New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2017

Otolith morphologies in the genus sinocyclocheilus

Igra Igbal
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

6‘ Part of the Biology Commons

Recommended Citation
Igbal, Igra, "Otolith morphologies in the genus sinocyclocheilus” (2017). Theses. 4.
https://digitalcommons.njit.edu/theses/4

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.


https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.njit.edu%2Ftheses%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/4?utm_source=digitalcommons.njit.edu%2Ftheses%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



ABSTRACT

OTOLITH MORPHOLOGIES IN THE GENUS SINOCYCLOCHEILUS

by
Igra Igbal

Sinocyclocheilus is a genus of Cyprinid fish found in southern China. This genus contains
68 species of which 40 species have adaptations for life in cave habitats. A common
adaptation seen in fish that live in caves with no light is the loss of vision. Such cavefish
must therefore rely on other sensory modalities to capture prey, communicate between
conspecifics, and potentially avoid predators. Previous studies have identified sensory
adaptations in cavefish, including the increase in size and number of mechanoreceptors.
Sinocyclocheilus are hearing specialists, and it is possible that cave species of this genus
have increased reliance on hearing when compared to their surface-living relatives.

The central hypothesis that motivates this work is that the hearing system of
cavefish has adapted for increased hearing sensitivity relative to surface fish, and
specifically that their otoliths are larger. Otoliths are functionally important and easy to
measure components of fish hearing systems. The size, shape, and volume of otoliths
were measured as a first step in identifying and understanding evolutionary changes in
hearing related to loss of vision. In general, the findings do not support this hypothesis —

no differences in measurements of otoliths across ecotypes were observed.
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CHAPTER 1

INTRODUCTION

1.1 Sensory Adaptations: Role of Size

The size of sensory organs in an animal often reflects the importance of the sensory
system for survival. For example, animals that rely on vision have larger eyes than
animals that do not rely on vision. The larger eyes both reflect an increase in the number
of sensory cells, the photoreceptors, and increase the amount of light that is captured by
the eye. Similarly, animals that rely on hearing to capture prey, such as owls and bats,
have larger ears and hearing organs than most other species. Large inner ears reflect
increased numbers of hair cells, which detect the vibrations associated with sounds, and
the larger pinnae increase the amount of energy that is transmitted to the inner ear.

Animal morphology is generally believed to match the demands of the habitat in
which it lives. How morphologic changes occur across evolutionary time is an important
question in animal biology. One approach to studying the evolution of morphological
specializations is to make comparisons across closely related species that have
dramatically different life histories. For example, the genus Sinocyclocheilus includes
surface-dwelling species, troglophilic species, and blind cavefish species. The surface-
dwelling fish can rely on vision, whereas the cavefish do not. As expected, the surface
fish have large eyes and the cavefish have reduced or no eyes as adults.

The central hypothesis of this work is that cavefish rely on acoustic information,
which has led to a hypertrophy of the auditory system when compared to the surface
relatives. To examine this hypothesis, the size and shape of otoliths were measured and

compared across thirteen species of cave-dwelling, troglophilic, and surface-dwelling



Sinocyclocheilus. Specifically, this work examined the hypothesis that cavefish otoliths

are bigger than surface fish otoliths.

1.2 Hearing in Water

Hair cells, which are specialized sensory receptors for mechanical stimuli including
vibrations associated with sound, rely on the relative movement of the stereocilia on its
apex relative to the cell body (Figure 1.1). When the stereocilia are deflected, they open
channels that cause depolarization, leading to an increase in release of neurotransmitters.

Aguatic organisms and water have almost identical densities. As a result, sound
travels through each nearly identically. In general, there is little relative movement
caused by sound between materials with similar densities. To increase the relative
movement between the stereocilia and the cell bodies of hair cells, fish embed their

stereocilia in high-density organs called otoliths (Popper et al. 2005).

Otolith

ol b Tt D atd atl tl ol ol ,||J ..|I ..|! all

B RSATRA AL um

Otolithic Membrane Sensory Epithelium

a1r cells

Figure 1.1 Schematic of sound processing by inner in fish; otolith is stimulated by hair

cells for sensory transduction.
Source: Arthur N. Popper and Zhongmin Lu (2000).



1.3 Auditory Systems in Fish
There are approximately 35,000 extant species of fish and they inhabit different
environmental niches. Audition in fish is a mechanosensory modality and that is
mediated by the lateral line, and in some fish, a specialized hearing organ associated with
the vestibular system (Coombs 1988). The lateral line is located along both sides of the
body of the fish and detects movements and vibrations in the water. The auditory
pathway of fish hearing is associated with the vestibular pathway in fish is responsible for
balance and spatial orientation in addition to hearing (Popper and Lu 2000). The hearing
organs of fish vary in size of their otoliths, shape of sensory epithelia and orientation of

sensory hair cells (Figure 1.2) (Schulz-Mirbach et al. 2011).

Lateral view

antenior
semicircular

posterior
semicircular

utricle

horizontal
semicircular
canal Medial view

macula
lagenae
macula "
' utriculi
macula
sacculi

Figure 1.2 Right inner ear with semicircular canals and end organs of a generic fish
inner ear (constructed from the small Molly, Poecillia reticulata). Otoliths are shown in
gray and sensory epithelium is shown in red in lateral view (top) and in medial view
(bottom). Note the difference in saccule morphology in the Molly (Cyprinodontiformes)

and Sinocyclocheilus (Cypriniformes) is not uncommon in teleosts. Scale bar=1 mm.
Source: Schulz-Mirbach et al. (2011).



Cyprinids are among fish species that are categorized as hearing specialists. In
these fish, sound waves vibrate the gas-filled swim bladder, which is a mechanical
amplifier of acoustic vibrations. The vibration of the swim bladder is communicated to
the hearing sensors via four bones on the anterior end of the swim bladder known as ian
ossicles. Vibrations of the Weberian ossicles induce vibrations of the otoliths, which then
cause shearing motions across the stereocilia of the hair cells. The differential movement
between hair cells and otolith, which are connected via a structure known as the tectorial
membrane, induces neural responses.

Sinocyclocheilus have three otoliths (in the fluid filled cavities sagitta, lagena and
saccule; Figure 1.3) that vary in size and shape across species of fishes (Paxton 2000).
Some species of sound producing fish appear to have larger otoliths, but the relation

between otolith size and function is not well established (Paxton 2000).

Lagena

Saccule

< Utricle

R

Figure 1.3 The three otoliths in the inner ear of Sinocyclocheilus genus. Scale 1 mm.



In fish, otoliths are located towards the caudal aspect of the skull (Figure 1.4). In many
species, the sizes of ears, swim bladders and the lateral lines are correlated (Popper and

Fay 1993).

Figure 1.4 Placement of otoliths in the skull of a Sinocyclocheilus species. Scale 1 cm.

Three studies have examined auditory responses in cavefishes. Popper (1970)
studied Astyanax mexicanus using behavioral methods and found no differences in the
cavefish vs. surface fish. Schulz-Mirbach et al. (2010) observed that cave and surface fish
had similar hearing performance, with the sensitivity being the greatest between 200 and
300 Hz. Nevertheless, Schulz-Mirbach et al. (2010) found significant differences in the
shape of each of the three otoliths. Finally, Niemiller et al. (2013) compared hearing
characteristics in surface and cavefish in the amblyopsid species and found that cavefish

had higher acoustic thresholds than the surface fish.



1.4 Cavefishes

Organisms that spend their entire lives in subterranean habitats are known as troglobites.
Caves host various bacteria, fungi, and a few vertebrate taxa. The most common
vertebrate group found in caves is fish. There is over 170 species that have been
identified to live in freshwater caves (Soares and Niemiller 2013). Cavefish species are
found every continent except Europe and Antarctica (Soares et al. 2016). All of these
species are fresh water fishes except for one species, lives in saltwater and can be found
in the Bahamas (Lucifuga speleotes) (Garcia-Machado 2011).

Caves often include regions that have no light, which leads to lower productivity
and less availability of nutrients (Yoshizwa 2015; Niemiller and Soares 2015). Animals
that live in the regions of caves often exhibit morphological features that include loss of
pigmentation, slower metabolism, increased life spans, and eye degeneration (Jeffery
2001; Schulz-Mirbach et al. 2010, Soares et al. 2016). An important question is how

these organisms have adapted and survived without eyesight.



CHAPTER 2
Materials and Methods
2.1 Purpose
We measured otolith morphology for three reasons. First, otoliths are critical for hearing
in fish. Otoliths have much higher-density than the tissue surrounding them, leading to
differential motion induced by vibratory stimuli. The movement of hair cells, which
encode vibration information, detects this differential motion. Second, changes in otolith
size may reflect functional changes in hearing efficiency. Third, because otoliths are
dense, they are easy to study in micro CT scans.
The swim bladder, which also may be modified to enhance the efficiency of
hearing, was not measured in this study because the available micro CT scans only

included the skull of the fish and did not include any portions of the swim bladder.

2.2 Anatomy
This study was conducted on thirteen species of the genus Sinocyclocheilus. All fish
samples belong to the Beijing Museum of Natural History. The fish heads were scanned
using an Xradia Micro XCT-400 (Carl Zeiss X- ray Microscopy, USA) at the Institute of
Zoology of the Chinese Academy of Sciences, Beijing, China. The thirteen individuals

that were used in this study are shown in Table 2.1.
The skull and otoliths were reconstructed and analyzed in 3-D images using the
software Mimics 18.0 (Materialize, USA). Each reconstruction of the skull included pairs
of otoliths that are in the fluid filled sacs saccule, lagena and utricle (Fig 1.3). For each

fish, the gray scale threshold was optimized to see the ossified structures clearly.



2.3 Otolith Measurements
The measurements for each otolith consisted of height (ventral-dorsal), length (rostral-
caudal) and width (medial-lateral) and its volume using the software Mimics v18
(Materialize MI, USA). All of the measurements were organized in an Excel (Microsoft,
USA) and descriptive statistics were done with XLMiner Analysis toolpak and further

validated in Matlab (Mathworks, USA).

Table 2.1 Measurements of Sinocyclocheilus along with their environments and their
relative length (cm). Note: *Pictures are not to scale — all pictures obtained from
collaborators in China.

Sample Environment | Length Morphology
(cm)

S. angustiprous | Troglophile 7.9

*Y. Dante

S. angularis Troglophile 8.4

*Y. Yahui




Table 2.1 (continued)

S. anshuiensis Cave 8.4

S. bicornuts Cave 10.4
*Y. Dante

S. cyphotergous Cave 7.2
*Y. Yahui

S. flexuodorsalis Cave n/a




Table 2.1 (continued)

S. furcodorsalis Cave 7

*Y. Yahui

S.jii Surface 6.1

S. lateristritus | Trogophile 12

S. rhinocerous Cave 6.3

*Y. Yahui

10



Table 2.1 (continued)

S. tainlinesis Cave 9.3

*Y. Yahui
S. tilehornes Cave 6.9
S. quibenisis Trogophile 9.9

*Y.Yahui

11



CHAPTER 3

RESULTS

3.1 Volume of Otoliths
There was no significant difference in the volumes of the right and left otoliths (paired
Two Sample T-test for means, p=0.9, t= -0.14, alpha = 0.05), saccule volumes (p=0.6, t=
-0.5, alpha = 0.05) and utricle volumes (p=0.17, t= -1.45, alpha = 0.05). The linear
regression was y = 1.00 x + 27.10 giving the value of r> =0.96. The slope of the relation
between left and right volumes is not significantly different from unity (Fig. 3.1), which
indicates that the volumes for the right and left sides are symmetric. Therefore, the

average of both otoliths, one from each side, were used in all subsequent analyses.

Otolith Relationship (R/L Side)
40000

35000

= 30000 A AM

A
25000 a4

20000 A

15000 @5‘

10000 ﬂf

5000 y=1.00x + 27.10
R?=0.96

ght side volume (mm?)

Ri

0 5000 10000 15000 20000 25000 30000 35000 40000
Left side volume (mm?)

Alagena XSaccule BUtricle

Figure 3.1 The relationship between right and left otoliths. The right and left otoliths are

similar in volume in all of the measured species of Sinocyclocheilus.
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3.2 Dimensions of Otoliths
The dimensions of each otolith were measured to determine if there is a pattern related to
the ecotype. Each otolith was measured in height, length and width and compared among

ecotypes.
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Figure 3.2 Lagena measurements. A) Height vs. Length, B) Height vs. Width, C) Length vs.
Width. All measurements in mm*10.
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The lagena showed a positive relationship between height and length among
species, with a regression line with a slope of =~ 0.93 (Figure 3.2 A). The relationship
between height and width was almost flat, with a slope of 0.32, the results we also more
variable with a low fit (R? = 0.20; Figure 3.2 B). Length and width relationship was
similar to the height and width relationship, and the regression line had a slope of 0.23
(R?~ 0.14; Figure 3.2 C).

The structure of the lagena is round in the dorsal ventral dimension (height) and
rostral caudal dimensions (length), but flat in the medial lateral dimension (width). The
structure of the lagena varied among species so that as it became taller, it became slightly
wider and longer. This was consistent among all cave and troglophile species of
Sinocyclocheilus, while the surface counterpart tended to be shorter and skinnier.

As the saccule got taller in the dorsal-ventral dimension it also got longer in the
rostral-caudal dimension across species. A regression line of a slope of ~1.44 had a low
fit of = 0.24 (Figure 3.3 A). The height vs. width correlation was also fairly flat with a
regression line of slope of =0.27 (R? = 0.48; Figure 3.3 B). Width did not vary with
length in the saccule among species, represented by a regression line of 0.05 (R?=~0.17;
Figure 3.3 C).

When comparing species, the height of the saccule increased with length: As the
saccule is longer, it gets taller at a ratio of 1.5. This variation could be due to slight
changes in shape, which were not analyzed in detail in this study. The saccule did not get
wider with length, but did vary in height. It seems that the most plastic dimension is the
dorsal-ventral axis, with a potential constraint on width. More specifically the

troglophiles had longer and taller saccules while surface fishes had shorter length and

14



height. Surface fishes and troglophiles saccule morphology overlapped cavefish in length

and width parameters.
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Figure 3.3 Saccule measurements. A) Height vs. Length, B) Height vs. Width, C) Length vs. Width.
All measurements in mm*10
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Longer utricles (increasing length) across species were associated with even

greater heights: the height grew at a faster rate (regression line (R?= 0.17) showed a slope
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of 0.44 of height versus length) (Figure 3.4 A). The same trend was seen in width
compared with height, with the otolith width increasing at a rate of 0.50 (R?= .38; Figure
3.4 B). Width and length were also positively correlated, with a regression line slope of
~0.50 and R?= 0.49 (Figure 3.4 C).

The utricle was the roundest otolith in all dimensions for the included species of
Sinocyclocheilus. It changed half as much in length and width with height. Troglophile
utricles tended to be longer, taller and wider, which was the opposite of surface fish.
Troglophile morphological parameters did not overlap with surface fishes in length,
height and width but the cavefish species overlapped all the fishes. There was no
significant difference in cavefish otoliths in relation to ecotypes.

The sample sizes and the differences in morphologic measurements for each
ecotype in this study were not large enough to produce statistically significant
differences. Nevertheless, there are some trends in the data that may reflect real
differences between species. In six of the nine measurements of otoliths, troglophiles had

larger measures than surface fish (compare orange versus blue symbols).
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CHAPTER 4

DISCUSSION

4.1 Summary of Results

There was no significant asymmetry between right and left otoliths (Lychakok
and Rebane 2005). Further, otolith sizes in cavefish are not statistically different from
those in surface fishes. There was, however, a potential trend in the data between surface
fish and troglophiles. Troglophiles appeared to have larger otoliths, generally speaking,
than surface fishes. This result could be a result of systematic size differences — for
example, the troglophiles may be larger than surface fish. If all of these fish species were
around the same size, then this result would suggest that there might be a selective
pressure for increased otolith size in troglophiles. The actual mean ecotype for surface
fish species 8.7 cm, cavefish 8.1 cm and troglophiles 7.4 cm. Finally, the distribution of
otolith size in cavefish is wider than the distributions of either surface fish or troglophiles

— cavefish sizes span across both distributions.

4.2 Otoliths in Cavefish
In all fish, larger otoliths are associated with increased numbers of stereocilia, which can
affect hearing (Popper and Lu 2000). This relationship does not always obtain, however,
as a study using mollies showed that there were no significant differences in the hearing
sensitivity in relation to otolith size (Schulz-Mirbach 2010). Although there were no
differences in the otolith sizes in cavefish, hearing in cavefish may yet exhibit
interspecific differences related to loss of sight. But, Lombarte and Lleonart (1993)

reported that otolith size can be dependent not only on genetic factors but also

18



environmental factors. They found that cold water leads to smaller otoliths, and warmer
water leads to larger otoliths. These authors argue that temperature regulates the amount
of carbonate material deposited during the formation of the otoliths. Future studies should
include more functional analyses, such as behavior and electrophysiology, to resolve

therelations between otolith size and function.

4.3 Future Directions
There are two types of experiments that can be pursued that can provide additional

information on the inner ears in cavefish.

4.3.1 Behavior: Behavioral experiments can be used to elucidate the hearing ranges of
Sinocyclocheilus. As there were no visible differences in morphology between cave and
surface types of Sinocyclocheilus otoliths, functional differences may manifest in other
locations in the auditory pathway. For example, there could be changes in the density of
hair cells, which has been observed in amblyopsids (Niemiller et al. 2013). The first step
to understand behavioral differences in hearing would be to measure if there are various
thresholds or auditory ranges in these fishes.

One experimental approach that could be used to examine behavioral responses to
different acoustic environments is to vary the amplitude of a projecting sound. The
various amplitudes need to be randomized to allow the fish to have an acoustic startle
response. The acoustic startle response will allow observation for different intensities
(soft or loud). Although, the otolith morphology did not show much significant
difference among ecotypes, we assume that the cavefish will hear lower thresholds

allowing them to hear softer sounds than their surface relatives.
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4.3.2 Physiology: Behavioral responses can vary dramatically depending on the state of
the animal and other factors that can be difficult to control experimentally. Another
approach to understanding the hearing function of an organism that does not rely on
behavioral output is to record the electrical activity of the auditory system. A common
approach is known as Auditory brainstem recordings (ABR) that detects activity in VIlIth
cranial nerve that carries auditory information from the ear to the central nervous system
(Wysocki and Ladich 2002). ABR activity can provide insights into the different

sensitivities and frequency ranges of animal ears.

An experimental approach to use ABR to measure auditory thresholds and ABR
waveforms in fish is by connecting electrodes to the skull of the fish, while still
submerged underwater and applying a stimuli. ABR recordings provide a response to the
stimulus frequency to obtain audiograms. The audiograms demonstrate the hearing range
and threshold for the fish. It can be assumed that if audiograms were created for thirteen
species of Sinocyclocheilus, the cavefish hearing will be lower in threshold and broader

in frequency, allowing them to hear softer sounds over a greater range.
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APPENDIX A
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OTOLITHS MORPHOLOGIES IN THE GENUS SINOCYCLOCHEILUS
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taxonomic groups and the size of the sagitta being larger. His study also finds that there is
a correlation with smaller sized otoliths within the epipelagic habitat. Lastly, he also finds
a correlation between luminous fishes having larger otoliths. The luminescent fishes are
found in environments where there is an absence of sunlight.
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Insights from inner ear physiology and fisheries biology.” Marine and
freshwater Research 56.5: 497-504.
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important aspect of the inner ear. They provide ample background information on the
size, shape and growth of otoliths. The researchers conclude the review paper by setting
up questions to further examine the relationship of different otoliths in respect to the ear
function in fish.

Popper, A. N., and Richard R. Fay (2011). "Rethinking sound detection by
fishes." Hearing research 273.1: 25-36.

The investigators in this paper attempt to reevaluate the terms “hearing specialist” or
“hearing generalist”. They argue that some fish species are frequency dependent and are
sensitive to pressure and motion, therefore they would not fall under either classification.
They also propose that the term “specialization” be limited to anatomical structures that
are involved in enhancing sensitive to sound pressure. Instead, they propose to use the
term “motion sensitive” for fish without any pressure sensitivity.

Popper, A. N., and Zhongmin Lu (2000). **Structure—function relationships in fish
otolith organs." Fisheries research 46.1: 15-25.

The investigators examined the basic structure of the auditory system in teleost fish and
describe their hearing in detail. Their results showed that there are significant differences
in frequency range of sounds and the sensitivity to the sounds that fish hear. Popper et al
conclude that the inner ear is the most vital organ of the sensory system to detect distant
sources and provide the fish with a “general impression” of their surrounding
environments.
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cave-and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana
(Teleostei: Poeciliidae)." Hearing research 267.1: 137-148.

In this paper the investigators have conducted a research study on the Atlantic molly
(Poecilia Mexicana). They conducted an acoustic survey on two ecotypes in the cave
form and the surface populations. The researchers also looked into detail if the otolith
morphology is reflected by the inner ear physiology. They divided their research down
into three components. The first was to see if there are potential differences between two
ecotypes in the morphology of all three otoliths (lagena, sagitta and utricule). The second
was to see if hearing sensitivities are similar between cavefish and surface fish and the
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Yoshizawa, Masato (2015). ""Behaviors of cavefish offer insight into developmental
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developmental evolution. The focus of this paper is on Astyanax mexicanus and their
physical traits and ecosystem. The restricted environment of a cavefish such as absence
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of pigmentation and behavioral traits such has advanced prey capture and feeding angle
has evolved.
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