


n = The number of time intervals (e.g., 15 minutes per interval) since the beginning
of a freeway work zone till 2 hours after the work zone has been removed.

It will be discussed later how the optimal value of parameters A and B can be

determined. With the weighted speed (v;;) from Eq. 4.4 and the distance from segment i to

the work zone (d;), the work zone speed (y;;) in Eq. 4.3 can be simplified as:

vij = 9(vij, dy) (4.5)

The Neural Network Toolbox in MATLAB (2016) was used for developing the
ANN model. As discussed earlier, there were 274 number of freeway work zones
available, which were randomly divided into three groups (i.e., 70%, 20%, and 10% of
total work zones, respectively) for training, validation, and testing purposes. It is worth
noting that different divisions had been investigated and it was possible to get a minimum
error using the above combination. The root mean square error (RMSE) formulated as Eq.
3.2 was used as an index to determine the optimal combination of A and B in Eq. 4.4, the
suitable training algorithm, and optimal numbers of hidden layers and neurons by using
ESA. The lower the RMSE value, the better is the model performance. The steps of the
ESA processes are discussed below.

Step 1: Set A=0.1.

Step 2: SetB=1.

Step 3. Calculate v;; using Eqg. 4.4. Then predict work zone speed using single
layer ANN model with 10 neurons.

Step 4: Calculate RMSE using Eqg. 3.2.

Step 5: LetB=B + 0.1. If B <4, go to Step 3; otherwise, go to Step 6.

Step 6: Let A=A+ 0.05. If A< 1, go to Step 2; otherwise, go to Step 7.
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Step 7: Find the optimal combination of A and B with the least RMSE.
By using ESA, the optimal values of A and B in Eq. 4.4 with respect to different
lane configurations are illustrated in Table 4.9, which were determined based on single

layer ANN models with 10 neurons with 70% of freeway work zone data.

Table 4.9 Calibrated Model Coefficients for Predicting v;;

Coefficients
No. of Lanes
A B
2 0.1 2.7
3 0.1 2.6
4 0.2 2.2

After determining the optimal values of A and B, the next step is to find the best
training algorithm. Table 4.10 depicts the lowest RMSEs for the three training algorithms
provided by MATLAB Neural Network Toolbox (2016) based on single layer ANN
models with 10 neurons. By considering work zones on 3-lane freeways, it was found that
the Levenberg-Marquardt (LM) algorithm (i.e., RMSE = 4.9 mph) was selected for its
better efficiency and performance, compared to Bayesian Regularization (i.e., RMSE = 5.3

mph) and Scaled Conjugate Gradient (i.e., RMSE = 5.8 mph) algorithms.
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Table 4.10 RMSEs of Various Training Algorithms in the ANN Model

RMSE (mph)
Bayesian Scaled
No. of Lanes Levenberg-Marquardt yestan Conjugate
Regularization .
(LM) (BR) Gradient
(SCG)
2 5.9 6.3 6.5
3 4.9 5.3 5.8
4 6.3 6.6 6.9

Based on the selected LM algorithm, Table 4.11 shows the RMSEs of the
1-hidden-layer and 2-hidden-layer models for the work zones on 3-lane freeways. It was
found that no substantial difference occurs by adjusting number of neurons or adding an
extra layer in the ANN model. Hence a single layer ANN model with 10 neurons is
sufficient to predict work zone speed with satisfactory accuracy along with the benefit of
reduced computation time as compared to 2 or more layers ANN models. Similarly,
one-layer LM ANN model with 10 neurons is satisfactory for work zones on both 2-lane

(i.e., RMSE = 5.9 mph) and 4-lane (i.e., RMSE = 6.3 mph) freeways.

Table 4.11 RMSEs of Various ANN Models (3-lane Freeway)

No. of Neurons
AN DIEEEls Layer 1 Layer 2 |(?n':/rl)shl)E
5 - 54
1-layer ANN 10 - 4.9
15 - 5.0
5 5 5.6
2-layer ANN 10 10 5.3
15 15 5.2
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The finalized architecture of the proposed ANN model is shown in Figure 4.9. The
ANN model consist of an input layer with two neurons representing the weighted speed
(v;j) and distance from upstream segment i (d;), one optimized hidden layer with ten
neurons and an output layer with one neuron representing predicted work zone speed (¥;;).
In the input layer, the predicted work zone capacity (C,,) from SVM model along with
normal speed (s;;) and approaching traffic volumes (Q;) were used for calculating the
weighted speed (v;;). It is worth noting that the proposed ANN model can predict speeds
up to 10 miles upstream of the work zone since the beginning of a freeway work zone till 2

hours after the work zone has been removed.

One Hidden Layer

Inputs (10 Neurons) Output
[T~ — — T T T /————— J
I Approaching || ‘
| traffic volume (Q5) | P 4 N
I | ( ; ™ /,,/ < .
[ Normal speed Work zone » Weighted normal |~ . N
(s17) capacity (Cy) speed (v45) N
b —— I\ s \, ‘ Predicted speed
SVM Model 31y)
f - = ~ / g A
Distance from /
‘Work zone length; Approaching \ /

traffic speed; Approaching traffic
volume; Heavy vehicle percentag

No. of lanes; No. of open laqes; upstream segment i
\, 7
e

Figure 4.9 Configuration of the proposed ANN model.

Similar to MNR model, with the predicted work zone speed from ANN model,

work zone delay, delay cost, and queue length can be calculated using Eq. 3.5 - 3.7

accordingly.
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3.5 Model Evaluation
Based on historical work zone data for off-peak period, the performances of the two work
zone delay prediction models (i.e., MNR and ANN) developed in previous section under
various lane configurations (i.e., 2-lane, 3-lane, and 4-lane) and locations (i.e., North,
Central, and South NJ) are assessed in this section.

First, a detailed analysis is conducted to assess the overall model performance of
the MNR and ANN models for predicting delays caused by work zone activities on
freeways. These two freeway work zone delay prediction models are evaluated using 10%
(27) of 274 identified work zone records in 2013 and 2014. The steps taken to assess the
model accuracy/reliability are listed below.

Step 1. Classify the randomly selected 27 freeway work zones by lane
configuration (i.e., 2-lane, 3-lane, and 4-lane) and location (i.e., North, Central, and South
NJ). The corresponding data distribution per lane and region of the selected work zones are
illustrated in Table 4.12. Note that no qualified work zone was selected on 4-lane freeways
in South NJ as the corresponding data for the years 2013 and 2014 were found to be

insufficient to be included in the model development.

Table 4.12 Test Samples by Lane Configuration and Region

Region
No. of Lanes
North | Central | South
2 3 3 2
3 6 5 3
4 4 1 0
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Step 2: Run each work zone with the freeway MNR and ANN models,
respectively. Then compute the RMSE based on the predicted speeds versus the travel
speeds reported from the corresponding INRIX speed database. The RMSEs under various
lanes and types of lane closure by regions for two models are summarized in Table 4.13. It
is found that the ANN model outperformed the MNR model for all lane configurations and
regions. Table 4.13 also indicates that the ANN model yielded the lowest RMSE (RMSE =
4.9 mph) for testing historic work zones on 3-lane freeways against the 2-lane (RMSE =
5.9 mph) and 4-lane freeway (RMSE = 6.3 mph) because of more work zones available for

model development.

Table 4.13 RMSE of the MNR and ANN Models (mph)

North Central South Overall
No. of
Lanes
MNR | ANN | MNR | ANN | MNR | ANN | MNR | ANN
2 8.8 5.8 9.3 6.2 55 54 8.2 5.9
3 6.3 4.6 5.6 4.9 55 5.3 5.9 4.9
4 6.7 6.4 6.2 5.8 N/A N/A 6.6 6.3
Overall 6.4 5.2

Step 3: According to the results from Tables 4.13, the ANN model outperforms the
MNR model in terms of smaller RMSE based on historical work zones during off-peak
periods. From this step, the ANN model is further evaluated. Based on the RMSE
associated with each test work zone, the average RMSEs were classified into 3 categories

(i.e., <5 mph, 5-10 mph, and 10 - 15 mph) by lane configuration and region as shown in
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Table 4.14. Comparing the results by lane configuration, the ANN model on 3-lane
freeways produced the most accurate and reliable (64% RMSE < 5 mph) predicts, followed
by 2-lane (28% RMSE < 5 mph) and 4-lane (100% RMSE between 5 - 10 mph) freeways.
Comparing the results by region, the predicted results of work zone delays in the Northern
NJ is relatively stable and accurate (47% RMSE < 5 mph), followed by Southern NJ (40%
RMSE < 5 mph) and Central NJ (32% RMSE < 5 mph). One possible reason for this is that
there were more work zones on 3-lane freeways in Northern NJ available for model

development.

Table 4.14 RMSE Distribution of the ANN Model

RMSE Region
No- of Lanes Range North | Central | South
<5 mph 33% 0% 50%
2-lane 5-10 mph 67% 100% 50%
10 - 15 mph 0% 0% 0%
<5 mph 83% 60% 33%
3-lane 5-10 mph 17% 40% 67%
10 - 15 mph 0% 0% 0%
<5 mph 0% 0% 0%
4-lane 5-10 mph 100% | 100% 0%
10 - 15 mph 0% 0% 0%
<5 mph 47% 32% 40%
Overall 5-10 mph 53% 68% 60%
10 - 15 mph 0% 0% 0%

Step 4: To further demonstrate the model performance, the simulated data for work
zones crossing peak hours were used for evaluating the performance of the ANN model. It

is found in Table 4.15 that in general the ANN model could achieve satisfactory
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performance for work zone speed prediction in terms of accuracy and stability during peak
hours (i.e., 6.9 mph for 2-lane freeway, 5.3 mph for 3-lane freeway, and 6.7 for 4-lane
freeway). This implies that the ANN model could generate prediction results with
compatible accuracy when the trend of real-world traffic conditions during peak hours is
similar with the simulated data. It is also found that as the number of closed lanes increases
from shoulder closure to 2-lane closure, the RMSEs are slightly increased for all three lane
configurations. This indicates that the traffic congestion during peak period could reduce
the accuracy of the ANN model. Therefore, to improve the prediction accuracy, the actual
traffic counts for peak period at the scenes of work zones should be collected from the field

to replace the simulated data for further validation of the developed models.

Table 4.15 RMSE of the ANN Model based on Simulation Data

RMSE (mph)
NI, @ LGS Shoulder 1-lane 2-lane Overall
Closure Closure Closure
2 6.6 7.2 N/A 6.9
3 51 54 59 53
4 6.3 7.2 6.8 6.7

3.6 Case Studies
Overall, the evaluation results in Section 4.5 indicate that the ANN model is able to
perform well in predicting freeway work zone delay under various lane configuration
conditions and time of day. In this section, the ANN model is evaluated with new work

zones in 2015, in which delay, delay cost, and maximum queue length were applied to
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assess the model performance. Results from the proposed ANN model with the work zone
capacity predicted by SVM (called ANN-SVM) are compared with the prediction results
using other models:

e RUCM: The method suggested by the NJDOT Road User Cost Manual
(NJDOQT, 2015) (see Appendix C for more details);

e ANN-HCM: The proposed ANN model with work zone capacity suggested by
HCM (2010) as formulated in Eq. 4.6; and

e ANN-SVM: The proposed ANN model with work zone capacity suggested by
SVM.

C, = (1600 + ) f,;yN, — R (4.6)

where:

C,, = The work zone capacity (vph);

I = The adjustment factor for type and intensity of work activity (vphpl);

fuv = The heavy-vehicle adjustment factor indicated in the HCM,;

N, = The number of open lanes within the work zone; and

R = The manual adjustment for on-ramps (vph).

The characteristics of three short-term work zones performed in 2015 are shown in
Table 4.16, which include time period, road geometry, and traffic pattern. Case 1 was a
2-mile long work zone with two-lane closure on a three-lane segment on 1-78 westbound,
which was performed between 11 PM to 6 AM next day in October 2015. Case 2 was a
0.3-mile long work zone with one-lane closure on a three-lane segment on NJ-21
southbound, which was performed between 10 AM and 3 PM in November 2015. Case 3

was a 0.2-mile long work zone with shoulder closure on a two-lane segment on 1-280
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eastbound, which was performed between 10 AN and 3 PM in December 2015. In addition,
the work zone capacities suggested by the SVM model as well as the HCM method (2010)
are summarized in Table 4.16. Due to the impacts of approaching traffic volume and speed
are neglected in the HCM method, the predicted work zone capacity with HCM for Cases 1
and 2 are lower than those with SVM. While for Case 3, the predicted work zone capacity

with HCM is greater than that with SVM. The hourly traffic distributions for all 3 cases are

shown in Figure 4.10, which were used for calculating work zone delay and cost.

Table 4.16 Work Zone Characteristics

Case 1 Case 2 Case 3
Location 1-78 WB NJ-21 SB 1-280 EB
Milepost Range 47.3-49.3 4.2-45 14.1-14.3
Number of Lanes 3 3 2
Work Zone Length (mi) 2 0.3 0.2

Starting Time

11 PM, 10/2015

10 AM, 11/2015

10 AM, 12/2015

Ending Time 6 AM, 10/2015 3PM, 11/2015 3PM, 12/2015
Duration (hours) 7 5 5
Number of Closed Lanes 2 1 0*

C,, With SVM (vph) 1,524 3,222 3,798

C,, with HCM (vph) 1,395 2,976 3,910

*: Shoulder closure.
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Figure 4.10 Hourly traffic distribution.

As summarized in Table 4.17, the delays with all the three models are compared to
the "ground truth” information which is based on INRIX reported speeds. Note that the
number in the parentheses represents the error percentage from predicted delay against
ground truth delay, which indicates model performance in terms of prediction accuracy. As
RUCM does not furnish the calculation details regarding work zones with shoulder
closures on freeways, ANN-SVM is compared with ANN-HCM for Case 3. Apparently
ANN-SVM outperforms both RUCM and ANN-HCM. Because ANN-SVM takes
approaching traffic volume and speed variations into consideration, it is more applicable
than other two models. The assumption of no queue under non-congested condition is a
possible reason why the delays predicted by RUCM are underestimated for Cases 1 and 2.

In Table 4.17, delay cost is computed using Eq. 3.5. It is also worth noting that for

Case 1, the error percentage differences of three models seem minor because of low traffic
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volumes during nighttime. When work zones are placed in daytime with higher traffic
volumes (i.e., Cases 2 and 3), ANN-SVM becomes very effective and outperforms other
two models. In addition, the maximum queue lengths (approximated using Eq. 3.6) with

the three models as well as the ground truth data are illustrated.

Table 4.17 Model Results Comparison

Models Case 1 Case 2 Case 3
RUCM 0(100%) | 0 (100%) N/A
ANN-HCM 62 (17%) 70 (6%) 72 (14%)
Delay @ (Error %)
ANN-SVM 59 (11%) 63 (5%) 81 (4%)
Ground Truth ¢ 53 66 84
RUCM 0 0 N/A
ANN-HCM 1,350 1,524 1,562
Delay Cost °
ANN-SVM 1,284 1,371 1,757
Ground Truth @ 1,153 1,437 1,822
RUCM 0 0 N/A
Length ¢ ANN-SVM 0 0.2 0.6
Ground Truth ¢ 0 0.2 0.6

Note: @ Delay: veh-hr; ® Delay cost: $; ©Queue length: miles; ¢ INRIX speeds.

Figure 4.11 illustrates the variation of the queue lengths over time predicted by all
the three models using Eq. 3.6, which are used to compare with the ground truth queue
length. It is found that all these models performed well in Case 1 because of low traffic

volumes during nighttime. However, for the daytime work zone with higher volumes (i.e.,
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Cases 2 and 3), the queue length predicted by ANN-SVM is more accurate that other two

models.
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Figure 4.11 Temporal queue length distribution.
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3.7 Summary
In this chapter, two models are developed for work zone delay prediction. The first model,
the MNR model, is a non-linear model to capture spatio-temporal speed changes when
non-recurrent congestion occurs caused by work zone activity. The prediction accuracy of
the MNR model is acceptable as illustrated in Section 4.5. Regarding ANN-SVM, the
evaluation results indicate that it is a better approach for work zone delay prediction
because it can improve the accuracy of prediction results comparing to other models (i.e.,
MNR, RUCM, and ANN-HCM). The proposed ANN-SVM can predict the work zone
impacts (i.e., delay, delay cost, and queue length) for the future work zone reasonably well
when the traffic pattern is similar to the profile of the training data. The proposed

ANN-SVM will be applied to various applications in the next chapter.
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CHAPTER 5

MODEL APPLICATIONS

As discussed in Chapter 1, the objective of this study is to develop a sound spatio-temporal
freeway work zone delay prediction model with big data under various road geometric and
work zone conditions. Two freeway work zone delay prediction models (i.e., MNR and
ANN models) have been developed in Chapter 3 and evaluated in Chapter 4. Comparing to
RUCM, MNR, and ANN-HCM, ANN-SVM had demonstrated its performance in terms of
prediction accuracy under various lane configuration and time of day.

In this chapter, the potential applications of ANN-SVM to support work zone
planning and analysis on freeways are discussed. By employing ANN-SVM, a work zone
delay prediction tool is developed in Section 5.1. Then, Case 2 presented in Section 4.6 is
applied here for determining optimal the start time of a work zone that yields the least delay
as well as cost in Section 5.2. Finally, ANN-SVM is applied to calculate the contractor
penalty in terms of cost overruns as well as an incentive reward schedule in case of early

work competition as shown in Section 5.3.

5.1 Work Zone Impact Analysis
By incorporating ANN-SVM, a work zone delay prediction tool (WZDPT) can be
developed to post information graphically, which can aid transportation agencies to make
proper decisions by assessing work zone activities in order to minimize disruptions to the
traveling public. Depending upon the user inputs such as route, milepost range and
direction, WZDPT can quickly locate the expected work zone on the map and apply

ANN-SVM for work zone impact analysis. This further enhances the ease of use of
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WZDPT, as users would not require any pre-requisite knowledge regarding road geometry
condition for analysis.

A historical work zone on the Interstate Highway 80 (1-80) - one of the most
congested and busiest highways in New Jersey - is selected for demonstrating the
application of ANN-SVM. One out of three lanes was closed for repairs on 1-80 eastbound
between mileposts 34.0 and 34.5 from 9 AM to 3 PM on October 14, 2014 as shown in
Figure 5.1. The traffic volumes are obtained from NJCMS (2012) as illustrated in Figure

5.2, which consists of an average 7% of heavy vehicles.
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Figure 5.1 Work zone on 1-80 in Wharton, NJ.
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Figure 5.2 Hourly traffic distribution at MP 33.79 on 1-80 EB.
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Based on the work zone information discussed above, WZDPT will retrieve the
roadway geometry information (e.g., number of lanes at work zone location) from the
NJSLD DB and normal speeds in upstream of work zone from INRIX. Then WZDPT can
quickly generate the normal speed (part a) and the predicted speed (part b) heat maps of
[-80 eastbound work zone as shown in Figure 5.3. This enables user to compare
spatio-temporal speed changes side-by-side and better assess the impact of the proposed
reconstruction project.

By using Eq. 4.5, Figure 5.4 illustrates the predicted impacts of the 6-hour work
zone on 1-80 EB versus different lane closures (i.e., shoulder, 1-lane, and 2-lane) and work
zone starting times (i.e., 3 AM, 9 AM, 3 PM, and 9 PM). The normal speeds and predicted
work zone speeds are illustrated horizontally with respect to the number of lane closures
and vertically with respect to the starting time of the work zone. The predicted work zone
delays consistently increase as number of closed lanes increases, especially during peak
periods. In addition, work zone delay impact is greater in the peak period than in the
off-peak period (comparing heat maps in Rows 1 and 4. Moreover, the speed recovers
slowly as the work zone end time approaches the peak period (compare heat maps in Row
1). The work zone delay prediction tool shows the capability of creating richer and more
complete picture of what is happening on the road, which can be used as a viable
alternative for transportation engineers to analyze information efficiently and make proper

delay mitigation strategies.
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Figure 5.3 Comparison of predicted and actual speeds of the 1-80 EB work zone site.
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In addition to examining the work zone impact prediction results, users can view
the hourly volume distribution approaching the work zone obtained from NJCMS DB as
shown in Figure 5.5, which allows users to examine the volume changes over space and
time. If the traffic counts of a study work zone site are different from those that NJCMS
summarized in the table, a user-specified parameter (in percentages) is offered to adjust the

volumes.

# Increase by ' Decrease by - -
0 a2 Apply Changes

VOL8:00 WVOL9:00 WVOL10:00 WVOL11:00 VOLA12:00 WVOL1:00 WVOLZ:00 WVOL3:00 VOL4:00 VOL5:00

ROUTE SRI_CMS  BEGINMP ENDMP AM AM AM AM PM PM PM PM PM PM
1-80 00000080__ 33.58 34.02 5399 4128 3206 2944 2893 2784 2893 3375 3376 3375
1-80 00000080__ 30.61 3358 5176 4217 3275 3008 2056 2844 2057 375 3176 3178
1-80 00000080__ 28.91 30.61 4382 2888 2271 2239 2199 2118 2173 2352 2667 2856
1-80 00000080__ 27.01 2891 4701 2713 2163 2296 2256 2171 21177 2332 2869 3058
1-80 000DDDBD__ 2625 27m 4484 2815 2224 2252 2213 2130 2195 2378 2663 2852
1-80 00000080__ 25.50 2625 3550 1903 1529 1692 1665 1603 1665 1847 2003 2048
1-80 00000080__ 25.04 25.50 3T 2212 1737 1702 1673 1610 1673 1773 1773 1773
1-80 00000080__ 2477 2504 3317 1737 1702 1673 1610 1673 1773 1773 1773

1
1-80 00000080__ 24.36 2477 3317 2212 1737 1702 1673 1610 1673 1773 1773 1773
1-80 00000080__ 23.23 2436 3317 1 1737 1702 1673 1610 1673 1773 1773 1773

Figure 5.5 Hourly traffic volumes.

After reviewing traffic volume counts, users may select one of the three criteria
below to determine the queue:

Criterion 1: 75% of historic average speed — The status of queue is positive at a
segment whose speed falls below 75% of the historic average speed. The historic average
speed is specific to the time of a day and the day of a week for each segment, and is
calculated based on the speeds collected in 2014. More detailed information can be found

in Chapter 3.
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Criterion 2: 75% of historic average speed or LOS (Level of Service) D Speed —
The status of queue is positive at a segment whose speed falls below 75% of the historic
average speed or LOS D speed (i.e., 35 mph).

Criterion 3: Historic average speed — The status of queue is positive at a segment
whose speed falls below the historic average speed. This measure will show predicted
queue over space and time that is “worse than normal.” Users are also able to enter an
“offset” into this option.

For the 6-hour work zone conducted at 3AM with one lane closure on 1-80 EB MP
34 - 34.5 (see speed heat map in Column 3 and Row 1 in Figure 5.4), Figure 5.6 shows the
queue length distribution over time by using three criteria listed above. The work zone
delay prediction tool provides user with flexibility in determining work zone impacts based
on preferences and needs. Note that the queue by using Criterion 3 is determined for any
time when speeds are 5 mph lower than normal speed. It is found that the queue length
defined by Criterion 3 is longer than those defined by Criteria 1 and 2. The reason for this is
that due to lane closure required by the planned work zone, the speed drops quickly as the

traffic volume increases.
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Figure 5.6 Temporal queue length distributions.
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Furthermore, WZDPT allows the user to generate a report of lane closure impacts
based on a default template. The report contains all the necessary information for the
roadway segment of interest as well as the predicted delay, delay cost and queue length
using Egs. 3.5 through 3.7. For instance, a report generated for the lane closure of 1-80
from milepost 34 to milepost 34.5 from 3:00 AM to 9:00 AM plus two hours after the work
zone removed is illustrated in Figure 5.7. This report not only presents the impact of a
proposed lane closure in a logical and concise manner, it also assists agencies and
contractors in preparing project documentation. It is noted that the volume showed in the
analysis report is the hourly volume approaching the work zone obtained from NJCMS

DB.

Work Zone Impact Analysis Report

Work Zone Information

Route Name: 1-80 Number of Closed Lanes: 1

Start Milepost: 34.0 Expected Start Date: 10/14/2014
End Milepost: 34.5 Expected Start Time: 03:00
Direction: Easthound Expected End Date: 10/14/2014
Number of Lanes: 3 Expected End Time: 05:00

Value of Time Parameters

Value of Passenger Car Time ($/veh-hr)*:  18.15 Value of Truck Volume ($/veh-hr)*: 30.25

Predicted Work Zone Impact

Total Queue Delay Cost ($): 12,761 Total Queue Delay (veh-hr): 659
Queue Determined by: 75% of historic average speed

Predicted Hourly Impact

T — Approaching Car | Approaching Truck Queue Delay Queue Delay Cost | Maximum Chfeue Length

Volume {veh)* Volume (veh)* {veh-hr) (3) {mi}
10/14/2014 03:00 601 59 0 0 0
10/14/2014 04:00 1,032 a8 o 0 0
10/14/2014 05:00 2,280 209 0 0 0
10/14/2014 06:00 4472 439 kE] 660 3.2
10/14/2014 07:00 4,882 517 192 3,724 6
10/14/2014 08:00 4,899 500 311 6,020 6.5
10/14/2014 09:00 3,757 am 122 2,357 4.8
10/14/2014 10:00 2828 378 0 0 0

Grand Total 659 12,761

Note: * Source: 2012 New Jersey Congestion Management System (NJCMS).

Figure 5.7 Work zone mobility impact report.
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5.2 Work Zone Schedule Optimization
In this section, ANN-SVM is evaluated with the work zone in Case 2 (see Section 4.6)
under various starting times and durations. Figure 5.8 shows the variation of delay cost
versus start time for various work zone durations. Considering a 5-hour work zone, it is
found that the most cost-effective starting time would be 12 AM. If this work zone must be
performed during the daytime (i.e., between 6 AM and 6 PM), the suggested starting time
would be 10 AM. It is also found that when the 5-hour work zone ends close to or at peak
hours, the residual queue must wait for extra time to be cleared, which results in more delay
and cost. As the duration is greater than 7 hours, the delay cost reaches the minimum at 10

PM because of light traffic volumes between 10 PM and 5 AM.
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Figure 5.8 Delay cost vs. starting time for various work zone durations (Case 2).

Figure 5.8 also indicates that a work zone performed in the daytime with longer

duration would raise the delay cost, especially if the work zone schedule crosses peak
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hours. In general, low delay cost may be expected as the work zone is performed during the
nighttime, albeit the labor cost is expected to be high. This also explains the work zone
practices often seen in daily commutes.

Figure 5.9 illustrates and explores the relationship between delay cost and start time
for various demand levels, varying from 80% to 150% of the original volume in Case 2. It
is found that the delay costs are close and relatively low for the start time beginning with 11
PM or later until 3 AM (next day) because the traffic during the corresponding work zone
time period is light. The delay cost significantly increases if the work zone duration
crosses peak hours. The results would give transportation agencies a competitive edge by
examining the delay costs versus work zone start and end times subject to different traffic

distributions over space and time.
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Figure 5.9 Delay cost vs. starting time for various traffic multipliers (Case 2).

98



5.3 Lane Rental Charge Determination

A FHWA report (FHWA, 2011) defines lane rental fee as a daily-base or hourly-base
charge for the time period a lane is closed to through traffic for construction activities. This
provision is intended to minimize the disruption of the work zone traffic and to encourage
minimal use of lanes for construction activities. The delay costs for various starting times
and durations, as shown in Figure 5.8, can be used as a guideline to form the basis for
awarding or deducting payments to contractors for early and late project completions,
respectively. For example, in Case 2, assuming that the contractor delays two hours to open
the closed lane to traffic (i.e., takes seven hours instead of five hours to complete the work).
If work zone started at 10 AM, the transportation agency could charge $964 in penalties to
the contractor for late completion because of the cost incurred by the excess delay. Note
that this charge may vary depending on the traffic volume distribution, work zone starting
time, and duration of late work completion of the study site as shown in Figure 5.10.

1,000 $964
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Figure 5.10 Penalty vs. starting time for 2-hour delayed completion (Case 2).
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

With increasing roadwork activities that are necessary to rehabilitate and revitalize the
roadways in the United States, planning lane closures for roadwork has drastically
demanded more accurate predictions on the impact of lane closures. It is crucial to be able
to precisely predict the lane closure impacts to minimize both the cost and traffic
congestion induced by roadwork. In response to this challenge, two models, the MNR and
ANN models, for quantifying work zone delay were developed using big data in this
research. In the MNR model, the work zone capacity was predicted using reduction factors
based on historical work zones in years 2013 and 2014. While in the ANN model, the work
zone capacity was approximated using the SVM model (called ANN-SVM). Subject to the
limitation of work zone related traffic information collected from the field for peak period,
a calibrated and validated simulation model was developed using VISSIM to generate
traffic data for model development. The performance of each model was analyzed.

Then the proposed ANN-SVM model was embedded into a work zone delay
prediction tool, which can be used to support state and local traffic construction,
operations, planning staff, and construction contractors to:

e Quantify and display temporal-spatial corridor speed/delay predictions resulting
from capacity decreases in work zones on New Jersey freeways and arterials.

¢ Identify delay impacts of alternative project phasing plans.
e Conduct tradeoff analyses between construction costs and delay costs.

e Examine the impacts of construction staging by location, time of day (peak versus
off-peak), and season (summer versus winter).
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e Assess travel demand measures and other delay mitigation strategies.
e Help establish work completion incentives.

For example, ANN-SVM could be used to calculate the costs of conducting work at
night instead of during the day, to change the starting and ending times, and to compare the
impact of several time schedules on traffic flow conditions, or to divert the traffic to one
road versus another road during different phases of construction. The costs, traffic delays,
and potential backups can be predicted for both an average day of work and for the whole
life cycle of construction. This model can also analyze the advantages of various strategies
for minimizing the projected traffic delays. These mitigation strategies might include the
retiming of signals on detour routes to help traffic flow more smoothly, planning a media
campaign to publicize the planned work zones, or using traveler information systems that

allow drivers to plan ahead and choose other routes if possible.

6.1 Conclusions
While developing the work zone capacity and delay prediction models, a wealth of
insights, challenges, areas of potential improvements, and opportunities available to
agencies in the areas of work zone impact assessment, data collection, and performance

measurement were identified, all of which are summarized below.

6.1.1 Spatio-temporal Work Zone Delay Prediction

In this study, an ANN-SVM was developed using big data to quantify delays incurred by
work zones on New Jersey freeways, in which the restricted capacity (or called work zone
capacity) was approximated using SVM. ANN-SVM was designed to adapt to the

relationship of speed versus the ratio of approaching traffic volume to work zone capacity,
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which has proven to be a robust work zone delay prediction model and achieves reasonable
well prediction accuracy. The performance of ANN-SVM outperforms that with RUCM
and ANN-HCM in predicting delay, delay cost, and queue length.

A work zone delay prediction tool integrated with ANN-SVM was developed to
post information graphically, which can aid transportation agencies to make proper
decisions by assessing work zone activities in order to minimize disruptions to the
traveling public. It is worth noting that this easy-to-use and easy-to-learn tool does not
require users to set various adjustment factors based on practical experience. It is very
convenient for practitioners to assess the impact of work zones and determine the optimal
work zone schedule which can yield the least delay and cost. Based on the predicted
spatio-temporal speeds affected by an expected work zone, a proper traffic management
plan (i.e., locations of changeable message signs, variable speed limits, and traffic detour
management, etc.) may be prepared accordingly. ANN-SVM can assist work zone planners
in designing optimal start and end time of work zone as function of time of day. In addition,
it can be used to calculate contractor penalty in terms of cost overruns as well as incentive

reward schedule in case of early work competition.

6.1.2 Big Data Analytics in Work Zone Impact Analysis

With technological advancement, the transportation industry has been experiencing a wide
variety of unprecedented massive traffic data obtained from different sources, such as
infrastructure sensors, mobile devices, and floating cars. This new and rich data (big data)
needs to be managed, communicated, interpreted, aggregated, and analyzed in a reliable
and efficient way. However, use of conventional data management tools is not able to

uncover hidden patterns, correlations, and other insights, which would leave the huge

102



amount of traffic data underutilized. Therefore, big data analytics, which creates richer and
more complete picture of what’s happening on the road, becomes a viable alternative for
transportation engineers to analyze information efficiently and make decisions based on
what they’ve learned.

For the freeway work zone impact analysis, leveraging big data analytics and
advanced freeway work zone delay prediction methods (e.g., ANN models) with big data,
the accuracy of predicted work zone speed and delay can be then significantly improved,
rather than predicting delay using traditional deterministic queuing method with the data
captured by loop detectors. The ability of big data analytics to work faster and stay agile
gives transportation agencies a competitive edge they did not have before. In addition, it
would help transportation agencies improve work zone operations, reduce delay costs and

better serve motorists.

6.1.3 Work Zone Data Deficiencies
The major issues founded during data processing procedures are as follows:

e Although the length of a work zone and the corresponding starting/ending times
are initially set by NJDOT, this information is finalized by the contractor who
demarcates the work zone. OpenReach DB needs to be updated based on the
contractor’s finalized work zone schedule.

e The traffic counts information at the scenes of work zones are important measures
for predicting speed and delay, which is not available at most places. The hourly
traffic volumes recorded in NJCMS DB are thus used for model development.

e The OpenReach and INRIX DBs do not include the SRI information. In addition,
INRIX DB also lacks the mileposts of TMCs. This problem has been fixed
manually in this study. This issue will occur as new TMCs on New Jersey
freeways are defined.
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6.2 Future Research
Future research to enhance ANN-SVM in prediction spatio-temporal work zone delay and
its applications shall focus on the following aspects:

The actual traffic counts for peak period at the scenes of work zones should be
collected from the field to replace the simulated data for further validation of the developed
models. While using real world traffic counts, the sample size should be chosen in a way
that assure that the collected data can reflect the actual work zone impacts on traffic flows
under various lane configurations and work zone conditions. More accurate traffic counts
information will substantially improve the reliability of the developed models and produce
more accurate results regarding the upstream speed, queue delay and cost. Such extensions
will allow the transportation engineers to identify the optimal start and end times of each
work zone, which will further improve the traffic flow operation of each facility.

It is desirable to develop a self-updating database by gathering data from various
sources in an automated manner wherever feasible. Modifying and standardizing the
existing database with the inclusion of common fields of information, in order to facilitate
effective communication between sources that would reduce the time required for manual
processing and improve productivity.

Traffic Message Channels (TMCs) can play a key role in collecting mobility and
safety data, identifying issues that arise, and providing information to the public regarding
current work zones within its surveillance zone. INRIX has re-defined the length of the
TMCs, which are now smaller. The performance of the proposed model in this study can be
elevated if it utilizes these smaller TMCs, as it will more accurately predict the speed and

queue length for each time interval.
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The work zone capacity predicted from SVM can be applied in the MNR model to
improve the prediction accuracy. In addition, the proposed model in this study can be
further extended to include the network impact of a work zone. Such an expanded model
may have functions including: (a) a network-wide work zone impacts prediction module;

(b) an optimal work zone schedule module; and (c) a work zone optimal staging module.
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APPENDIX A

OPENREACH DATA DEFINITION

In this appendix, the OpenReach data fields are identified in the list below.

Field Description Data Stream Example
EVENTID* Event Identification 45675101

Facility Name* Route Name NJ 3

%rrenaet5d At Date Incident Start Date and Time 2/1/13 22:00

Closed At Date Incident End Date and Time 2/2/13 7:31

Time*

Event Type

Incident Type

Construction

Event Description

Description of the Incident

NJ DOT - STMC:
Construction, construction
on NJ 3 both directions
between US 46 (Clifton)
and West of CR 509/Broad
St (Clifton) right lane
closed until 7:00 A.M.

City From Name

The city at the start of the incident

Clifton

County From

Name The county at the start of the incident | Passaic

State From Name | The state at the start of the incident | NEW JERSEY
City To Name The city at the end of the incident Clifton

County To Name | The county at the end of the incident | Passaic

State To Name The state at the end of the incident NEW JERSEY
I;/:Z:P(el\r/l*”e Incident Starting Milepost 3.8

To Mile Marker* Incident Ending Milepost 4.9

Final Duration The Duration of the Incident 570

Latitude The Latitude of the Incident 40.83257731
Longitude The Longitude of the Incident -74.14454447

*: Fields selected for database development.
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APPENDIX B

A SAMPLE QUERY FOR DATA PROCESSING

Presented below is a sample SQL query used in the database development of this study:

CREATE NONCLUSTERED INDEX [day_week] ON
[dbo].[Interstate_ Highway Feb 2014] ([day_week] ASC) WITH (PAD_INDEX = OFF,
STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

go

update [Interstate_Highway Feb 2014] set time_range_fk_id=time_range.time_range_id
from time_range

where CONVERT (time, [measurement_tstamp], 102) between min_interval and
max_interval

go

go

go

CREATE CLUSTERED INDEX [ix_cluster3] ON [dbo].[Interstate_Highway Feb 2014]
([tmc_code] ASC, [time_range_fk_id] ASC, [dw] ASC) WITH (PAD_INDEX = OFF,
STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS =ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

SELECT [tmc_code], [time_range_fk_id], COUNT(dw)as max_len
into Interstate_ Highway Feb 2014 Maxrecords

FROM [Interstate_Highway Feb 2014]

where [dw]=0

group by [tmc_code], [time_range_fk_id]

go

SELECT [tmc_code], [time_range fk id], COUNT(dw) as max_len
into US_Highway feb 2014 wd_maxrecords

FROM [Interstate_Highway Feb 2014]

where [dw]=1

group by [tmc_code], [time_range_fk_id]
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SELECT *, ROW_NUMBER() OVER(PARTITION BY tmc_code, time_range_fk_id
ORDER BY speed ) AS "Row Number"

into Processed_ Interstate_Highway _Feb 2014

FROM [Interstate_ Highway Feb 2014]

where dw=0

SELECT *, ROW_NUMBER() OVER(PARTITION BY tmc_code, time_range_fk_id
ORDER BY speed ) AS "Row Number"

into Processed_ Interstate Highway Feb 2014

FROM [Interstate_Highway Feb 2014]

where dw=1

update [Processed_Interstate_Highway Feb 2014] set

[Processed_Interstate Highway Feb 2014].max_len=agg.max_len

from Interstate_Highway Feb 2014 Maxrecords agg WITH (NOLOCK)

where [Processed_Interstate Highway Feb 2014].tmc_code = agg.tmc_code and
[Processed_Interstate_Highway Feb 2014].time_range_fk_id =
agg.time_range_fk id and
[Processed_Interstate_Highway_Feb_2014].[dw]=0

update Processed_Interstate Highway Feb 2014 set percentile=round(CAST([Row
Number] AS float)/ CAST([max_len] AS float),6)

go

update Processed_Interstate_Highway Feb 2014 set percentile=round(CAST([Row
Number] AS float)/ CAST([max_len] AS float),6)

go

select tmc_code, time_range_fk_id, avg(speed) as avg_speed, stdev(speed) as
stdev_speed, max(speed) as max_speed, min(speed) as min_speed, count(speed) as
count_speed

into Interstate_ Highway Feb 2014 Output

from Processed_Interstate_Highway Feb 2014y

where ([percentile]>=0.05 and [percentile]<=0.95)

group by [tmc_code], time_range_fk_id

go

SELECT [tmc_code], [time_range_fk _id], [min_interval], [max_interval], [avg_speed],
[stdev_speed], [max_speed], [min_speed], [count_speed]

FROM Interstate Highway Feb 2014 Output INNER JOIN [time_range] ON
[time_range_id]=[time_range_fk_id]

go
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APPENDIX C

NJDOT RUCM APPROACH

The detailed procedure of NJDOT RUCM approach predicting work zone delay and cost is
presented in this Appendix. Before conducting the computation, certain important criteria
and assumptions must be identified:

e Average user cost per car hour is $18.15/veh-hr.

e Average user cost per truck hour is $30.25/veh-hr.

e The work zone speed is generally 10mph -15mph less than the unrestricted speed.
The unrestricted speed is generally assumed the posted speed limit of the section
operating in an unrestricted flow condition. Following this, the unrestricted speed
of the studied segment as 65 mph; hence, the work zone speed is assumed as 50
mph.

Take Case 1 of Section 4.6 as an example, the selected section of the 1-78 WB
mainline is comprised of three lanes. The closure of two lanes was required for carrying out
work zone operations, and all traffic operations were supported by the remaining one open
lane. Capacity of the roadway in both normal and work zone scenarios are given in the

NJDOT RUCM (NJDOQOT, 2015) as illustrated in Table C.1.
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Table C.1 Traffic Capacities

Facility Type

Ideal Capacity

Freeway - 4 lanes

2,200 passenger cars per hour per lane

Freeway - 6 or more lanes

2,300 passenger cars per hour per lane

Multilane highway

2,200 passenger cars per hour per lane

Two-lane highway

1,400 passenger cars per hour per lane*

Signalized Intersection

1,900 passenger cars per hour of green per lane

*: For 50/50 volume, split by direction.

Work zone road capacity counted in vehicle/lane/hour is taken as the number of

lanes multiplied by the capacity provided in Table C.2. With one lane closure on a 3-lane

freeway, the work zone capacity is 1,200 vph. Table C.3 depicts the calculation procedure

suggested by the NJDOT RUCM.

Table C.2 Measured Work Zone Capacity - Freeway Section

Number of Direction Average Capacity
. Number
of Recommended Value (*)
. . . veh/lane/hour
Normal Open Studies Vehicle Vehicle per
per hour | lane per hour

3 1 7 1,170 1,170 1,200

2 1 8 1,340 1,340 1,300

5 2 8 2,740 1,370 1,400

4 2 4 2,960 1,480 1,500

3 2 9 2,980 1,490 1,500

4 3 4 4,560 1,520 1,500

*: Values may be increased 100 veh/lane/hour when work zone is protected with Jersey

barrier.
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The queue rate is calculated as the difference between the hourly capacity of the
facility and the unrestricted hourly demand during each hour of the day. The queuing rate is
the hourly rate at which vehicles accumulate, or, if negative, dissipate from any queue that
may exist. A physical queue develops when the queue rate is greater than zero. In this
scenario, the approaching volume is too small compared to the capacity provided. Hence,
either negative queue rates are obtained or no queue is formed.

Under unrestricted flow conditions, the number of vehicles that travel through the
work zone is generally seen as the traffic demand on the facility during the hours when the
work zone is in place. The total number of vehicles travelling through the work zone was
5,054 vph as shown in Table C.3. As shown in Table C.4, the added travel time caused by

the work zone based on the NJDOT RUCM can be computed using the following formula:

t=——— (C.1)

where:
t = Added travel time (hr/veh);
d = Work zone length (mi);
v,, = Work zone speed (mph); and

1, = Unrestricted speed (mph).
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Table C.3 Analysis of the Work Zone

Work Zone: I-78 WB MP 47.3 -49.3 Normal Capacity: 6,900
Normal Speed (mph): 65 Percent Cars: 90 Work Zone Capacity: 1,200
Directional ADT: Percent Truck: 10 Lanes Under Normal Operation: 3
3.1(A) 3.1(B) 3.1(C) 3.1(D) 3.1(E) 3.1(F) 3.1(G) 3.1(H) 3.1(1) 3.1(J)
| : Work Vehicles | Vehicles
(hour) (%) (vph) ) (vph) (vph) (vph) Present? |Work Zone| Queue
(YorN) (vph) (vph)
12-1 AM 0.7 466 1 1,200 -734 0 Y 466 0
1-2 0.5 329 1 1,200 -871 0 Y 329 0
2-3 0.4 173 1 1,200 -1,027 0 Y 173 0
3-4 0.6 180 1 1,200 -1,020 0 Y 180 0
4.5 1.8 223 1 1,200 977 0 Y 223 0
5-6 4.4 216 1 1,200 -984 0 Y 216 0
6-7 6.2 499 1 6,900 -6,401 0 N 0 0
7-8 7.2 2,108 1 6,900 -4,792 0 N 0 0
8-9 5.6 2,398 1 6,900 -4,502 0 N 0 0
9-10 5.0 1,717 1 6,900 -5,183 0 N 0 0
10-11 4.8 1,396 1 6,900 -5,504 0 N 0 0
11-12 PM 5.1 1,533 1 6,900 5,367 0 N 0 0
12-1 53 1,817 1 6,900 -5,083 0 N 0 0
1-2 55 1,695 1 6,900 -5,205 0 N 0 0
2-3 5.6 1,555 1 6,900 -5,345 0 N 0 0
3-4 6.5 1,380 1 6,900 -5,520 0 N 0 0
4-5 6.9 2,547 1 6,900 -4,353 0 N 0 0
5-6 6.4 2,566 1 6,900 -4,334 0 N 0 0
6-7 5.9 1,789 1 6,900 5,111 0 N 0 0
7-8 4.9 1,070 1 6,900 -5,830 0 N 0 0
8-9 4.0 1,073 1 6,900 -5,827 0 N 0 0
9-10 3.0 1,223 1 6,900 -5,677 0 N 0 0
10-11 2.1 1,113 1 6,900 -5,787 0 N 0 0
11-12 1.6 939 1 1,200 -261 0 Y 939 0
TOTALS 100.0 30,005 2,526 0
Table C.4 Work Zone Delay Calculation
_ Work Z_one Work ane Added Time
Work Zone | Work Zone | Unrestricte | Travel Time at | Travel Time to Travel
Length Speed d Speed Unrestricted at Work Kk 7
(mile) (mph) (mph) Speed Zone Speed LD
(hr/veh)
(hr/veh) (hr/veh)
2 50 65 0.031 0.040 0.009
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The delay cost is calculated for specific vehicle classes, and is the product of the
percentage of class and the volume, additional travel time delay, and the average user cost
per vehicle. Table C.5 shows the calculation based on the NJDOT RUCM. The reduction

factor is used to accommodate for variations in traffic data, roadway capacities, and cost

rates.

Table C.5 Work Zone Delay Cost Computation (NJDOT RUCM)

3.5(A) 35B) | 35C) | 3.50D) 3.5(E) 3.5(F) 3.5(G) 3.5(H)
Vehicle percent To_tal Added Travel Added Time Cost Rate Road User Cost
Road User Cost Component Class Class | Vehicles Length (hriveh) @lveh-hr, $imile) ©
) ® (mile/veh) v ven-nr, simi
Queue/Flagging Delay CAR 90 2,526 0.000 18.15 0
(Added Time) TRUCK | 10 2,526 0.000 30.25 0
Queue/Flagging Idling VOC | CAR 90 2,526 0.000 0.9695 0
(Added Cost) TRUCK | 10 2,526 0.000 1.1150 0
Work/Flagging Zone Delay CAR 90 2,526 0.009 18.15 371
(Added Time) TRUCK | 10 2,526 0.009 30.25 69
Circuity Delay CAR 90 0 0.000 18.15 0
(Added Time) TRUCK | 10 0 0.000 30.25 0
Circuity VOC CAR 90 0 0.0 0.320 0
(Added Cost) TRUCK 10 0 0.0 0.640 0
Total Vehicles that Travel Queue: 0 Daily / Hourly Road User Cost 440
Total Vehicles that Travel Work Zone: 2,526 Calculated Road User Cost (CRUC) 330
Total Vehicles that Travel Detour: 0 Daily RUC (1) or Hourly RUC (0) 1
Percent Passenger Cars: 90% Total Road User Cost (per Day) 330
Percent Trucks: 10% Total Road User Cost (per minute)
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