we have from the equation set (4.6)

Ro +Rc ≥ I(XY ;AC) + δ1 + δ2, (A.13)

Rc ≥ I(X;AC), (A.14)

−Rc > −I(A;B), (A.15)

ρ1 ≥ Rc − I(X;AC)− δ1, (A.16)

ρ2 ≥ H(Y |AC)− δ2. (A.17)

Steps:

1. Add (A.16) and (A.17) to (A.13):

Ro +Rc + ρ1 + ρ2 ≥ I(XY ;AC) + δ1 + δ2 +Rc − I(X;AC)− δ1 +H(Y |BC)− δ2,

Ro + ρ1 + ρ2 ≥ I(XY ;AC)− I(X;AC) +H(Y |AC),

= I(Y ;AC|X) +H(Y |AC),

= H(Y |X). (A.18)

2. Add (A.6), (A.7), and (A.15) to (A.13):

Ro +Rc + δ1 + δ2 −Rc > I(XY ;AC) + δ1 + δ2 − I(A;B),

Ro > I(XY ;AC)− I(A;B). (A.19)

3. Add (A.16) and (A.7) to (A.13):

Ro +Rc + ρ1 + δ2 ≥ I(XY ;AC) + δ1 + δ2 +Rc − I(X;AC)− δ1,

Ro + ρ1 ≥ I(XY ;AC)− I(X;AC),

= I(Y ;AC|X). (A.20)
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4. Add (A.17), (A.6) and (A.15) to (A.13):

Ro +Rc + ρ2 + δ1 −Rc > I(XY ;AC) + δ1 + δ2 +H(Y |AC)− δ2 − I(A;B),

Ro + ρ2 > I(XY ;AC) +H(Y |AC)− I(A;B). (A.21)

5. Add (A.14) to (A.15):

Rc −Rc > I(X;AC)− I(A;B),

I(A;B) > I(X;AC). (A.22)

A.3 Randomness Rate Region for the Hybrid Scheme

Similarly for the hybrid scheme we have from the equation set (4.6)

Ro +Rc ≥ I(XY ;AC) + δ1 + δ2, (A.23)

Rc ≥ I(X;AC), (A.24)

−Rc > −I(A;B), (A.25)

ρ1 ≥ Rc − I(X;AC)− δ1, (A.26)

ρ2 ≥ H(Y |BC)− δ2. (A.27)

Steps:

1. Add (A.25) and (A.26) to (A.23):

Ro +Rc + ρ1 + ρ2 ≥ I(XY ;AC) + δ1 + δ2 +Rc − I(X;AC)− δ1 +H(Y |BC)− δ2,

Ro + ρ1 + ρ2 ≥ I(XY ;AC)− I(X;AC) +H(Y |BC),

= I(Y ;AC|X) +H(Y |BC),

= H(Y |X)−H(Y |AC) +H(Y |BC). (A.28)
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2. Add (A.6), (A.7), and (A.25) to (A.23):

Ro +Rc + δ1 + δ2 −Rc > I(XY ;AC) + δ1 + δ2 − I(A;B),

Ro > I(XY ;AC)− I(A;B). (A.29)

3. Add (A.25) and (A.7) to (A.23):

Ro +Rc + ρ1 + δ2 ≥ I(XY ;AC) + δ1 + δ2 +Rc − I(X;AC)− δ1,

Ro + ρ1 ≥ I(XY ;AC)− I(X;AC),

= I(Y ;AC|X). (A.30)

4. Add (A.26), (A.6), and (A.25) to (A.23):

Ro +Rc + ρ2 + δ1 −Rc > I(XY ;AC) + δ1 + δ2 +H(Y |CB)− δ2 − I(A;B),

Ro + ρ2 > I(XY ;AC) +H(Y |CB)− I(A;B). (A.31)

5. Add (A.24) to (A.25):

Rc −Rc > I(X;AC)− I(A;B),

I(A;B) > I(X;AC). (A.32)
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A.4 Randomness Rate Region for the Joint Scheme

Finally, for the joint scheme, from the equation set 4.3 we have

Ro +Rc +Ra ≥ I(XY ;AC) + δ1 + δ2, (A.33)

Ro +Rc ≥ I(XY ;C) + δ1 + δ2, (A.34)

Rc +Ra ≥ I(X;AC), (A.35)

Rc ≥ I(X;C), (A.36)

−Rc > −I(B;C), (A.37)

ρ1 ≥ Rc +Ra − I(X;AC)− δ1, (A.38)

ρ2 ≥ H(Y |BC)− δ2. (A.39)

Steps:

1. To eliminate δ1 and δ2 from (A.33) add (A.38) and (A.39) to (A.33):

Ro +Rc +Ra + ρ1 + ρ2 ≥ I(XY ;AC) + δ1 + δ2 +Rc +Ra − I(X;AC)− δ1

+H(Y |BC)− δ2,

Ro + ρ1 + ρ2 ≥ I(XY ;AC)− I(X;AC) +H(Y |BC),

= I(Y ;AC|X) +H(Y |BC),

= H(Y |X)−H(Y |AC) +H(Y |BC). (A.40)

2. Add (A.7), (A.38) to (A.33):

Ro +Rc +Ra + ρ1 + δ2 ≥ I(XY ;AC) + δ1 + δ2 +Rc +Ra − I(X;AC)− δ1,

Ro + ρ1 ≥ I(XY ;AC)− I(X;AC),

= I(Y ;AC|X). (A.41)
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3. Add (A.6), (A.37), and (A.39) to (A.34):

Ro +Rc + ρ2 + δ1 −Rc > I(XY ;C) + δ1 + δ2 +H(Y |CB)− δ2 − I(B;C),

Ro + ρ2 > I(XY ;C) +H(Y |CB)− I(B;C). (A.42)

4. Add (A.6), (A.7) and (A.37) to (A.34):

Ro +Rc + δ2 + δ1 −Rc > I(XY ;C) + δ1 + δ2 − I(B;C),

Ro > I(XY ;C)− I(B;C). (A.43)

5. Add (A.36) to (A.37):

Rc −Rc > I(X;C)− I(B;C),

I(B;C) > I(X;C). (A.44)

Notice that the Fourier-Motzkin elimination steps concerning the rest of the rate

region inequalities for the joint scheme result in a redundant set and thus they are

not mentioned here.
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