New Jersey Institute of Technology Digital Commons @ NJIT

Electrical and Computer Engineering Syllabi

NJIT Syllabi

Fall 2018

ECE 231 - Circuits and Systems I

Oksana Manzhura

Follow this and additional works at: https://digitalcommons.njit.edu/ece-syllabi

Recommended Citation

Manzhura, Oksana, "ECE 231 - Circuits and Systems I" (2018). *Electrical and Computer Engineering Syllabi*. 5. https://digitalcommons.njit.edu/ece-syllabi/5

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Electrical and Computer Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Helen and John C. Hartmann Department of Electrical and Computer Engineering New Jersey Institute of Technology

Course Instructor: Oksana Manzhura

email: oksana.manzhura@njit.edu; office: 205 ECEC, tel.: 973 596-3504

Course Number and Title: ECE 231: Circuits and Systems I

(3 credits, 3 contact hours, required course)

Text book: Nilsson, J.W. and Riedel, S.A., Electric Circuits, **10th Edition**, Pearson Prentice Hall, Upper Saddle River, NJ. [ISBN 0-13-376003-0]

Course Catalog Description (including prerequisites and co-requisites):

A first course in circuits and systems, covering the basic concepts of electric circuit theory. Topics include basic circuit elements, loop and node analysis, network theorems, sinusoidal steady-state analysis, power, resonance, mutual inductance, and ideal transformers.

Prerequisites: Phys 121, Math 112 or Math 133.

Specific Course Learning Outcomes (CLO): The student will be able to

- 1. Develop firm understanding of physical principles behind electric circuit theory.
- 2. Thoroughly understand operation of passive circuit elements and their specific use in electric circuits.
- 3. Understand concepts of current and voltage, use and operation of ideal and non-ideal sources independent and dependent, electrical power and power sign convention.
- 4. Use Ohm's law and Kirchhoff's laws to produce a set of circuit equations, finding voltages and currents in a circuit
- 5. Use node voltage method of analysis, understand a concept of supernode for reduction of equations needed for a solution.
- 6. Use mesh current method of analysis, understand a concept of supermesh for reduction of equations needed for a solution.
- 7. Use Thevenin and Norton equivalents for circuit reduction, time constant and power calculation.
- 8. Understand superposition principle and use it to simplify a complex circuit solution.
- 9. Solve for transient response of first order resonant circuit
- 10. Understand and use phasor representation of sinusoidal excitation.
- 11. Develop firm knowledge and use of all circuit analysis methods applied to time varying excitation.
- 12. Understand operation of an ideal transformer.
- 13. Be able to calculate instantaneous, average and RMS power.
- 14. Use National Instruments' Multisim circuit modeling and analysis application software.
- 15. Use Digilent Analog Discovery Portable Circuit Design Kit (aka Portable Lab) to perform simple analog circuit experiments.

Relevant Student Outcomes (ABET criterion 3):

- (a) an ability to apply knowledge of mathematics, science, and engineering (CLO 1-15)
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data (CLO 2, 3, 13, 14, 15)
- (e) an ability to identify, formulate, and solve engineering problems (CLO 1- 12)
- (i) a recognition of the need for, and an ability to engage in life-long learning (CLO 14, 15)
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice (CLO 4-15).

<u>Course Outline:</u>

		Course Out	ille.
Week	Chapter/ Sections	Topics	Problems*
1	Appendix B,	PRE-TEST	
	Lecture Notes.	Pre-Test Common mistakes correction.	Special problems on complex numbers.
		Complex numbers in circuit theory.	(distributed by email or class file depository)
2	Ch. 1.4-1.6	Basic Concepts of Electricity	1.9, 1.10, 1.11, 1.12, 1.14, 1.15, 1.19*, 1.27
	Ch. 2.1-2.3	Voltage and Current Sources, Ohm's Law,	2.1, 2.2, 2.3, 2.6, 2.8, 2.10
		Circuit Models	
3	Ch 2.4-2.5	Kirchhoff's Laws, Dependent Sources in circuits	2.18, 2.19, 2.21*, 2.22, 2.23, 2.32, 2.33, 2.34
4	Ch 3.1-3.4	Resistance in Parallel and Series connections	3.3, 3.4, 3.5, 3.6, 3.7, 3.9*
5	Ch 3.5-3.7	Current and Voltage Dividers, Concept of	3.12, 3.13, 3.14, 3.16, 3.18*, 3.19, 3.32, 3.33, 3.34, 3.37, 3.38
		Load Resistance, Measurements of	
		Current and Voltage. Wheatstone Bridge,	
		PI to TEE transforms <i>Home Lab</i>	3.52, 3.53, 3.58, 3.59, 3.66 <mark>H</mark> , 3.73 H
		Assignment #1	
		(Materials distributed during prior week)	
5		<u>OUIZ I</u>	
6	Ch 4.1-4.13	Circuit Calculations,	4.1, 4.3, 4.6, 4.9, 4.12, 4.13, 4.16, 4.17, 4.18, 4.21, 4.22, 4.26,
		Node Voltage Method,	4.27, 4.28,
7		Mesh Current Method,	4.36, 4.38, 4.39, 4.41, 4.42, 4.46, 4.47, 4.52, 4.56, 4.57,
		Source Transformations,	4.59, 4.60, 4.62, 4.63,
8		Norton/Thevenin Equivalents,	4.64, 4.66, 4.68, 4.74, 4.75, 4.77, 4.78, 4.79, 4.81
		Maximum Power delivery, Superposition	4.87, 4.88, 4.93, 4.96, 4.102 <i>H</i> , 4.103 <i>H</i>
		Home Lab Assignment #2	
9		<u>OUIZ II</u>	
10	Ch 6.1-6.3	Inductors and Capacitors in Circuits	6.2, 6.3, 6.5, 6.7, 6.10, 6.15, 6.16, 6.17, 6.19*, 6.21, 6.22,
			6.23, 6.24 <i>H</i> , 6.27, 6.28, 6.31 <i>H</i> , 6.35
	Ch 6.4-6.5, <i>LN</i> , <i>Appendix C.1</i>	Mutual Inductance	6.36, 6.39, 6.40, 6.41, 6.47, 6.53
11	Ch 5.1-5.7	Operational Amplifier as a Dependent Source	5.1, 5.3, 5.5, 5.18, 5.21, 5.23, 5.33, 5.35
		Element	
		Home Lab Assignment #3	
12	Ch 9.1-9.9 Ch	Sinusoidal Sources, Phasors.	9.1, 9.2, 9.3, 9.7, 9.8H, 9.9, 9.11, 9.13,
	10.1-10.3	Passive Elements in Frequency Domain	9.15, 9.16*, 9.18H, 9.22, 9.23, 9.24,
		Kirchhoff's Laws in Frequency Domain	9.28, 9.29, 9.30, 9.34, 9.36, 9.40
		Thevenin /Norton Equivalents	9.43, 9.44, 9.45.
		Node and Mesh Methods of Circuit Analysis,	, ,
		Instantaneous, Average, RMS Power	10.1, 10.4, 10.5, 10.6*, 10.10, 10.11, 10.12, 10.17
<i>13</i>		<u>OUIZ III</u>	
13	Ch 7.1-7.7	First Order Systems, RL & RC. Natural and Step	7.1, 7.2, 7.4, 7.8,* 7.12, 7.14, 7.23, 7.25, 7.26, 7.28, 7.33,
14		Response.	7.36, 7.54, 7.64, 7.68, 7.69, 7.71
		Home Lab Assignment #4	
		First Order Systems General Solution with	7. 74, 7.77, 7.80, 7.82, 7.83, 7.85,
15		Abrupt Power Change	
		Sequential Switching, Unbounded Response	
15	Ch 9.10-9.11	Transformers	9.75, 9.76, 9.77, 9.78, 9.80

One hour open classroom workshop is offered twice a week to complement lecture hours. Schedule changes per semester. Grading Policy: Grading Policy:

Class Pre-test:	5%
Three class examinations:	19%, 19%, 19%.
Final examination:	28%
Homework, quizzes, class participation:	5%
Take-Home Laboratory assignments:	5% +5% for completion (reports and simulations required)
Or Optional Multisim Project <mark>H</mark>	5% extra

*Problems (marked with asterisk) should be solved using MultiSim (available in Computer Labs and for purchase as Student License). Getting started link: <u>http://www.ni.com/white-paper/10710/en</u>

Problems marked H are mandatory for Honors sections.

Honors class fulfills 15% more work in form of homework, test problems and projects. Tests and final exams are closed notes and books, formula sheets allowed for tests 2(one page), 3 (2 pages) and final (3 pages). Attendance: required at class lectures and problem solving sessions. Cellular phones and Beepers: Shut off or in quiet mode.

NJIT Honor Code will be upheld, and any violations will be brought to the immediate attention of the Dean of Students.