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𝑛 = The number of time intervals (e.g., 15 minutes per interval) since the beginning 

of a freeway work zone till 2 hours after the work zone has been removed. 

It will be discussed later how the optimal value of parameters A and B can be 

determined. With the weighted speed (𝑣𝑖𝑗) from Eq. 4.4 and the distance from segment i to 

the work zone (𝑑𝑖), the work zone speed (𝑦𝑖𝑗) in Eq. 4.3 can be simplified as: 

 

𝑦𝑖𝑗 = 𝑔(𝑣𝑖𝑗 , 𝑑𝑖) 

 

 

The Neural Network Toolbox in MATLAB (2016) was used for developing the 

ANN model. As discussed earlier, there were 274 number of freeway work zones 

available, which were randomly divided into three groups (i.e., 70%, 20%, and 10% of 

total work zones, respectively) for training, validation, and testing purposes. It is worth 

noting that different divisions had been investigated and it was possible to get a minimum 

error using the above combination. The root mean square error (RMSE) formulated as Eq. 

3.2 was used as an index to determine the optimal combination of A and B in Eq. 4.4, the 

suitable training algorithm, and optimal numbers of hidden layers and neurons by using 

ESA. The lower the RMSE value, the better is the model performance. The steps of the 

ESA processes are discussed below. 

Step 1: Set A = 0.1. 

Step 2: Set B = 1.  

Step 3: Calculate 𝑣𝑖𝑗 using Eq. 4.4. Then predict work zone speed using single 

layer ANN model with 10 neurons. 

Step 4: Calculate RMSE using Eq. 3.2. 

Step 5: Let B = B + 0.1. If B < 4, go to Step 3; otherwise, go to Step 6. 

Step 6: Let A = A + 0.05. If A < 1, go to Step 2; otherwise, go to Step 7. 

(4.5) 
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Step 7: Find the optimal combination of A and B with the least RMSE. 

By using ESA, the optimal values of A and B in Eq. 4.4 with respect to different 

lane configurations are illustrated in Table 4.9, which were determined based on single 

layer ANN models with 10 neurons with 70% of freeway work zone data. 

Table 4.9  Calibrated Model Coefficients for Predicting 𝑣𝑖𝑗 

 

No. of Lanes 
Coefficients 

𝐴 𝐵 

2 0.1 2.7 

3 0.1 2.6 

4 0.2 2.2 

 

After determining the optimal values of A and B, the next step is to find the best 

training algorithm. Table 4.10 depicts the lowest RMSEs for the three training algorithms 

provided by MATLAB Neural Network Toolbox (2016) based on single layer ANN 

models with 10 neurons. By considering work zones on 3-lane freeways, it was found that 

the Levenberg-Marquardt (LM) algorithm (i.e., RMSE = 4.9 mph) was selected for its 

better efficiency and performance, compared to Bayesian Regularization (i.e., RMSE = 5.3 

mph) and Scaled Conjugate Gradient (i.e., RMSE = 5.8 mph) algorithms. 
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Table 4.10  RMSEs of Various Training Algorithms in the ANN Model 

 

No. of Lanes 

RMSE (mph) 

Levenberg-Marquardt 

(LM) 

Bayesian 

Regularization 

(BR) 

Scaled 

Conjugate 

Gradient 

(SCG) 

2 5.9 6.3 6.5 

3 4.9 5.3 5.8 

4 6.3 6.6 6.9 

 

Based on the selected LM algorithm, Table 4.11 shows the RMSEs of the 

1-hidden-layer and 2-hidden-layer models for the work zones on 3-lane freeways. It was 

found that no substantial difference occurs by adjusting number of neurons or adding an 

extra layer in the ANN model. Hence a single layer ANN model with 10 neurons is 

sufficient to predict work zone speed with satisfactory accuracy along with the benefit of 

reduced computation time as compared to 2 or more layers ANN models. Similarly, 

one-layer LM ANN model with 10 neurons is satisfactory for work zones on both 2-lane 

(i.e., RMSE = 5.9 mph) and 4-lane (i.e., RMSE = 6.3 mph) freeways. 

Table 4.11  RMSEs of Various ANN Models (3-lane Freeway) 

 

ANN Models 
No. of Neurons RMSE 

(mph) Layer 1 Layer 2 

1-layer ANN 

5 - 5.4 

10 - 4.9 

15 - 5.0 

2-layer ANN 

5 5 5.6 

10 10 5.3 

15 15 5.2 
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The finalized architecture of the proposed ANN model is shown in Figure 4.9. The 

ANN model consist of an input layer with two neurons representing the weighted speed 

(𝑣𝑖𝑗) and distance from upstream segment i (𝑑𝑖), one optimized hidden layer with ten 

neurons and an output layer with one neuron representing predicted work zone speed (�̂�𝑖𝑗). 

In the input layer, the predicted work zone capacity (𝐶𝑤) from SVM model along with 

normal speed (𝑠𝑖𝑗) and approaching traffic volumes (𝑄𝑗) were used for calculating the 

weighted speed (𝑣𝑖𝑗). It is worth noting that the proposed ANN model can predict speeds 

up to 10 miles upstream of the work zone since the beginning of a freeway work zone till 2 

hours after the work zone has been removed. 

 
Figure 4.9  Configuration of the proposed ANN model. 

 

Similar to MNR model, with the predicted work zone speed from ANN model, 

work zone delay, delay cost, and queue length can be calculated using Eq. 3.5 - 3.7 

accordingly. 
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3.5 Model Evaluation 

Based on historical work zone data for off-peak period, the performances of the two work 

zone delay prediction models (i.e., MNR and ANN) developed in previous section under 

various lane configurations (i.e., 2-lane, 3-lane, and 4-lane) and locations (i.e., North, 

Central, and South NJ) are assessed in this section.  

First, a detailed analysis is conducted to assess the overall model performance of 

the MNR and ANN models for predicting delays caused by work zone activities on 

freeways. These two freeway work zone delay prediction models are evaluated using 10% 

(27) of 274 identified work zone records in 2013 and 2014. The steps taken to assess the 

model accuracy/reliability are listed below. 

Step 1: Classify the randomly selected 27 freeway work zones by lane 

configuration (i.e., 2-lane, 3-lane, and 4-lane) and location (i.e., North, Central, and South 

NJ). The corresponding data distribution per lane and region of the selected work zones are 

illustrated in Table 4.12. Note that no qualified work zone was selected on 4-lane freeways 

in South NJ as the corresponding data for the years 2013 and 2014 were found to be 

insufficient to be included in the model development. 

Table 4.12  Test Samples by Lane Configuration and Region 

 

No. of Lanes 

Region 

North Central South 

2 3 3 2 

3 6 5 3 

4 4 1 0 
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Step 2: Run each work zone with the freeway MNR and ANN models, 

respectively. Then compute the RMSE based on the predicted speeds versus the travel 

speeds reported from the corresponding INRIX speed database. The RMSEs under various 

lanes and types of lane closure by regions for two models are summarized in Table 4.13. It 

is found that the ANN model outperformed the MNR model for all lane configurations and 

regions. Table 4.13 also indicates that the ANN model yielded the lowest RMSE (RMSE = 

4.9 mph) for testing historic work zones on 3-lane freeways against the 2-lane (RMSE = 

5.9 mph) and 4-lane freeway (RMSE = 6.3 mph) because of more work zones available for 

model development. 

Table 4.13  RMSE of the MNR and ANN Models (mph) 

 

No. of 

Lanes 

 North Central South Overall 

MNR ANN MNR ANN MNR ANN MNR ANN 

2 8.8 5.8 9.3 6.2 5.5 5.4 8.2 5.9 

3 6.3 4.6 5.6 4.9 5.5 5.3 5.9 4.9 

4 6.7 6.4 6.2 5.8 N/A N/A 6.6 6.3 

Overall       6.4 5.2 

 

Step 3: According to the results from Tables 4.13, the ANN model outperforms the 

MNR model in terms of smaller RMSE based on historical work zones during off-peak 

periods. From this step, the ANN model is further evaluated. Based on the RMSE 

associated with each test work zone, the average RMSEs were classified into 3 categories 

(i.e., < 5 mph, 5 - 10 mph, and 10 - 15 mph) by lane configuration and region as shown in 
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Table 4.14. Comparing the results by lane configuration, the ANN model on 3-lane 

freeways produced the most accurate and reliable (64% RMSE < 5 mph) predicts, followed 

by 2-lane (28% RMSE < 5 mph) and 4-lane (100% RMSE between 5 - 10 mph) freeways. 

Comparing the results by region, the predicted results of work zone delays in the Northern 

NJ is relatively stable and accurate (47% RMSE < 5 mph), followed by Southern NJ (40% 

RMSE < 5 mph) and Central NJ (32% RMSE < 5 mph). One possible reason for this is that 

there were more work zones on 3-lane freeways in Northern NJ available for model 

development. 

Table 4.14  RMSE Distribution of the ANN Model 

 

No. of Lanes 
RMSE 

Range 

Region 

North Central South 

2-lane 

< 5 mph 33% 0% 50% 

5 - 10 mph 67% 100% 50% 

10 - 15 mph 0% 0% 0% 

3-lane 

< 5 mph 83% 60% 33% 

5 - 10 mph 17% 40% 67% 

10 - 15 mph 0% 0% 0% 

4-lane 

< 5 mph 0% 0% 0% 

5 - 10 mph 100% 100% 0% 

10 - 15 mph 0% 0% 0% 

Overall 

< 5 mph 47% 32% 40% 

5 - 10 mph 53% 68% 60% 

10 - 15 mph 0% 0% 0% 

 

Step 4: To further demonstrate the model performance, the simulated data for work 

zones crossing peak hours were used for evaluating the performance of the ANN model. It 

is found in Table 4.15 that in general the ANN model could achieve satisfactory 
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performance for work zone speed prediction in terms of accuracy and stability during peak 

hours (i.e., 6.9 mph for 2-lane freeway, 5.3 mph for 3-lane freeway, and 6.7 for 4-lane 

freeway). This implies that the ANN model could generate prediction results with 

compatible accuracy when the trend of real-world traffic conditions during peak hours is 

similar with the simulated data. It is also found that as the number of closed lanes increases 

from shoulder closure to 2-lane closure, the RMSEs are slightly increased for all three lane 

configurations. This indicates that the traffic congestion during peak period could reduce 

the accuracy of the ANN model. Therefore, to improve the prediction accuracy, the actual 

traffic counts for peak period at the scenes of work zones should be collected from the field 

to replace the simulated data for further validation of the developed models. 

Table 4.15  RMSE of the ANN Model based on Simulation Data 

 

No. of Lanes 

RMSE (mph) 

Shoulder 

Closure 

1-lane 

Closure 

2-lane 

Closure 
Overall 

2 6.6 7.2 N/A 6.9 

3 5.1 5.4 5.9 5.3 

4 6.3 7.2 6.8 6.7 

 

3.6 Case Studies 

Overall, the evaluation results in Section 4.5 indicate that the ANN model is able to 

perform well in predicting freeway work zone delay under various lane configuration 

conditions and time of day. In this section, the ANN model is evaluated with new work 

zones in 2015, in which delay, delay cost, and maximum queue length were applied to 
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assess the model performance. Results from the proposed ANN model with the work zone 

capacity predicted by SVM (called ANN-SVM) are compared with the prediction results 

using other models: 

 RUCM: The method suggested by the NJDOT Road User Cost Manual 

(NJDOT, 2015) (see Appendix C for more details); 

 ANN-HCM: The proposed ANN model with work zone capacity suggested by 

HCM (2010) as formulated in Eq. 4.6; and 

 ANN-SVM: The proposed ANN model with work zone capacity suggested by 

SVM. 

 

𝐶𝑤 = (1600 + 𝐼)𝑓𝐻𝑉𝑁𝑜 − 𝑅 

 

where: 

𝐶𝑤 = The work zone capacity (vph); 

𝐼 = The adjustment factor for type and intensity of work activity (vphpl); 

𝑓𝐻𝑉 = The heavy-vehicle adjustment factor indicated in the HCM; 

𝑁𝑜 = The number of open lanes within the work zone; and 

𝑅 = The manual adjustment for on-ramps (vph). 

The characteristics of three short-term work zones performed in 2015 are shown in 

Table 4.16, which include time period, road geometry, and traffic pattern. Case 1 was a 

2-mile long work zone with two-lane closure on a three-lane segment on I-78 westbound, 

which was performed between 11 PM to 6 AM next day in October 2015. Case 2 was a 

0.3-mile long work zone with one-lane closure on a three-lane segment on NJ-21 

southbound, which was performed between 10 AM and 3 PM in November 2015. Case 3 

was a 0.2-mile long work zone with shoulder closure on a two-lane segment on I-280 

(4.6) 
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eastbound, which was performed between 10 AN and 3 PM in December 2015. In addition, 

the work zone capacities suggested by the SVM model as well as the HCM method (2010) 

are summarized in Table 4.16. Due to the impacts of approaching traffic volume and speed 

are neglected in the HCM method, the predicted work zone capacity with HCM for Cases 1 

and 2 are lower than those with SVM. While for Case 3, the predicted work zone capacity 

with HCM is greater than that with SVM. The hourly traffic distributions for all 3 cases are 

shown in Figure 4.10, which were used for calculating work zone delay and cost. 

Table 4.16  Work Zone Characteristics 

 

 Case 1 Case 2 Case 3 

Location I-78 WB NJ-21 SB I-280 EB 

Milepost Range 47.3 - 49.3 4.2 - 4.5 14.1 - 14.3 

Number of Lanes 3 3 2 

Work Zone Length (mi) 2 0.3 0.2 

Starting Time 11 PM, 10/2015 10 AM, 11/2015 10 AM, 12/2015 

Ending Time 6 AM, 10/2015 3 PM, 11/2015 3 PM, 12/2015 

Duration (hours) 7 5 5 

Number of Closed Lanes 2 1 0* 

𝑪𝒘 with SVM (vph) 1,524 3,222 3,798 

𝑪𝒘 with HCM (vph) 1,395 2,976 3,910 

*: Shoulder closure. 
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Figure 4.10  Hourly traffic distribution. 

 

As summarized in Table 4.17, the delays with all the three models are compared to 

the "ground truth" information which is based on INRIX reported speeds. Note that the 

number in the parentheses represents the error percentage from predicted delay against 

ground truth delay, which indicates model performance in terms of prediction accuracy. As 

RUCM does not furnish the calculation details regarding work zones with shoulder 

closures on freeways, ANN-SVM is compared with ANN-HCM for Case 3. Apparently 

ANN-SVM outperforms both RUCM and ANN-HCM. Because ANN-SVM takes 

approaching traffic volume and speed variations into consideration, it is more applicable 

than other two models. The assumption of no queue under non-congested condition is a 

possible reason why the delays predicted by RUCM are underestimated for Cases 1 and 2. 

In Table 4.17, delay cost is computed using Eq. 3.5. It is also worth noting that for 

Case 1, the error percentage differences of three models seem minor because of low traffic 
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volumes during nighttime. When work zones are placed in daytime with higher traffic 

volumes (i.e., Cases 2 and 3), ANN-SVM becomes very effective and outperforms other 

two models. In addition, the maximum queue lengths (approximated using Eq. 3.6) with 

the three models as well as the ground truth data are illustrated. 

Table 4.17  Model Results Comparison 

 

 Models Case 1 Case 2 Case 3 

Delay a (Error %) 

RUCM 0 (100%) 0 (100%) N/A 

ANN-HCM 62 (17%) 70 (6%) 72 (14%) 

ANN-SVM 59 (11%) 63 (5%) 81 (4%) 

Ground Truth d 53 66 84 

Delay Cost b 

RUCM 0 0 N/A 

ANN-HCM 1,350 1,524 1,562 

ANN-SVM 1,284 1,371 1,757 

Ground Truth d 1,153 1,437 1,822 

Maximum Queue 

Length c 

RUCM 0 0 N/A 

ANN-HCM 0 0.2 0.6 

ANN-SVM 0 0.2 0.6 

Ground Truth d 0 0.2 0.6 

Note: a Delay: veh-hr; b Delay cost: $;  c Queue length: miles; d INRIX speeds. 

 

Figure 4.11 illustrates the variation of the queue lengths over time predicted by all 

the three models using Eq. 3.6, which are used to compare with the ground truth queue 

length. It is found that all these models performed well in Case 1 because of low traffic 

volumes during nighttime. However, for the daytime work zone with higher volumes (i.e., 
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Cases 2 and 3), the queue length predicted by ANN-SVM is more accurate that other two 

models. 

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

Figure 4.11  Temporal queue length distribution. 
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3.7 Summary 

In this chapter, two models are developed for work zone delay prediction. The first model, 

the MNR model, is a non-linear model to capture spatio-temporal speed changes when 

non-recurrent congestion occurs caused by work zone activity. The prediction accuracy of 

the MNR model is acceptable as illustrated in Section 4.5. Regarding ANN-SVM, the 

evaluation results indicate that it is a better approach for work zone delay prediction 

because it can improve the accuracy of prediction results comparing to other models (i.e., 

MNR, RUCM, and ANN-HCM). The proposed ANN-SVM can predict the work zone 

impacts (i.e., delay, delay cost, and queue length) for the future work zone reasonably well 

when the traffic pattern is similar to the profile of the training data. The proposed 

ANN-SVM will be applied to various applications in the next chapter.  
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CHAPTER 5  

MODEL APPLICATIONS 

 

As discussed in Chapter 1, the objective of this study is to develop a sound spatio-temporal 

freeway work zone delay prediction model with big data under various road geometric and 

work zone conditions.  Two freeway work zone delay prediction models (i.e., MNR and 

ANN models) have been developed in Chapter 3 and evaluated in Chapter 4. Comparing to 

RUCM, MNR, and ANN-HCM, ANN-SVM had demonstrated its performance in terms of 

prediction accuracy under various lane configuration and time of day.  

In this chapter, the potential applications of ANN-SVM to support work zone 

planning and analysis on freeways are discussed. By employing ANN-SVM, a work zone 

delay prediction tool is developed in Section 5.1. Then, Case 2 presented in Section 4.6 is 

applied here for determining optimal the start time of a work zone that yields the least delay 

as well as cost in Section 5.2. Finally, ANN-SVM is applied to calculate the contractor 

penalty in terms of cost overruns as well as an incentive reward schedule in case of early 

work competition as shown in Section 5.3. 

5.1 Work Zone Impact Analysis 

By incorporating ANN-SVM, a work zone delay prediction tool (WZDPT) can be 

developed to post information graphically, which can aid transportation agencies to make 

proper decisions by assessing work zone activities in order to minimize disruptions to the 

traveling public. Depending upon the user inputs such as route, milepost range and 

direction, WZDPT can quickly locate the expected work zone on the map and apply 

ANN-SVM for work zone impact analysis. This further enhances the ease of use of 
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WZDPT, as users would not require any pre-requisite knowledge regarding road geometry 

condition for analysis.  

A historical work zone on the Interstate Highway 80 (I-80) - one of the most 

congested and busiest highways in New Jersey - is selected for demonstrating the 

application of ANN-SVM. One out of three lanes was closed for repairs on I-80 eastbound 

between mileposts 34.0 and 34.5 from 9 AM to 3 PM on October 14, 2014 as shown in 

Figure 5.1. The traffic volumes are obtained from NJCMS (2012) as illustrated in Figure 

5.2, which consists of an average 7% of heavy vehicles.  

 
Figure 5.1  Work zone on I-80 in Wharton, NJ. 

 

 
Figure 5.2  Hourly traffic distribution at MP 33.79 on I-80 EB. 
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Based on the work zone information discussed above, WZDPT will retrieve the 

roadway geometry information (e.g., number of lanes at work zone location) from the 

NJSLD DB and normal speeds in upstream of work zone from INRIX. Then WZDPT can 

quickly generate the normal speed (part a) and the predicted speed (part b) heat maps of 

I-80 eastbound work zone as shown in Figure 5.3. This enables user to compare 

spatio-temporal speed changes side-by-side and better assess the impact of the proposed 

reconstruction project.  

By using Eq. 4.5, Figure 5.4 illustrates the predicted impacts of the 6-hour work 

zone on I-80 EB versus different lane closures (i.e., shoulder, 1-lane, and 2-lane) and work 

zone starting times (i.e., 3 AM, 9 AM, 3 PM, and 9 PM). The normal speeds and predicted 

work zone speeds are illustrated horizontally with respect to the number of lane closures 

and vertically with respect to the starting time of the work zone. The predicted work zone 

delays consistently increase as number of closed lanes increases, especially during peak 

periods. In addition, work zone delay impact is greater in the peak period than in the 

off-peak period (comparing heat maps in Rows 1 and 4. Moreover, the speed recovers 

slowly as the work zone end time approaches the peak period (compare heat maps in Row 

1). The work zone delay prediction tool shows the capability of creating richer and more 

complete picture of what is happening on the road, which can be used as a viable 

alternative for transportation engineers to analyze information efficiently and make proper 

delay mitigation strategies. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  Comparison of predicted and actual speeds of the I-80 EB work zone site.  

(a) Normal Speed Heat Map

34.0 60 62 67 68 68 68 68 68 67 68 68 66 68 68 69 69 68 68 68 70 70 66 69 68 69 69 68 67 69 70 70 69

61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

33.0 61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

32.0 61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

31.0 61 64 68 67 67 68 67 66 66 66 67 65 66 67 67 67 66 67 67 67 68 65 68 67 68 69 68 67 69 68 68 67

65 67 70 67 68 68 68 66 65 66 66 67 67 67 68 68 67 68 67 68 69 65 69 68 70 69 68 68 69 69 69 67

30.0 65 67 70 67 68 68 68 66 65 66 66 67 67 67 68 68 67 68 67 68 69 65 69 68 70 69 68 68 69 69 69 67

65 67 70 67 68 68 68 66 65 66 66 67 67 67 68 68 67 68 67 68 69 65 69 68 70 69 68 68 69 69 69 67

29.0 68 68 70 69 69 70 68 67 67 68 67 68 68 69 69 69 69 69 69 68 69 67 69 69 70 69 69 70 71 70 69 69

68 69 71 69 69 70 68 68 68 68 68 69 69 70 70 69 69 70 69 68 70 67 69 68 69 69 70 70 70 71 70 70

28.0 66 67 69 66 67 68 65 66 66 66 66 65 67 67 68 68 67 67 66 66 70 66 66 67 66 66 67 67 69 69 69 68

66 67 69 66 67 68 65 66 66 66 66 65 67 67 68 68 67 67 66 66 70 66 66 67 66 66 67 67 69 69 69 68

27.0 66 67 69 66 67 68 65 66 66 66 66 65 67 67 68 68 67 67 66 66 70 66 66 67 66 66 67 67 69 69 69 68

64 65 66 65 65 67 60 63 63 63 61 61 64 64 65 65 65 63 63 63 67 64 64 65 64 63 65 63 66 66 66 64

26.0 61 61 64 62 63 66 58 61 61 60 59 57 61 62 63 63 63 61 61 62 65 60 61 63 61 58 64 61 64 65 65 62

61 62 64 63 63 66 61 61 62 60 61 59 61 62 64 63 63 61 61 62 64 60 62 63 62 60 65 63 64 66 65 63

25.0 64 64 66 65 66 68 64 64 64 64 64 63 63 64 65 65 65 64 64 65 66 64 64 65 65 64 67 66 67 68 67 65

24.5 66 66 68 67 68 69 65 65 66 66 66 66 65 66 66 68 68 66 67 68 68 66 66 67 67 67 68 69 69 69 68 67
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(b) Predicted Speed Heat Map

34.0 55 56 56 55 57 56 55 56 56 55 56 56 55 57 56 58 57 59 59 59 59 59 59 59 62 68 66 65 67 69 69 67

55 56 56 55 57 56 55 56 56 55 56 56 55 57 56 58 57 59 59 59 59 59 59 59 62 68 66 65 67 69 69 67

33.0 56 58 59 59 59 58 56 58 59 59 59 58 56 58 59 59 59 58 56 58 59 59 59 58 65 70 69 68 69 71 71 68

56 58 59 59 59 58 56 58 59 59 59 58 56 58 59 59 59 58 56 58 59 59 59 58 65 70 69 68 69 71 71 68

32.0 61 62 56 58 59 59 59 58 56 58 59 59 59 58 62 62 62 62 62 62 62 64 62 62 66 66 65 64 66 65 66 64

61 62 56 58 59 59 59 58 56 58 59 59 59 58 62 62 62 62 62 62 62 64 62 62 66 66 65 64 66 65 66 64

31.0 63 64 62 62 62 62 62 62 62 62 62 62 62 62 67 67 66 67 66 67 67 64 68 66 68 66 65 65 67 66 66 64

63 64 62 62 62 62 62 62 62 62 62 62 62 62 67 67 66 67 66 67 67 64 68 66 68 66 65 65 67 66 66 64

30.0 63 64 67 64 66 66 66 64 64 65 65 66 66 66 67 67 66 67 66 67 67 64 68 66 68 66 65 65 67 66 66 64

64 65 66 65 66 68 66 65 66 66 66 67 66 67 68 67 67 68 67 66 67 65 67 67 68 66 68 68 70 69 67 67

29.0 64 65 66 65 66 68 66 65 66 66 66 67 66 67 68 67 67 68 67 66 67 65 67 67 68 66 68 68 70 69 67 67

64 65 67 65 66 67 65 65 66 67 66 67 67 68 68 68 67 68 67 66 67 65 67 66 68 67 70 69 69 70 69 68

28.0 64 65 67 65 66 67 65 65 66 67 66 67 67 68 68 68 67 68 67 66 67 65 67 66 68 67 70 69 69 70 69 68

64 64 65 64 65 65 64 64 65 65 65 65 65 66 66 66 65 65 65 65 67 64 65 65 65 65 67 66 68 68 69 67

27.0 63 63 64 63 64 65 60 63 63 63 61 61 64 64 64 64 64 63 63 63 65 64 64 64 64 63 65 63 65 66 66 64

61 61 63 62 63 64 58 61 61 60 59 57 61 62 63 63 63 61 61 62 64 60 61 63 60 57 64 60 64 65 65 62

26.0 61 62 63 63 63 65 61 61 62 60 61 59 61 62 64 63 63 61 61 62 64 60 62 63 61 58 65 63 64 65 65 63

61 62 63 63 63 66 61 61 62 60 61 59 61 62 64 63 63 61 61 62 64 60 62 63 62 60 65 63 64 66 65 63

25.0 63 63 64 64 65 66 64 64 64 64 64 63 63 64 65 65 65 64 64 65 65 64 64 65 65 64 66 65 65 66 66 65

24.5 64 64 65 64 66 66 64 64 65 65 65 65 65 65 65 66 66 65 66 66 66 65 65 65 66 65 66 68 67 67 66 66

9:00

Time of Day

15:00 16:00 16:4510:00 11:00 12:00 13:00 14:00

M
il

e
p

o
st

s



 

 

 

 
Figure 5.4  Comparison of predicted speeds with different work zone starting times and lane closure configurations. 
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In addition to examining the work zone impact prediction results, users can view 

the hourly volume distribution approaching the work zone obtained from NJCMS DB as 

shown in Figure 5.5, which allows users to examine the volume changes over space and 

time. If the traffic counts of a study work zone site are different from those that NJCMS 

summarized in the table, a user-specified parameter (in percentages) is offered to adjust the 

volumes. 

 

Figure 5.5  Hourly traffic volumes. 

 

After reviewing traffic volume counts, users may select one of the three criteria 

below to determine the queue: 

Criterion 1: 75% of historic average speed – The status of queue is positive at a 

segment whose speed falls below 75% of the historic average speed. The historic average 

speed is specific to the time of a day and the day of a week for each segment, and is 

calculated based on the speeds collected in 2014. More detailed information can be found 

in Chapter 3.  
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Criterion 2: 75% of historic average speed or LOS (Level of Service) D Speed – 

The status of queue is positive at a segment whose speed falls below 75% of the historic 

average speed or LOS D speed (i.e., 35 mph). 

Criterion 3: Historic average speed – The status of queue is positive at a segment 

whose speed falls below the historic average speed. This measure will show predicted 

queue over space and time that is “worse than normal.” Users are also able to enter an 

“offset” into this option. 

For the 6-hour work zone conducted at 3AM with one lane closure on I-80 EB MP 

34 - 34.5 (see speed heat map in Column 3 and Row 1 in Figure 5.4), Figure 5.6 shows the 

queue length distribution over time by using three criteria listed above. The work zone 

delay prediction tool provides user with flexibility in determining work zone impacts based 

on preferences and needs. Note that the queue by using Criterion 3 is determined for any 

time when speeds are 5 mph lower than normal speed. It is found that the queue length 

defined by Criterion 3 is longer than those defined by Criteria 1 and 2. The reason for this is 

that due to lane closure required by the planned work zone, the speed drops quickly as the 

traffic volume increases. 

 
Figure 5.6  Temporal queue length distributions. 

0

2

4

6

8

Q
u

eu
e 

L
en

g
th

 (
m

i)

Time of Day

Criterion 1

Criterion 2

Criterion 3



 

96 

 

Furthermore, WZDPT allows the user to generate a report of lane closure impacts 

based on a default template. The report contains all the necessary information for the 

roadway segment of interest as well as the predicted delay, delay cost and queue length 

using Eqs. 3.5 through 3.7. For instance, a report generated for the lane closure of I-80 

from milepost 34 to milepost 34.5 from 3:00 AM to 9:00 AM plus two hours after the work 

zone removed is illustrated in Figure 5.7. This report not only presents the impact of a 

proposed lane closure in a logical and concise manner, it also assists agencies and 

contractors in preparing project documentation. It is noted that the volume showed in the 

analysis report is the hourly volume approaching the work zone obtained from NJCMS 

DB. 

 

Figure 5.7  Work zone mobility impact report. 
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5.2 Work Zone Schedule Optimization 

In this section, ANN-SVM is evaluated with the work zone in Case 2 (see Section 4.6) 

under various starting times and durations. Figure 5.8 shows the variation of delay cost 

versus start time for various work zone durations. Considering a 5-hour work zone, it is 

found that the most cost-effective starting time would be 12 AM. If this work zone must be 

performed during the daytime (i.e., between 6 AM and 6 PM), the suggested starting time 

would be 10 AM.  It is also found that when the 5-hour work zone ends close to or at peak 

hours, the residual queue must wait for extra time to be cleared, which results in more delay 

and cost. As the duration is greater than 7 hours, the delay cost reaches the minimum at 10 

PM because of light traffic volumes between 10 PM and 5 AM.  

 

Figure 5.8  Delay cost vs. starting time for various work zone durations (Case 2). 
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hours. In general, low delay cost may be expected as the work zone is performed during the 

nighttime, albeit the labor cost is expected to be high. This also explains the work zone 

practices often seen in daily commutes. 

Figure 5.9 illustrates and explores the relationship between delay cost and start time 

for various demand levels, varying from 80% to 150% of the original volume in Case 2. It 

is found that the delay costs are close and relatively low for the start time beginning with 11 

PM or later until 3 AM (next day) because the traffic during the corresponding work zone 

time period is light.  The delay cost significantly increases if the work zone duration 

crosses peak hours. The results would give transportation agencies a competitive edge by 

examining the delay costs versus work zone start and end times subject to different traffic 

distributions over space and time. 

 

Figure 5.9  Delay cost vs. starting time for various traffic multipliers (Case 2). 
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5.3 Lane Rental Charge Determination 

A FHWA report (FHWA, 2011) defines lane rental fee as a daily-base or hourly-base 

charge for the time period a lane is closed to through traffic for construction activities. This 

provision is intended to minimize the disruption of the work zone traffic and to encourage 

minimal use of lanes for construction activities. The delay costs for various starting times 

and durations, as shown in Figure 5.8, can be used as a guideline to form the basis for 

awarding or deducting payments to contractors for early and late project completions, 

respectively. For example, in Case 2, assuming that the contractor delays two hours to open 

the closed lane to traffic (i.e., takes seven hours instead of five hours to complete the work). 

If work zone started at 10 AM, the transportation agency could charge $964 in penalties to 

the contractor for late completion because of the cost incurred by the excess delay. Note 

that this charge may vary depending on the traffic volume distribution, work zone starting 

time, and duration of late work completion of the study site as shown in Figure 5.10. 

 
Figure 5.10  Penalty vs. starting time for 2-hour delayed completion (Case 2). 
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CHAPTER 6  

CONCLUSIONS AND FUTURE RESEARCH 

 

With increasing roadwork activities that are necessary to rehabilitate and revitalize the 

roadways in the United States, planning lane closures for roadwork has drastically 

demanded more accurate predictions on the impact of lane closures. It is crucial to be able 

to precisely predict the lane closure impacts to minimize both the cost and traffic 

congestion induced by roadwork. In response to this challenge, two models, the MNR and 

ANN models, for quantifying work zone delay were developed using big data in this 

research. In the MNR model, the work zone capacity was predicted using reduction factors 

based on historical work zones in years 2013 and 2014. While in the ANN model, the work 

zone capacity was approximated using the SVM model (called ANN-SVM). Subject to the 

limitation of work zone related traffic information collected from the field for peak period, 

a calibrated and validated simulation model was developed using VISSIM to generate 

traffic data for model development. The performance of each model was analyzed.  

Then the proposed ANN-SVM model was embedded into a work zone delay 

prediction tool, which can be used to support state and local traffic construction, 

operations, planning staff, and construction contractors to: 

 Quantify and display temporal-spatial corridor speed/delay predictions resulting 

from capacity decreases in work zones on New Jersey freeways and arterials. 

 Identify delay impacts of alternative project phasing plans. 

 Conduct tradeoff analyses between construction costs and delay costs. 

 Examine the impacts of construction staging by location, time of day (peak versus 

off-peak), and season (summer versus winter). 
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 Assess travel demand measures and other delay mitigation strategies. 

 Help establish work completion incentives. 

For example, ANN-SVM could be used to calculate the costs of conducting work at 

night instead of during the day, to change the starting and ending times, and to compare the 

impact of several time schedules on traffic flow conditions, or to divert the traffic to one 

road versus another road during different phases of construction. The costs, traffic delays, 

and potential backups can be predicted for both an average day of work and for the whole 

life cycle of construction. This model can also analyze the advantages of various strategies 

for minimizing the projected traffic delays. These mitigation strategies might include the 

retiming of signals on detour routes to help traffic flow more smoothly, planning a media 

campaign to publicize the planned work zones, or using traveler information systems that 

allow drivers to plan ahead and choose other routes if possible. 

6.1 Conclusions 

While developing the work zone capacity and delay prediction models, a wealth of 

insights, challenges, areas of potential improvements, and opportunities available to 

agencies in the areas of work zone impact assessment, data collection, and performance 

measurement were identified, all of which are summarized below. 

6.1.1 Spatio-temporal Work Zone Delay Prediction 

In this study, an ANN-SVM was developed using big data to quantify delays incurred by 

work zones on New Jersey freeways, in which the restricted capacity (or called work zone 

capacity) was approximated using SVM. ANN-SVM was designed to adapt to the 

relationship of speed versus the ratio of approaching traffic volume to work zone capacity, 
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which has proven to be a robust work zone delay prediction model and achieves reasonable 

well prediction accuracy. The performance of ANN-SVM outperforms that with RUCM 

and ANN-HCM in predicting delay, delay cost, and queue length. 

A work zone delay prediction tool integrated with ANN-SVM was developed to 

post information graphically, which can aid transportation agencies to make proper 

decisions by assessing work zone activities in order to minimize disruptions to the 

traveling public. It is worth noting that this easy-to-use and easy-to-learn tool does not 

require users to set various adjustment factors based on practical experience. It is very 

convenient for practitioners to assess the impact of work zones and determine the optimal 

work zone schedule which can yield the least delay and cost. Based on the predicted 

spatio-temporal speeds affected by an expected work zone, a proper traffic management 

plan (i.e., locations of changeable message signs, variable speed limits, and traffic detour 

management, etc.) may be prepared accordingly. ANN-SVM can assist work zone planners 

in designing optimal start and end time of work zone as function of time of day. In addition, 

it can be used to calculate contractor penalty in terms of cost overruns as well as incentive 

reward schedule in case of early work competition. 

6.1.2 Big Data Analytics in Work Zone Impact Analysis 

With technological advancement, the transportation industry has been experiencing a wide 

variety of unprecedented massive traffic data obtained from different sources, such as 

infrastructure sensors, mobile devices, and floating cars. This new and rich data (big data) 

needs to be managed, communicated, interpreted, aggregated, and analyzed in a reliable 

and efficient way. However, use of conventional data management tools is not able to 

uncover hidden patterns, correlations, and other insights, which would leave the huge 
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amount of traffic data underutilized. Therefore, big data analytics, which creates richer and 

more complete picture of what’s happening on the road, becomes a viable alternative for 

transportation engineers to analyze information efficiently and make decisions based on 

what they’ve learned.  

For the freeway work zone impact analysis, leveraging big data analytics and 

advanced freeway work zone delay prediction methods (e.g., ANN models) with big data, 

the accuracy of predicted work zone speed and delay can be then significantly improved, 

rather than predicting delay using traditional deterministic queuing method with the data 

captured by loop detectors. The ability of big data analytics to work faster and stay agile 

gives transportation agencies a competitive edge they did not have before. In addition, it 

would help transportation agencies improve work zone operations, reduce delay costs and 

better serve motorists. 

6.1.3 Work Zone Data Deficiencies 

The major issues founded during data processing procedures are as follows: 

 Although the length of a work zone and the corresponding starting/ending times 

are initially set by NJDOT, this information is finalized by the contractor who 

demarcates the work zone. OpenReach DB needs to be updated based on the 

contractor’s finalized work zone schedule. 

 The traffic counts information at the scenes of work zones are important measures 

for predicting speed and delay, which is not available at most places. The hourly 

traffic volumes recorded in NJCMS DB are thus used for model development. 

 The OpenReach and INRIX DBs do not include the SRI information. In addition, 

INRIX DB also lacks the mileposts of TMCs. This problem has been fixed 

manually in this study. This issue will occur as new TMCs on New Jersey 

freeways are defined. 
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6.2 Future Research 

Future research to enhance ANN-SVM in prediction spatio-temporal work zone delay and 

its applications shall focus on the following aspects: 

The actual traffic counts for peak period at the scenes of work zones should be 

collected from the field to replace the simulated data for further validation of the developed 

models. While using real world traffic counts, the sample size should be chosen in a way 

that assure that the collected data can reflect the actual work zone impacts on traffic flows 

under various lane configurations and work zone conditions. More accurate traffic counts 

information will substantially improve the reliability of the developed models and produce 

more accurate results regarding the upstream speed, queue delay and cost. Such extensions 

will allow the transportation engineers to identify the optimal start and end times of each 

work zone, which will further improve the traffic flow operation of each facility. 

It is desirable to develop a self-updating database by gathering data from various 

sources in an automated manner wherever feasible. Modifying and standardizing the 

existing database with the inclusion of common fields of information, in order to facilitate 

effective communication between sources that would reduce the time required for manual 

processing and improve productivity.  

Traffic Message Channels (TMCs) can play a key role in collecting mobility and 

safety data, identifying issues that arise, and providing information to the public regarding 

current work zones within its surveillance zone. INRIX has re-defined the length of the 

TMCs, which are now smaller. The performance of the proposed model in this study can be 

elevated if it utilizes these smaller TMCs, as it will more accurately predict the speed and 

queue length for each time interval. 
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The work zone capacity predicted from SVM can be applied in the MNR model to 

improve the prediction accuracy. In addition, the proposed model in this study can be 

further extended to include the network impact of a work zone. Such an expanded model 

may have functions including: (a) a network-wide work zone impacts prediction module; 

(b) an optimal work zone schedule module; and (c) a work zone optimal staging module. 
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APPENDIX A 

OPENREACH DATA DEFINITION 

 

In this appendix, the OpenReach data fields are identified in the list below. 

Field Description Data Stream Example 

EVENTID* Event Identification 45675101 

Facility Name*  Route Name NJ 3 

Created At Date 

Time* 
Incident Start Date and Time  2/1/13 22:00 

Closed At Date 

Time* 
Incident End Date and Time 2/2/13 7:31 

Event Type Incident Type Construction 

Event Description Description of the Incident 

NJ DOT - STMC: 

Construction, construction 

on NJ 3 both directions 

between US 46 (Clifton)  

and West of CR 509/Broad 

St (Clifton)  right lane 

closed  until 7:00 A.M. 

City From Name The city at the start of the incident Clifton 

County From 

Name 
The county at the start of the incident Passaic 

State From Name The state at the start of the incident NEW JERSEY 

City To Name The city at the end of the incident Clifton 

County To Name The county at the end of the incident Passaic 

State To Name The state at the end of the incident NEW JERSEY 

From Mile 

Marker* 
Incident Starting Milepost 3.8 

To Mile Marker* Incident Ending Milepost 4.9 

Final Duration The Duration of the Incident 570 

Latitude The Latitude of the Incident 40.83257731 

Longitude The Longitude of the Incident -74.14454447 

*: Fields selected for database development. 
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APPENDIX B 

A SAMPLE QUERY FOR DATA PROCESSING 

 

Presented below is a sample SQL query used in the database development of this study: 

 

CREATE NONCLUSTERED INDEX [day_week] ON 

[dbo].[Interstate_Highway_Feb_2014] ([day_week] ASC) WITH (PAD_INDEX  = OFF, 

STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF, 

IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, 

ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 

go 

=============================================================== 

update [Interstate_Highway_Feb_2014] set time_range_fk_id= time_range.time_range_id 

from time_range 

where CONVERT(time, [measurement_tstamp], 102)  between min_interval and 

max_interval 

go 

=============================================================== 

update [Interstate_Highway_Feb_2014] set  dw=0 where (day_week=1 or day_week=7) 

go 

=============================================================== 

update [Interstate_Highway_Feb_2014] set  dw=1 where dw is null 

go 

=============================================================== 

CREATE CLUSTERED INDEX [ix_cluster3] ON [dbo].[Interstate_Highway_Feb_2014] 

([tmc_code] ASC, [time_range_fk_id] ASC, [dw] ASC) WITH (PAD_INDEX  = OFF, 

STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF, 

IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, 

ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 

GO 

=============================================================== 

SELECT [tmc_code], [time_range_fk_id], COUNT(dw)as max_len 

into   Interstate_Highway_Feb_2014_Maxrecords 

FROM [Interstate_Highway_Feb_2014] 

where [dw]=0 

group by [tmc_code], [time_range_fk_id] 

go     

=============================================================== 

SELECT [tmc_code], [time_range_fk_id], COUNT(dw) as max_len 

into   US_Highway_feb_2014_wd_maxrecords 

FROM [Interstate_Highway_Feb_2014] 

where [dw]=1 

group by [tmc_code], [time_range_fk_id] 
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go 

=============================================================== 

SELECT *, ROW_NUMBER() OVER(PARTITION BY tmc_code, time_range_fk_id 

ORDER BY speed ) AS "Row Number" 

into Processed_Interstate_Highway_Feb_2014 

FROM [Interstate_Highway_Feb_2014]  

where dw=0 

go 

=============================================================== 

SELECT *, ROW_NUMBER() OVER(PARTITION BY tmc_code, time_range_fk_id 

ORDER BY speed ) AS "Row Number" 

into Processed_Interstate_Highway_Feb_2014 

FROM [Interstate_Highway_Feb_2014]  

where dw=1 

go  

=============================================================== 

update [Processed_Interstate_Highway_Feb_2014] set 

[Processed_Interstate_Highway_Feb_2014].max_len=agg.max_len 

from Interstate_Highway_Feb_2014_Maxrecords agg WITH (NOLOCK) 

where [Processed_Interstate_Highway_Feb_2014].tmc_code = agg.tmc_code and 

           [Processed_Interstate_Highway_Feb_2014].time_range_fk_id = 

           agg.time_range_fk_id and 

           [Processed_Interstate_Highway_Feb_2014].[dw]=0 

go 

=============================================================== 

update Processed_Interstate_Highway_Feb_2014  set percentile=round(CAST([Row 

Number] AS float)/ CAST([max_len] AS float),6) 

go 

update Processed_Interstate_Highway_Feb_2014  set percentile=round(CAST([Row 

Number] AS float)/ CAST([max_len] AS float),6) 

go 

=============================================================== 

select tmc_code, time_range_fk_id, avg(speed) as avg_speed, stdev(speed) as 

stdev_speed, max(speed) as max_speed, min(speed) as min_speed, count(speed) as 

count_speed 

into Interstate_Highway_Feb_2014_Output 

from   Processed_Interstate_Highway_Feb_2014 y 

where  ([percentile]>=0.05 and [percentile]<=0.95) 

group by [tmc_code], time_range_fk_id  

go 

=============================================================== 

SELECT [tmc_code], [time_range_fk_id], [min_interval], [max_interval], [avg_speed], 

[stdev_speed], [max_speed], [min_speed], [count_speed] 

FROM Interstate_Highway_Feb_2014_Output INNER JOIN [time_range] ON 

[time_range_id]=[time_range_fk_id] 

go 
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APPENDIX C 

NJDOT RUCM APPROACH 

 

The detailed procedure of NJDOT RUCM approach predicting work zone delay and cost is 

presented in this Appendix. Before conducting the computation, certain important criteria 

and assumptions must be identified: 

 Average user cost per car hour is $18.15/veh-hr. 

 Average user cost per truck hour is $30.25/veh-hr. 

 The work zone speed is generally 10mph -15mph less than the unrestricted speed. 

The unrestricted speed is generally assumed the posted speed limit of the section 

operating in an unrestricted flow condition. Following this, the unrestricted speed 

of the studied segment as 65 mph; hence, the work zone speed is assumed as 50 

mph. 

Take Case 1 of Section 4.6 as an example, the selected section of the I-78 WB 

mainline is comprised of three lanes. The closure of two lanes was required for carrying out 

work zone operations, and all traffic operations were supported by the remaining one open 

lane. Capacity of the roadway in both normal and work zone scenarios are given in the 

NJDOT RUCM (NJDOT, 2015) as illustrated in Table C.1.  
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Table C.1  Traffic Capacities 

 

Facility Type Ideal Capacity 

Freeway - 4 lanes 2,200 passenger cars per hour per lane 

Freeway - 6 or more lanes 2,300 passenger cars per hour per lane 

Multilane highway 2,200 passenger cars per hour per lane 

Two-lane highway 1,400 passenger cars per hour per lane* 

Signalized Intersection 1,900 passenger cars per hour of green per lane 

          *: For 50/50 volume, split by direction. 

 

Work zone road capacity counted in vehicle/lane/hour is taken as the number of 

lanes multiplied by the capacity provided in Table C.2. With one lane closure on a 3-lane 

freeway, the work zone capacity is 1,200 vph. Table C.3 depicts the calculation procedure 

suggested by the NJDOT RUCM. 

Table C.2  Measured Work Zone Capacity - Freeway Section 

 

Number of Direction 

Lanes 
Number 

of 

Studies 

Average Capacity 

Recommended Value (*) 

veh/lane/hour 
Normal Open 

Vehicle 

per hour 

Vehicle per 

lane per hour 

3 1 7 1,170 1,170 1,200 

2 1 8 1,340 1,340 1,300 

5 2 8 2,740 1,370 1,400 

4 2 4 2,960 1,480 1,500 

3 2 9 2,980 1,490 1,500 

4 3 4 4,560 1,520 1,500 

*: Values may be increased 100 veh/lane/hour when work zone is protected with Jersey 

barrier. 

 



 

111 

 

The queue rate is calculated as the difference between the hourly capacity of the 

facility and the unrestricted hourly demand during each hour of the day. The queuing rate is 

the hourly rate at which vehicles accumulate, or, if negative, dissipate from any queue that 

may exist. A physical queue develops when the queue rate is greater than zero. In this 

scenario, the approaching volume is too small compared to the capacity provided. Hence, 

either negative queue rates are obtained or no queue is formed. 

Under unrestricted flow conditions, the number of vehicles that travel through the 

work zone is generally seen as the traffic demand on the facility during the hours when the 

work zone is in place. The total number of vehicles travelling through the work zone was 

5,054 vph as shown in Table C.3. As shown in Table C.4, the added travel time caused by 

the work zone based on the NJDOT RUCM can be computed using the following formula: 

 

𝑡 =
𝑑

𝑣𝑤
−

𝑑

𝑣𝑢
 

 

where:  

𝑡 = Added travel time (hr/veh); 

𝑑 = Work zone length (mi); 

𝑣𝑤 = Work zone speed (mph); and 

𝑣𝑢 = Unrestricted speed (mph). 

  

(C.1) 
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Table C.3  Analysis of the Work Zone 

 

 

Table C.4  Work Zone Delay Calculation 

 

Work Zone 

Length        

(mile) 

Work Zone 

Speed              

(mph) 

Unrestricte

d Speed              

(mph) 

Work Zone 

Travel Time at 

Unrestricted 

Speed            

(hr/veh) 

Work Zone 

Travel Time 

at Work 

Zone Speed            

(hr/veh) 

Added Time 

to Travel 

Work Zone                 

(hr/veh) 

2 50 65 0.031 0.040 0.009 

 

Work Zone: Normal Capacity: 6,900

Normal Speed (mph): 65 Percent Cars: 90 Work Zone Capacity: 1,200

Directional ADT: Percent Truck: 10 Lanes Under Normal Operation: 3

3.1(A) 3.1(B) 3.1(C) 3.1(D) 3.1(E) 3.1(G) 3.1(H) 3.1(I) 3.1(J)

Hourly 

Traffic 

(%)

Vehicle 

Demand 

(vph)

Lanes 

Open 

(#)

Roadway 

Capacity 

(vph)

Queued 

Vehicles 

(vph)

Work 

Zone 

Present? 

(Y or N)

Vehicles 

that Travel 

Work Zone 

(vph)

12-1 AM 0.7 466 1 1,200 0 Y 466 0

1-2 0.5 329 1 1,200 0 Y 329 0

2-3 0.4 173 1 1,200 0 Y 173 0

3-4 0.6 180 1 1,200 0 Y 180 0

4-5 1.8 223 1 1,200 0 Y 223 0

5-6 4.4 216 1 1,200 0 Y 216 0

6-7 6.2 499 1 6,900 0 N 0 0

7-8 7.2 2,108 1 6,900 0 N 0 0

8-9 5.6 2,398 1 6,900 0 N 0 0

9-10 5.0 1,717 1 6,900 0 N 0 0

10-11 4.8 1,396 1 6,900 0 N 0 0

11-12 PM 5.1 1,533 1 6,900 0 N 0 0

12-1 5.3 1,817 1 6,900 0 N 0 0

1-2 5.5 1,695 1 6,900 0 N 0 0

2-3 5.6 1,555 1 6,900 0 N 0 0

3-4 6.5 1,380 1 6,900 0 N 0 0

4-5 6.9 2,547 1 6,900 0 N 0 0

5-6 6.4 2,566 1 6,900 0 N 0 0

6-7 5.9 1,789 1 6,900 0 N 0 0

7-8 4.9 1,070 1 6,900 0 N 0 0

8-9 4.0 1,073 1 6,900 0 N 0 0

9-10 3.0 1,223 1 6,900 0 N 0 0

10-11 2.1 1,113 1 6,900 0 N 0 0

11-12 1.6 939 1 1,200 0 Y 939 0

TOTALS 100.0 30,005 2,526 0

-5,830

-5,827

-5,677

-5,787

-261

-5,345

-5,520

-4,353

-4,334

-5,111

I-78 WB MP 47.3 - 49.3

3.1(F)

Queue Rate 

(vph)

-871

-5,205

-734

Time 

Period 

(hour)

Vehicles 

that Travel 

Queue

 (vph)

-1,027

-1,020

-977

-984

-6,401

-4,792

-4,502

-5,183

-5,504

-5,367

-5,083
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The delay cost is calculated for specific vehicle classes, and is the product of the 

percentage of class and the volume, additional travel time delay, and the average user cost 

per vehicle. Table C.5 shows the calculation based on the NJDOT RUCM. The reduction 

factor is used to accommodate for variations in traffic data, roadway capacities, and cost 

rates. 

Table C.5  Work Zone Delay Cost Computation (NJDOT RUCM) 

 

 
 

3.5(A) 3.5(B) 3.5(C) 3.5(D) 3.5(E) 3.5(F) 3.5(G) 3.5(H)

Road User Cost Component
Vehicle 

Class

Percent 

Class

 (%)

Total 

Vehicles

 (#)

Added Travel 

Length

 (mile/veh)

Added Time 

(hr/veh)

Cost Rate 

($/veh-hr, $/mile)

Road User Cost 

($)

Queue/Flagging Delay CAR 90 2,526 0.000 18.15 0

(Added Time) TRUCK 10 2,526 0.000 30.25 0

Queue/Flagging Idling VOC CAR 90 2,526 0.000 0.9695 0

(Added Cost) TRUCK 10 2,526 0.000 1.1150 0

CAR 90 2,526 0.009 18.15 371

(Added Time) TRUCK 10 2,526 0.009 30.25 69

Circuity Delay
CAR 90 0 0.000 18.15 0

(Added Time) TRUCK 10 0 0.000 30.25 0

Circuity VOC
CAR 90 0 0.0 0.320 0

(Added Cost) TRUCK 10 0 0.0 0.640 0

Total Vehicles that Travel Queue: 0 Daily / Hourly Road User Cost 440

Total Vehicles that Travel Work Zone: 2,526 Calculated Road User Cost (CRUC) 330

Total Vehicles that Travel Detour: 0 Daily RUC (1) or Hourly RUC (0) 1

Percent Passenger Cars: 90% Total Road User Cost (per Day) 330

Percent Trucks: 10% Total Road User Cost  (per minute)   

Work/Flagging Zone Delay
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